1
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Tagnères S, Santo PE, Radermecker J, Rinaldi D, Froment C, Provost Q, Bongers M, Capeille S, Watkins N, Marcoux J, Gleizes PE, Marcel V, Plisson-Chastang C, Lebaron S. SURF2 is a MDM2 antagonist in triggering the nucleolar stress response. Nat Commun 2024; 15:8404. [PMID: 39333141 PMCID: PMC11436901 DOI: 10.1038/s41467-024-52659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cancer cells rely on high ribosome production to sustain their proliferation rate. Many chemotherapies impede ribosome production which is perceived by cells as "nucleolar stress" (NS), triggering p53-dependent and independent pathways leading to cell cycle arrest and/or apoptosis. The 5S ribonucleoprotein (RNP) particle, a sub-ribosomal particle, is instrumental to NS response. Upon ribosome assembly defects, the 5S RNP accumulates as free form. This free form is able to sequester and inhibit MDM2, thus promoting p53 stabilization. To investigate how cancer cells can resist to NS, here we purify free 5S RNP and uncover an interaction partner, SURF2. Functional characterization of SURF2 shows that its depletion increases cellular sensitivity to NS, while its overexpression promotes their resistance to it. Consistently, SURF2 is overexpressed in many cancers and its expression level is an independent marker of prognosis for adrenocortical cancer. Our data demonstrate that SURF2 buffers free 5S RNP particles, and can modulate their activity, paving the way for the research of new molecules that can finely tune the response to nucleolar stress in the framework of cancer therapies.
Collapse
Affiliation(s)
- Sophie Tagnères
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Paulo Espirito Santo
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Julie Radermecker
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Dana Rinaldi
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Quentin Provost
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Manon Bongers
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Solemne Capeille
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Nick Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), Team with an accreditation from the French "Ligue contre le Cancer" organism., University of Toulouse, CNRS, UPS, 118 route de Narbonne, Toulouse, Cedex, France.
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France.
| |
Collapse
|
3
|
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 2024; 15:7511. [PMID: 39209816 PMCID: PMC11362459 DOI: 10.1038/s41467-024-51754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Collapse
Affiliation(s)
- Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | | | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Juliane Merl-Pham
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | | | - Martin Vareka
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Stefanie M Hauck
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
4
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
5
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
6
|
Manohar S, Neurohr GE. Too big not to fail: emerging evidence for size-induced senescence. FEBS J 2024; 291:2291-2305. [PMID: 37986656 DOI: 10.1111/febs.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Cellular senescence refers to a permanent and stable state of cell cycle exit. This process plays an important role in many cellular functions, including tumor suppression. It was first noted that senescence is associated with increased cell size in the early 1960s; however, how this contributes to permanent cell cycle exit was poorly understood until recently. In this review, we discuss new findings that identify increased cell size as not only a consequence but also a cause of permanent cell cycle exit. We highlight recent insights into how increased cell size alters normal cellular physiology and creates homeostatic imbalances that contribute to senescence induction. Finally, we focus on the potential clinical implications of these findings in the context of cell cycle arrest-causing cancer therapeutics and speculate on how tumor cell size changes may impact outcomes in patients treated with these drugs.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Biology, Institute for Biochemistry, ETH Zürich, Switzerland
| | - Gabriel E Neurohr
- Department of Biology, Institute for Biochemistry, ETH Zürich, Switzerland
| |
Collapse
|
7
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Singh M, Agarwal V, Pancham P, Jindal D, Agarwal S, Rai SN, Singh SK, Gupta V. A Comprehensive Review and Androgen Deprivation Therapy and Its Impact on Alzheimer's Disease Risk in Older Men with Prostate Cancer. Degener Neurol Neuromuscul Dis 2024; 14:33-46. [PMID: 38774717 PMCID: PMC11108066 DOI: 10.2147/dnnd.s445130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignancies affecting males worldwide. Despite reductions in mortality rates due to advances in early identification and treatment methods, PCa remains a major health concern. Recent research has shed light on a possible link between PCa and Alzheimer's disease (AD), which is a significant neurological ailment that affects older males all over the world. Androgen deprivation therapy (ADT), a cornerstone therapeutic method used in conjunction with radiation and palliative care in advanced metastatic PCa cases, is critical for disease management. Evidence reveals a relationship between ADT and cognitive impairment. Hormonal manipulation may cause long-term cognitive problems through processes such as amyloid beta (Aβ) aggregation and neurofibrillary tangles (NFTs). Fluctuations in basal androgen levels can upset the delicate balance of genes that are sensitive to androgen levels, contributing to cognitive impairment. This detailed review dives into the various aspects of PCa aetiology and its relationship with cognitive decline. It investigates the discovery of particular biomarkers, as well as microRNAs (miRNAs), which play important roles in pathogenic progression. The review attempts to identify potential biomarkers associated with ADT-induced cerebral changes, including Aβ oligomer buildup, NFT formation, and tauopathy, which can contribute to early-onset dementia and cognitive impairment. Besides it further aims to provide insights into innovative diagnostic and therapeutic avenues for alleviating PCa and ADT-related cognitive sequelae by unravelling these complicated pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- Indian Institute of Technology Bombay Monash Research Academy, Mumbai, India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- Department of Molecular Science, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Beaudreau N, Page TM, Drolet D, McKindsey CW, Howland KL, Calosi P. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170167. [PMID: 38242480 DOI: 10.1016/j.scitotenv.2024.170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.
Collapse
Affiliation(s)
- Nicholas Beaudreau
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Tessa M Page
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - David Drolet
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Christopher W McKindsey
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| |
Collapse
|
10
|
Zhu J, Liu L, Lin R, Guo X, Yin J, Xie H, Lu Y, Zhang Z, Zhang H, Yao Z, Zhang H, Wang X, Zeng C, Cai D. RPL35 downregulated by mechanical overloading promotes chondrocyte senescence and osteoarthritis development via Hedgehog-Gli1 signaling. J Orthop Translat 2024; 45:226-235. [PMID: 38596341 PMCID: PMC11001632 DOI: 10.1016/j.jot.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/01/2023] [Accepted: 01/13/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives To investigate the potential role of Ribosomal protein L35 (RPL35) in regulating chondrocyte catabolic metabolism and to examine whether osteoarthritis (OA) progression can be delayed by overexpressing RPL35 in a mouse compression loading model. Methods RNA sequencing analysis was performed on chondrocytes treated with or without 20 % elongation strain loading for 24 h. Experimental OA in mice was induced by destabilization of the medial meniscus and compression loading. Mice were randomly assigned to a sham group, an intra-articular adenovirus-mediated overexpression of the negative group, and an intra-articular adenovirus-mediated overexpression of the RPL35 operated group. The Osteoarthritis Research Society International score was used to evaluate cartilage degeneration. Immunostaining and western blot analyses were conducted to detect relative protein levels. Primary mouse chondrocytes were treated with 20 % elongation strain loading for 24 h to investigate the role of RPL35 in modulating chondrocyte catabolic metabolism and regulating cellular senescence in chondrocytes. Results The protein expression of RPL35 in mouse chondrocytes was significantly reduced when excessive mechanical loading was applied, while elevated protein levels of RPL35 protected articular chondrocytes from degeneration. In addition, the RPL35 knockdown alone induced chondrocyte senescence, decreased the expression of anabolic markers, and increased the expression of catabolic markers in vitro in part through the hedgehog (Hh) pathway. Conclusions These findings demonstrated a functional pathway important for OA development and identified intra-articular injection of RPL35 as a potential therapy for OA prevention and treatment. The translational potential of this article It is necessary to develop new targeted drugs for OA due to the limitations of conventional pharmacotherapy. Our study explores and demonstrates the protective effect of RPL35 against excessive mechanical stress in OA models in vivo and in vitro in animals. These findings might provide novel insights into OA pathogenesis and show its translational potential for OA therapy.
Collapse
Affiliation(s)
- Jinjian Zhu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rengui Lin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiongtian Guo
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianbin Yin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haoyu Xie
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuheng Lu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhicheng Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zihao Yao
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiangjiang Wang
- Orthopedics department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Chun Zeng
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
11
|
Jariyasakulroj S, Zhang W, Bai J, Zhang M, Lu Z, Chen JF. Ribosome biogenesis controls cranial suture MSC fate via the complement pathway in mouse and human iPSC models. Stem Cell Reports 2023; 18:2370-2385. [PMID: 37977145 PMCID: PMC10724072 DOI: 10.1016/j.stemcr.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
Disruption of global ribosome biogenesis selectively affects craniofacial tissues with unclear mechanisms. Craniosynostosis is a congenital craniofacial disorder characterized by premature fusion of cranial suture(s) with loss of suture mesenchymal stem cells (MSCs). Here we focused on ribosomopathy disease gene Snord118, which encodes a small nucleolar RNA (snoRNA), to genetically disturb ribosome biogenesis in suture MSCs using mouse and human induced pluripotent stem cell (iPSC) models. Snord118 depletion exhibited p53 activation, increased cell death, reduced proliferation, and premature osteogenic differentiation of MSCs, leading to suture growth and craniosynostosis defects. Mechanistically, Snord118 deficiency causes translational dysregulation of ribosomal proteins and downregulation of complement pathway genes. Further complement pathway disruption by knockout of complement C3a receptor 1 (C3ar1) exacerbated MSC and suture defects in mutant mice, whereas activating the complement pathway rescued MSC cell fate and suture growth defects. Thus, ribosome biogenesis controls MSC fate via the complement pathway to prevent craniosynostosis.
Collapse
Affiliation(s)
- Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Masticatory Science, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
12
|
Damizia M, Moretta GM, De Wulf P. The RioK1 network determines p53 activity at multiple levels. Cell Death Discov 2023; 9:410. [PMID: 37935656 PMCID: PMC10630321 DOI: 10.1038/s41420-023-01704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
By responding to a host of adverse conditions, ranging from DNA damage to viral infection, transcription factor p53 supports genomic stability, cellular health, and survival. Not surprisingly, tumours across the cancer spectrum carry mutations in p53, misexpress the protein, or dysregulate its activity. Several signalling pathways, many of which comprise oncogenic proteins, converge upon p53 to control its stability and activity. We here present the conserved kinase/ATPase RioK1 as an upstream factor that determines p53 activity at the DNA, RNA, and protein levels. It achieves this task by integrating the regulatory events that act on p53 into a coherent response circuit. We will also discuss how RIOK1 overexpression represents an alternative mechanism for cancers to inactivate p53, and how targeting RioK1 could eradicate malignancies that are driven by a dysregulated RioK1-p53 network.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Gian Mario Moretta
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy.
| |
Collapse
|
13
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
14
|
Liu L, Feng J, Jiang S, Zhou S, Yan M, Zhang Z, Wang W, Liu Y, Zhang J. Anti-inflammatory and intestinal microbiota modulation properties of Ganoderma lucidum β-d-glucans with different molecular weight in an ulcerative colitis model. Int J Biol Macromol 2023; 251:126351. [PMID: 37597635 DOI: 10.1016/j.ijbiomac.2023.126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
This study systematically investigated the therapeutic effects and the corresponding mechanisms of β-D-glucans from Ganoderma lucidum (G. lucidum) with different molecular weights (Mws) on ulcerative colitis (UC). Results showed that three β-d-glucans (GLPS, GLPN and GLPW) from G. lucidum with different Mws exhibited the significant activities on the reduction of typical symptoms of UC by regulating inflammatory cytokine levels, modulating intestinal immunity, improving intestinal microbiota and metabolism of short-chain fatty acids (SCFAs) in the dextran sulfate sodium (DSS)-induced mice model. Among them, the effects of the microwave assisted degraded fraction (GLPW) mainly containing two fractions with smaller Mw (1.33 × 104 and 3.51 × 103 g/mol) on the regulation of inflammatory factors and SCFAs metabolism were found to be comparable to those of GLPN with medium Mw (3.49 × 104 g/mol), and superior to those of GLPS with large Mw (2.42 × 106 g/mol). The effect of GLPW on regulation of intestinal microbiota was even better than that of GLPN. These findings suggested that lowering Mw by means of physical degradation could improve the anti-inflammatory activities of G. lucidum β-d-glucans. The analysis of anti-inflammatory mechanism also provided a feasible and theoretical basis for potential use of degraded β-d-glucans in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Siqi Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
15
|
Rakotopare J, Toledo F. p53 in the Molecular Circuitry of Bone Marrow Failure Syndromes. Int J Mol Sci 2023; 24:14940. [PMID: 37834388 PMCID: PMC10573108 DOI: 10.3390/ijms241914940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
16
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
17
|
Kurata K, Samur MK, Liow P, Wen K, Yamamoto L, Liu J, Morelli E, Gulla A, Tai YT, Qi J, Hideshima T, Anderson KC. BRD9 Degradation Disrupts Ribosome Biogenesis in Multiple Myeloma. Clin Cancer Res 2023; 29:1807-1821. [PMID: 36780189 PMCID: PMC10150249 DOI: 10.1158/1078-0432.ccr-22-3668] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE BRD9 is a defining component of the noncanonical SWI/SNF complex, which regulates gene expression by controlling chromatin dynamics. Although recent studies have found an oncogenic role for BRD9 in multiple cancer types including multiple myeloma, its clinical significance and oncogenic mechanism have not yet been elucidated. Here, we sought to identify the clinical and biological impact of BRD9 in multiple myeloma, which may contribute to the development of novel therapeutic strategies. EXPERIMENTAL DESIGN We performed integrated analyses of BRD9 in vitro and in vivo using multiple myeloma cell lines and primary multiple myeloma cells in established preclinical models, which identified the molecular functions of BRD9 contributing to multiple myeloma cell survival. RESULTS We found that high BRD9 expression was a poor prognostic factor in multiple myeloma. Depleting BRD9 by genetic (shRNA) and pharmacologic (dBRD9-A; proteolysis-targeting chimera; BRD9 degrader) approaches downregulated ribosome biogenesis genes, decreased the expression of the master regulator MYC, and disrupted the protein-synthesis maintenance machinery, thereby inhibiting multiple myeloma cell growth in vitro and in vivo in preclinical models. Importantly, we identified that the expression of ribosome biogenesis genes was associated with the disease progression and prognosis of patients with multiple myeloma. Our results suggest that BRD9 promotes gene expression by predominantly occupying the promoter regions of ribosome biogenesis genes and cooperating with BRD4 to enhance the transcriptional function of MYC. CONCLUSIONS Our study identifies and validates BRD9 as a novel therapeutic target in preclinical models of multiple myeloma, which provides the framework for the clinical evaluation of BRD9 degraders to improve patient outcome.
Collapse
Affiliation(s)
- Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K. Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
| | - Priscilla Liow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Leona Yamamoto
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Annamaria Gulla
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
19
|
Wang F, Cheng H, Zhang Q, Guo J. Genetic mutations in ribosomal biogenesis gene TCOF1 identified in human neural tube defects. Mol Genet Genomic Med 2023; 11:e2150. [PMID: 36808708 PMCID: PMC10178795 DOI: 10.1002/mgg3.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Rare mutations in multiple genes have been associated with human neural tube defects (NTDs), but their causative roles in NTDs disease are poorly understood. Insufficiency of the ribosomal biogenesis gene treacle ribosome biogenesis factor 1(Tcof1) results in cranial NTDs and craniofacial malformations in mice. Here, we aimed to identify genetic association of TCOF1 with human NTDs. METHODS High-throughput sequencing targeted on TCOF1 was performed on samples from 355 human cases affected by NTDs and 225 controls from a Han Chinese population. RESULTS Four novel missense variants were found in the NTD cohort. Cell-based assays indicated that the p.(A491G) variant carried by an individual, who shows anencephaly and single-nostril abnormality, attenuates production of total proteins, suggesting a loss-of-function mutation in ribosomal biogenesis. Importantly, this variant promotes nucleolar disruption and stabilizes p53 protein, highlighting an unbalancing effect on cell apoptosis. CONCLUSIONS This study explored the functional impact of a missense variant in TCOF1, implicating a set of novel causative biological factors involved in the pathogenicity of human NTDs, particularly whom combined with craniofacial abnormality.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.,Department of Biochemistry and Molecular Biology, Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
20
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ko HM, Jee W, Lee D, Jang HJ, Jung JH. Ophiopogonin D increase apoptosis by activating p53 via ribosomal protein L5 and L11 and inhibiting the expression of c-Myc via CNOT2. Front Pharmacol 2022; 13:974468. [PMID: 36569330 PMCID: PMC9780504 DOI: 10.3389/fphar.2022.974468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Ophiopogonin D (OP-D), which is extracted from the root tuber of Ophiopogon japonicus, is well known for its anti-inflammatory, anti-oxidant, and anti-cancer effects. It is also therapeutic for various diseases such as diabetic myocardial injuries, obesity, atopic dermatitis, and osteoporosis. However, there are insufficient reports on the anti-cancer effects and molecular mechanisms of OP-D in colorectal cancer. Therefore, this study aimed to investigate the anti-cancer-modulating effect of OP-D on colorectal cancer. The study proved that OP-D (20-40 uM) has significant cell viability inhibition and anti-proliferative effects in Cell Counting Kit-8 (CCK-8) assay and colony formation assay. In addition, our immunofluorescence analysis data showed that OP-D (40 uM) inhibited the expression of Ki67, a cell proliferation marker, and confirmed that OP-D could induce nucleolar stress by depletion of IPO7 and XPO1. Furthermore, our western blot data showed that OP-D induced p53 expression via ribosomal protein (RP) L5 or L11 and inhibited c-Myc expression through CNOT2 in a dose-dependent manner. Additionally, OP-D regulated cyclin D1 and CDK4, which are well known as cell cycle regulatory proteins. OP-D consistently inhibited the phosphorylation of AKT expression in a dose-dependent manner. Furthermore, OP-D shortened c-Myc's half-life in a time-dependent manner. Furthermore, CNOT2 knockdown enhanced the inhibitory effect of OP-D on c-Myc in colon cancer cells. Besides that, we confirmed that OP-D has a combinational anti-cancer effect of 5-FU or doxorubicin to reduce cell viability and induce apoptosis through p53 and c-Myc regulation. Altogether, our results suggest that OP-D regulates colon cancer cell proliferation and induces apoptosis by inhibiting c-Myc expression via activation of p53 and CNOT2 regulation. The study demonstrated that OP-D may be a promising natural anti-cancer agent for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, China
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, China
| | - Duckgue Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, China,*Correspondence: Hyeung-Jin Jang, ; Ji Hoon Jung,
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, China,*Correspondence: Hyeung-Jin Jang, ; Ji Hoon Jung,
| |
Collapse
|
22
|
Donadieu J. Genetics of severe congenital neutropenia as a gateway to personalized therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:658-665. [PMID: 36485107 PMCID: PMC9821599 DOI: 10.1182/hematology.2022000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Registre National des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand-Trousseau, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
23
|
Liao H, Gaur A, McConie H, Shekar A, Wang K, Chang JT, Breton G, Denicourt C. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res 2022; 50:10695-10716. [PMID: 36161484 PMCID: PMC9561284 DOI: 10.1093/nar/gkac817] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
5-Methylcytosine (m5C) is a base modification broadly found on various RNAs in the human transcriptome. In eukaryotes, m5C is catalyzed by enzymes of the NSUN family composed of seven human members (NSUN1-7). NOP2/NSUN1 has been primarily characterized in budding yeast as an essential ribosome biogenesis factor required for the deposition of m5C on the 25S ribosomal RNA (rRNA). Although human NOP2/NSUN1 has been known to be an oncogene overexpressed in several types of cancer, its functions and substrates remain poorly characterized. Here, we used a miCLIP-seq approach to identify human NOP2/NSUN1 RNA substrates. Our analysis revealed that NOP2/NSUN1 catalyzes the deposition of m5C at position 4447 on the 28S rRNA. We also find that NOP2/NSUN1 binds to the 5′ETS region of the pre-rRNA transcript and regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs. We provide evidence that NOP2/NSUN1 facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes. Remarkably, expression of both WT and catalytically inactive NOP2/NSUN1 in knockdown background rescues the rRNA processing defects and the stable assembly of box C/D snoRNP complexes, suggesting that NOP2/NSUN1-mediated deposition of m5C on rRNA is not required for ribosome synthesis.
Collapse
Affiliation(s)
- Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Anushri Gaur
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Karen Wang
- Wiess College, Rice University, Houston, TX 77251, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Keyvani Chahi A, Belew MS, Xu J, Chen HTT, Rentas S, Voisin V, Krivdova G, Lechman E, Marhon SA, De Carvalho DD, Dick JE, Bader GD, Hope KJ. PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal. Blood 2022; 140:992-1008. [PMID: 35639948 PMCID: PMC9437713 DOI: 10.1182/blood.2021014698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.
Collapse
Affiliation(s)
- Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Muluken S Belew
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - He Tian Tony Chen
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Stefan Rentas
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | | | - Gabriela Krivdova
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Gary D Bader
- The Donnelly Centre and
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| |
Collapse
|
25
|
Jia Y, Wang P, Ou Y, Yan Y, Zhou S, Sun L, Lu H. Insights into the microbial response mechanisms to ciprofloxacin during sulfur-mediated biological wastewater treatment using a metagenomics approach. WATER RESEARCH 2022; 223:118995. [PMID: 36007398 DOI: 10.1016/j.watres.2022.118995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The fate and removal of ciprofloxacin, a class of fluoroquinolone antibiotic, during sulfur-mediated biological wastewater treatment has been recently well documented. However, little is known regarding the genetic response of microorganisms to ciprofloxacin. Here, a lab-scale anaerobic sulfate-reducing bioreactor was continuously operated over a long term for ciprofloxacin-contaminated wastewater treatment to investigate the response of the microorganisms to ciprofloxacin by adopting a metagenomics approach. It was found that total organic carbon (TOC) removal and sulfate reduction were promoted by approximately 10% under ciprofloxacin stress, along with the enrichment of functional genera (e.g., Desulfobacter, Geobacter) involved in carbon and sulfur metabolism. The metagenomic analytical results demonstrated that ciprofloxacin triggered the microbial SOS response, as demonstrated by the up-regulation of the multidrug efflux pump genes (8-125-fold higher than that of the control) and ciprofloxacin-degrading genes (4-33-fold higher than that of the control). Moreover, the contents of ATP, NADH, and cytochrome C, as well as related functional genes (including genes involved in energy generation, electron transport, carbon metabolism, and sulfur metabolism) were markedly increased under ciprofloxacin stress. This demonstrated that the carbon and sulfur metabolisms were enhanced for energy (ATP) generation and electron transport in response to ciprofloxacin-induced stress. Interestingly, the microbes tended to cooperate while being subjected exposure to exogenous ciprofloxacin according to the reconstructed metabolic network using the NetSeed model. Particularly, the species with higher complementarity indices played more pivotal roles in strengthening microbial metabolism and the SOS response under long-term ciprofloxacin stress. This study characterized the response mechanisms of microorganisms to ciprofloxacin at the genetic level in sulfur-mediated biological wastewater treatment. These new understandings will contribute the scientific basis for improving and optimizing the sulfur-mediated bioprocess for antibiotics-laden wastewater treatment.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Pandeng Wang
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Yuyi Ou
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Yujian Yan
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
26
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Ge MX, Yu Q, Li GH, Yang LQ, He Y, Li J, Kong QP. Multiple time-series expression trajectories imply dynamic functional changes during cellular senescence. Comput Struct Biotechnol J 2022; 20:4131-4137. [PMID: 36016715 PMCID: PMC9379982 DOI: 10.1016/j.csbj.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular senescence is a dynamic process driven by epigenetic and genetic changes. Although some transcriptomic signatures of senescent cells have been discovered, how these senescence-related signals change over time remains largely unclear. Here, we profiled the transcriptome dynamics of human dermal fibroblast (HDF) cells in successive stages of growth from proliferation to senescence. Based on time-series expression profile analysis, we discovered four trajectories (C1, C2, C3, C4) that are dynamically expressed as senescence progresses. While some genes were continuously up-regulated (C4) or down-regulated (C2) with aging, other genes did not change linearly with cell proliferation, but remained stable until entering the senescent state (C1, C3). Further analysis revealed that the four modes were enriched in different biological pathways, including regulation of cellular senescence. These findings provide a new perspective on understanding the dynamic regulatory mechanism of cellular senescence.
Collapse
|
28
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
29
|
Endoplasmic Reticulum Stress and Impairment of Ribosome Biogenesis Mediate the Apoptosis Induced by Ocimum x africanum Essential Oil in a Human Gastric Cancer Cell Line. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060799. [PMID: 35744062 PMCID: PMC9227199 DOI: 10.3390/medicina58060799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Gastric cancer remains a major unmet clinical problem worldwide. Although conventional medical treatments are available, their curative effects are generally unsatisfactory. Consequently, it remains necessary to search natural products for potential alternatives in treating gastric cancer patients. Ocimum x africanum Lour. is a culinary herb that has been used in folk medicine for various diseases, but little is known regarding its anti-cancer activity against gastric cancer cells. In the current study, we focus on the anti-cancer mechanisms of O. x africanum essential oil (OAEO) in the AGS human gastric cancer cell line. Materials and Methods: After OAEO treatment, AGS cell viability was evaluated by MTT assay. Cell migration and apoptotic nuclear morphology were determined by wound-healing assay and DAPI staining, respectively. Gene expression levels of apoptosis-related genes were quantified by qRT–PCR. Differential protein expression was determined with an LC–MS/MS-based proteomics approach to identify the key proteins that may be important in the anti-cancer mechanisms of OAEO on AGS cells. The chemical constituents of OAEO were identified by GC–MS analysis. Results: We found OAEO to exhibit a potent growth-inhibiting effect on AGS cells, with an IC50 value of 42.73 µg/mL. After OAEO treatment for 24 h, AGS cell migration was significantly decreased relative to the untreated control. OAEO-treated AGS cells exhibited common features of apoptotic cell death, including cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Apoptotic cell death was confirmed by qRT–PCR for apoptosis-related genes, revealing that OAEO decreased the expression of anti-apoptotic genes (BCL2 and BCL-xL) and activated pro-apoptotic genes and apoptotic caspase genes (TP53, BAX, CASP9, CASP12, and CASP3). Moreover, expression of CASP8 was not changed after treatment. Proteomic analysis revealed that OAEO may produce a signature effect on protein clusters relating to unfolded protein accumulation, thereby inducing severe ER stress and also impairing ribosome synthesis. STRING analysis revealed seven up-regulated and 11 down-regulated proteins, which were significantly associated with protein folding and ribosome biogenesis, respectively. Using GC–MS analysis, 6-methyl-5-hepten-2-one, citral, neral, and linalool were found to be the major chemical constituents in OAEO. Conclusions: Taken together, these results indicate that OAEO has a potential anti-proliferative effect on AGS cells. Our molecular findings show evidence supporting an important role of ER stress and ribosome biogenesis impairment in mediating the induction of cell death by OAEO through the mitochondrial-apoptotic pathway. This study, therefore, provides fundamental knowledge for future applications using OAEO as an alternative therapy in gastric cancer management.
Collapse
|
30
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
31
|
Huang ZF, Tang YL, Shen ZL, Yang KY, Gao K. UXT, a novel DNMT3b-binding protein, promotes breast cancer progression via negatively modulating lncRNA MEG3/p53 axis. Mol Ther Oncolytics 2022; 24:497-506. [PMID: 35229028 PMCID: PMC8850569 DOI: 10.1016/j.omto.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Overexpressed ubiquitously expressed transcript (UXT) in breast tumors and derived cell lines modulated the transcriptional activity of estrogen receptor alpha. However, how UXT exerts its biological functions in the tumorigenicity of breast cancer remains largely unknown. Expressions of UXT and maternally expressed gene 3 (MEG3) were examined by qRT-PCR and Western blot. The capacity of cell proliferation, apoptosis, migration, and invasion was assessed using CCK-8, flow cytometry, and transwell assays. Methylation-specific PCR (MS-PCR) was employed to evaluate the methylation of the MEG3 imprinting control region. Co-immunoprecipitation was performed to verify the UXT/DNMT3b interaction. RNA immunoprecipitation (RIP) was subjected to assess the regulation of MEG3 on p53 activity. A xenograft tumor model was further conducted to certify the molecular mechanism. UXT was upregulated, while MEG3 was downregulated in breast cancer tissues and cell lines. UXT knockdown or MEG3 overexpression inhibited cell proliferation, promoted apoptosis, and weakened cell migration and invasion. Hypermethylation of the MEG3 imprinting control region was modulated by highly expressed DNMT3b. UXT inhibited MEG3 expression via recruiting DNMT3b to its imprinting control region. MEG3 positively regulated p53 activity. UXT negatively regulated the MEG3/p53 axis in a DNMT3b-dependent manner to promote tumor growth. UXT, a novel DNMT3b-binding protein, aggravates the progression of breast cancer through MEG3/p53 axis.
Collapse
Affiliation(s)
- Zhong-Feng Huang
- Department of Plastic Surgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, P. R. China
| | - Yu-Ling Tang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Zhao-Long Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha 410013, Hunan Province, P. R. China
| | - Kai-Yan Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha 410013, Hunan Province, P. R. China
| | - Kai Gao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha 410013, Hunan Province, P. R. China
- Corresponding author Dr. Kai Gao, Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha 410013, Hunan Province, P. R. China.
| |
Collapse
|
32
|
Naidoo M, Jones L, Conboy B, Hamarneh W, D’Souza D, Anthony K, Machado LR. Duchenne muscular dystrophy gene expression is an independent prognostic marker for IDH mutant low-grade glioma. Sci Rep 2022; 12:3200. [PMID: 35217778 PMCID: PMC8881458 DOI: 10.1038/s41598-022-07223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Alterations in the expression of the Duchenne muscular dystrophy (DMD) gene have been associated with the development, progression and survival outcomes of numerous cancers including tumours of the central nervous system. We undertook a detailed bioinformatic analysis of low-grade glioma (LGG) bulk RNAseq data to characterise the association between DMD expression and LGG survival outcomes. High DMD expression was significantly associated with poor survival in LGG with a difference in median overall survival between high and low DMD groups of over 7 years (P = < 0.0001). In a multivariate model, DMD expression remained significant (P = 0.02) and was an independent prognostic marker for LGG. The effect of DMD expression on overall survival was only apparent in isocitrate dehydrogenase (IDH) mutant cases where non-1p/19q co-deleted LGG patients could be further stratified into high/low DMD groups. Patients in the high DMD group had a median overall survival time almost halve that of the low DMD group. The expression of the individual DMD gene products Dp71, Dp71ab and Dp427m were also significantly associated with overall survival in LGG which have differential biological effects relevant to the pathogenesis of LGG. Differential gene expression and pathway analysis identifies dysregulated biological processes relating to ribosome biogenesis, synaptic signalling, neurodevelopment, morphogenesis and immune pathways. Genes spanning almost the entirety of chromosome 1p are upregulated in patients with high overall DMD, Dp71 and Dp427m expression which worsens survival outcomes for these patients. We confirmed dystrophin protein is variably expressed in LGG tumour tissue by immunohistochemistry and, overall, demonstrate that DMD expression has potential utility as an independent prognostic marker which can further stratify IDH mutant LGG to identify those at risk of poor survival. This knowledge may improve risk stratification and management of LGG.
Collapse
Affiliation(s)
- Michael Naidoo
- grid.44870.3fCentre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Leanne Jones
- grid.44870.3fCentre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Benjamin Conboy
- grid.44870.3fCentre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Wael Hamarneh
- grid.500651.7Northampton General Hospital NHS Trust, Northampton, NN1 5BD UK
| | - Darwin D’Souza
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Karen Anthony
- grid.44870.3fCentre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Lee R. Machado
- grid.44870.3fCentre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH UK ,grid.9918.90000 0004 1936 8411Department of Genetics and Genome Science, University of Leicester, Leicester, LE1 7RH UK
| |
Collapse
|
33
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
34
|
MicroRNA-101-3p Suppresses Cancer Cell Growth by Inhibiting the USP47-Induced Deubiquitination of RPL11. Cancers (Basel) 2022; 14:cancers14040964. [PMID: 35205710 PMCID: PMC8870143 DOI: 10.3390/cancers14040964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary An abnormal expression of microRNA is commonly observed in cancer. Since a single miRNA can target numerous genes, it is important to understand the exact mechanism for the regulation of cancer growth by miRNAs. Here, we show that miR-101-3p, which is downregulated in several cancers, regulates RPL11 ubiquitination by targeting USP47, thereby controlling p53 levels by affecting the localization of RPL11 and its interaction with MDM2. Our results provide a novel mechanism for the inhibition of cancer cell growth by miR-101-3p, and suggest that miR-101-3p could be a potential target as an anticancer agent. Abstract MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate a countless number of genes in the cell, and the aberrant expression of miRNA can lead to cancer. Here, we demonstrate that miR-101-3p regulates the RPL11–MDM2–p53 pathway by targeting ubiquitin-specific peptidase 47 (USP47), consequently inhibiting cancer cell proliferation. We confirm that miR-101-3p directly binds to the 3′-UTR region of the USP47 gene and inhibits USP47 expression. In addition, the overexpression of miR-101-3p suppresses cell proliferation in a p53-dependent manner. MiR-101-3p promotes interaction between RPL11 and MDM2 by inducing the translocation of RPL11 from the nucleolus to the nucleoplasm, thus preventing the MDM2-mediated proteasomal degradation of p53. However, these phenomena are restored by the overexpression of USP47, but not by its catalytically inactive form. Indeed, miR-101-3p regulates RPL11 localization and its interaction with MDM2 by inhibiting the USP47-induced deubiquitination of RPL11. Finally, the expression of miR-101-3p is downregulated in lung cancer patients, and the patients with low miR-101-3p expression exhibit a lower survival rate, indicating that miR-101-3p is associated with tumorigenesis. Together, our findings suggest that miR-101-3p functions as a tumor suppressor by targeting USP47 and could be a potential therapeutic target for cancers.
Collapse
|
35
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:cells11030574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC’s role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (M.C.L.-N.); (M.C.-S.)
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (M.C.L.-N.); (M.C.-S.)
| |
Collapse
|
36
|
Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Oncogene 2022; 41:1155-1165. [PMID: 34999733 PMCID: PMC8856959 DOI: 10.1038/s41388-021-02138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023]
Abstract
Previously, we identified Puf-A as a novel member of Puf-family RNA-binding proteins; however, its biological functions remain obscure. Analysis of tumor samples of non-small cell lung cancer (NSCLC) showed that high Puf-A expression correlated with high histology grade and abnormal p53 status. Kaplan-Meier curve for overall survival revealed high expression of Puf-A to predict poor prognosis in stage I NSCLC. Among patients with colorectal cancer, high Puf-A expression also showed an adverse impact on overall survival. In lung cancer cell lines, downregulation of p53 increased Puf-A expression, and upregulation of p53 dampened its expression. However, luciferase reporter assays indicated that PUF-A locus harbored the p53-response element, but regulated Puf-A transcription indirectly. In vivo suppression of p53 in CCSP-rtTA/TetO-Cre/LSL-KrasG12D/p53flox/flox conditional mutant mice accelerated the progression of the KrasG12D-driven lung cancer, along with enhanced expression of Puf-A. Importantly, intranasal delivery of shPuf-A to the inducible KrasG12D/p53flox/flox mice suppressed tumor progression. Puf-A silencing led to marked decreases in the 80S ribosomes, along with decrease in S6 and L5 in the cytoplasm and accumulation in the nucleolus. Based on immunofluorescence staining and immunoprecipitation studies, Puf-A interacted with NPM1 in nucleolus. Puf-A silencing resulted in NPM1 translocation from nucleolus to nucleoplasm and this disruption of NPM1 localization was reversed by a rescue experiment. Mechanistically, Puf-A silencing altered NPM1 localization, leading to the retention of ribosomal proteins in nucleolus and diminished ribosome biogenesis, followed by cell-cycle arrest/cell death. Puf-A is a potential theranostic target for cancer therapy and an important player in cancer progression.
Collapse
Affiliation(s)
- Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Chun Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, University of California San Diego Medical Center, San Diego, CA, USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
37
|
9-Aminoacridine Inhibits Ribosome Biogenesis by Targeting Both Transcription and Processing of Ribosomal RNA. Int J Mol Sci 2022; 23:ijms23031260. [PMID: 35163183 PMCID: PMC8836032 DOI: 10.3390/ijms23031260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aminoacridines, used for decades as antiseptic and antiparasitic agents, are prospective candidates for therapeutic repurposing and new drug development. Although the mechanisms behind their biological effects are not fully elucidated, they are most often attributed to the acridines’ ability to intercalate into DNA. Here, we characterized the effects of 9-aminoacridine (9AA) on pre-rRNA metabolism in cultured mammalian cells. Our results demonstrate that 9AA inhibits both transcription of the ribosomal RNA precursors (pre-rRNA) and processing of the already synthesized pre-rRNAs, thereby rapidly abolishing ribosome biogenesis. Using a fluorescent intercalator displacement assay, we further show that 9AA can bind to RNA in vitro, which likely contributes to its ability to inhibit post-transcriptional steps in pre-rRNA maturation. These findings extend the arsenal of small-molecule compounds that can be used to block ribosome biogenesis in mammalian cells and have implications for the pharmacological development of new ribosome biogenesis inhibitors.
Collapse
|
38
|
Lewis EL, Xu R, Beltra JC, Ngiow SF, Cohen J, Telange R, Crane A, Sawinski D, Wherry EJ, Porrett PM. NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy. J Exp Med 2022; 219:e20201599. [PMID: 34882194 PMCID: PMC8666877 DOI: 10.1084/jem.20201599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.
Collapse
Affiliation(s)
- Emma L. Lewis
- Department of Obstetrics and Gynecology, The University of Pennsylvania, Philadelphia, PA
| | - Rong Xu
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Jordana Cohen
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Rahul Telange
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Alexander Crane
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
| | - Deirdre Sawinski
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Paige M. Porrett
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Transplant Institute, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
39
|
Sjögren SE, Chen J, Mattebo A, Alattar AG, Karlsson H, Siva K, Soneji S, Tedgård U, Chen JJ, Gram M, Flygare J. Targeting elevated heme levels to treat a mouse model for Diamond-Blackfan Anemia. Exp Hematol 2022; 105:50-61. [PMID: 34757171 PMCID: PMC10499113 DOI: 10.1016/j.exphem.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare genetic disorder in which patients present a scarcity of erythroid precursors in an otherwise normocellular bone marrow. Most, but not all, patients carry mutations in ribosomal proteins such as RPS19, suggesting that compromised mRNA translation and ribosomal stress are pathogenic mechanisms causing depletion of erythroid precursors. To gain further insight to disease mechanisms in DBA, we performed a custom short hairpin RNA (shRNA) based screen against 750 genes hypothesized to affect DBA pathophysiology. Among the hits were two shRNAs against the erythroid specific heme-regulated eIF2α kinase (HRI), which is a negative regulator of mRNA translation. This study shows that shRNA-mediated HRI silencing or loss of one HRI allele improves expansion of Rps19-deficient erythroid precursors, as well as improves the anemic phenotype in Rps19-deficient animals. We found that Rps19-deficient erythroblasts have elevated levels of unbound intracellular heme, which is normalized by HRI heterozygosity. Additionally, targeting elevated heme levels by treating cells with the heme scavenger alpha-1-microglobulin (A1M), increased proliferation of Rps19-deficient erythroid precursors and decreased heme levels in a disease-specific manner. HRI heterozygosity, but not A1M treatment, also decreased the elevated p53 activity observed in Rps19-deficient cells, indicating that p53 activation is caused by ribosomal stress and aberrant mRNA translation and not heme overload in Rps19-deficiency. Together, these findings suggest that targeting elevated heme levels is a promising new treatment strategy for DBA.
Collapse
Affiliation(s)
- Sara E Sjögren
- Department of molecular medicine and gene therapy, Lund University, Lund, Sweden; Stem cell center, Lund University, Lund, Sweden
| | - Jun Chen
- Department of molecular medicine and gene therapy, Lund University, Lund, Sweden; Stem cell center, Lund University, Lund, Sweden
| | - Alexander Mattebo
- Department of molecular medicine and gene therapy, Lund University, Lund, Sweden; Stem cell center, Lund University, Lund, Sweden
| | - Abdul G Alattar
- Department of molecular medicine and gene therapy, Lund University, Lund, Sweden; Stem cell center, Lund University, Lund, Sweden; Department of Pediatrics, Lund University, Lund, Sweden
| | - Helena Karlsson
- Department of Infection Medicine, Lund University, Lund, Sweden; Guard Therapeutics AB, Lund, Sweden
| | - Kavitha Siva
- Department of molecular medicine and gene therapy, Lund University, Lund, Sweden; Stem cell center, Lund University, Lund, Sweden
| | - Shamit Soneji
- Stem cell center, Lund University, Lund, Sweden; Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Ulf Tedgård
- Department of Pediatric Hematology and Oncology, Skåne University Hospital, Lund, Sweden
| | - Jane-Jane Chen
- Institute for Biomedical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, US
| | - Magnus Gram
- Department of Infection Medicine, Lund University, Lund, Sweden; Guard Therapeutics AB, Lund, Sweden
| | - Johan Flygare
- Department of molecular medicine and gene therapy, Lund University, Lund, Sweden; Stem cell center, Lund University, Lund, Sweden.
| |
Collapse
|
40
|
Shen X, Wu B, Jiang W, Li Y, Zhang Y, Zhao K, Nie N, Gong L, Liu Y, Zou X, Liu J, Jin J, Ouyang H. Scale bar of aging trajectories for screening personal rejuvenation treatments. Comput Struct Biotechnol J 2022; 20:5750-5760. [DOI: 10.1016/j.csbj.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022] Open
|
41
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of the central dogma of molecular biology. Despite the central position of the ribosome in the translation of proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis. RECENT FINDINGS We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field. Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity and preferential translation. SUMMARY The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research. Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation. Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular opportunities for the development of osteoarthritis disease-modifying treatments.
Collapse
Affiliation(s)
- Guus G.H. van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Marjolein M.J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tim J.M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
43
|
Lin X, Zhou L, Zhong J, Zhong L, Zhang R, Kang T, Wu Y. RNA binding protein RBM28 can translocate from the nucleolus to the nucleoplasm to inhibit the transcriptional activity of p53. J Biol Chem 2021; 298:101524. [PMID: 34953860 PMCID: PMC8789582 DOI: 10.1016/j.jbc.2021.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
RNA binding protein RBM28 (RBM28), as a nucleolar component of spliceosomal small nuclear ribonucleoproteins (snRNPs), is involved in the nucleolar stress response. Whether and how RBM28 regulates tumor progression remain unclear. Here, we report that RBM28 is frequently overexpressed in various types of cancer and that its upregulation is associated with a poor prognosis. Functional and mechanistic assays revealed that RBM28 promotes the survival and growth of cancer cells by interacting with the DNA binding domain of tumor suppressor p53 to inhibit p53 transcriptional activity. Upon treatment with chemotherapeutic drugs (e.g., adriamycin), RBM28 is translocated from the nucleolus to the nucleoplasm, which is likely mediated via phosphorylation of RBM28 at Ser122 by DNA checkpoint kinases 1 and 2 (Chk1/2), indicating that RBM28 may act as a nucleolar stress sensor in response to DNA damage stress. Our findings not only reveal RBM28 as a potential biomarker and therapeutic target for cancers, but also provide mechanistic insights into how cancer cells convert stress signals into a cellular response linking the nucleolus to regulation of the tumor suppressor p53.
Collapse
Affiliation(s)
- Xin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Liwen Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jianliang Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
44
|
Marzo T, Ferraro G, Cucci LM, Pratesi A, Hansson Ö, Satriano C, Merlino A, La Mendola D. Oxaliplatin inhibits angiogenin proliferative and cell migration effects in prostate cancer cells. J Inorg Biochem 2021; 226:111657. [PMID: 34784565 DOI: 10.1016/j.jinorgbio.2021.111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 01/11/2023]
Abstract
Angiogenin (Ang) is a potent angiogenic protein that is overexpressed in many types of cancer at concentration values correlated to the tumor aggressiveness. Here, by means of an integrated multi-technique approach based on crystallographic, spectrometric and spectroscopic analyses, we demonstrate that the anti-cancer drug oxaliplatin efficiently binds angiogenin. Microscopy cellular studies, carried out on the prostate cancer cell (PC-3) line , show that oxaliplatin inhibits the angiogenin prompting effect on cell proliferation and migration, which are typical features of angiogenesis process. Overall, our findings point to angiogenin as a possible target of oxaliplatin, thus suggesting a potential novel mechanism for the antineoplastic activity of this platinum drug and opening the avenue to novel approaches in the combined anti-cancer anti-angiogenic therapy.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Giarita Ferraro
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Lorena Maria Cucci
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Örjan Hansson
- Department of Chemistry and Chemical Biology, University of Gothenburg, Medicinaregatan 9C, PO Box 462, SE-40530 Göteborg, Sweden
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
45
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Yu H, Sun Z, Tan T, Pan H, Zhao J, Zhang L, Chen J, Lei A, Zhu Y, Chen L, Xu Y, Liu Y, Chen M, Sheng J, Xu Z, Qian P, Li C, Gao S, Daley GQ, Zhang J. rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nat Commun 2021; 12:6365. [PMID: 34753899 PMCID: PMC8578659 DOI: 10.1038/s41467-021-26576-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
The nucleolus is the organelle for ribosome biogenesis and sensing various types of stress. However, its role in regulating stem cell fate remains unclear. Here, we present evidence that nucleolar stress induced by interfering rRNA biogenesis can drive the 2-cell stage embryo-like (2C-like) program and induce an expanded 2C-like cell population in mouse embryonic stem (mES) cells. Mechanistically, nucleolar integrity maintains normal liquid-liquid phase separation (LLPS) of the nucleolus and the formation of peri-nucleolar heterochromatin (PNH). Upon defects in rRNA biogenesis, the natural state of nucleolus LLPS is disrupted, causing dissociation of the NCL/TRIM28 complex from PNH and changes in epigenetic state and reorganization of the 3D structure of PNH, which leads to release of Dux, a 2C program transcription factor, from PNH to activate a 2C-like program. Correspondingly, embryos with rRNA biogenesis defect are unable to develop from 2-cell (2C) to 4-cell embryos, with delayed repression of 2C/ERV genes and a transcriptome skewed toward earlier cleavage embryo signatures. Our results highlight that rRNA-mediated nucleolar integrity and 3D structure reshaping of the PNH compartment regulates the fate transition of mES cells to 2C-like cells, and that rRNA biogenesis is a critical regulator during the 2-cell to 4-cell transition of murine pre-implantation embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Zhen Sun
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Hongru Pan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jing Zhao
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anhua Lei
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuqing Zhu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lang Chen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuyan Xu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yaxin Liu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, 100871, Beijing, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jin Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China.
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Wu A, Lin L, Li X, Xu Q, Xu W, Zhu X, Teng Y, Yang X, Ai Z. Overexpression of ARHGAP30 suppresses growth of cervical cancer cells by downregulating ribosome biogenesis. Cancer Sci 2021; 112:4515-4525. [PMID: 34490691 PMCID: PMC8586670 DOI: 10.1111/cas.15130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
We aimed to identify whether Rho GTPase activating proteins (RhoGAPs) were downregulated in cervical cancers and might be targeted to reduce the growth of cervical cancer using the GEO database and immunohistochemical analysis to identified changes in transcription and protein levels. We analyzed their proliferation, clone formation ability, and their growth as subcutaneous tumors in mice. To detect ARHGAP30 localization in cells, immunofluorescence assays were conducted. Mass spectrometry combined with immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation assays. Western-blot and q-PCR were applied to analyze candidate binding proteins that were associated with ribosome biogenesis. Puromycin incorporation assay was used to detect the global protein synthesis rate. We identified that ARHGAP30 was the only downregulated RhoGAP and was related to the survival of cervical cancer patients. Overexpression of ARHGAP30 in cervical cancer cells inhibited cell proliferation and migration. ARHGAP30 immunoprecipitated proteins were enriched in the ribosome biogenesis process. ARHGAP30 was located in the nucleous and interacted with nucleolin (NCL). Overexpression of ARHGAP30 inhibited rRNA synthesis and global protein synthesis. ARHGAP30 overexpression induced the ubiquitination of NCL and decreased its protein level in Hela cells. The function of ARHGAP30 on cervical cancer cell ribosome biogenesis and proliferation was independent of its RhoGAP activity as assessed with a RhoGAP-deficient plasmid of ARHGAP30R55A . Overall, the findings revealed that ARHGAP30 was frequently downregulated and associated with shorter survival of cervical cancer patients. ARHGAP30 may suppress growth of cervical cancer by reducing ribosome biogenesis and protein synthesis through promoting ubiquitination of NCL.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lan Lin
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao Li
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qinyang Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Wei Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaolu Zhu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yincheng Teng
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao‐Mei Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihong Ai
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
49
|
A Systems Approach to Interrogate Gene Expression Patterns in African American Men Presenting with Clinically Localized Prostate Cancer. Cancers (Basel) 2021; 13:cancers13205143. [PMID: 34680291 PMCID: PMC8533960 DOI: 10.3390/cancers13205143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Men of African origin have a 2–3 times greater chance of developing prostate cancer than those of European origin, and of patients that are diagnosed with the disease, men of African descent are 2 times more likely to die compared to white men. Men of African origin are still greatly underrepresented in genetic studies and clinical trials. This, unfortunately, means that new discoveries in cancer treatment are missing key information on the group with a greater chance of mortality. The objective of this study was to increase our knowledge of prostate cancer in men undergoing a prostate biopsy. We carried out RNA sequencing of biopsy specimens and examined racial differences in prostate gene expression. A gene expression signature was uncovered which separated the men based on their race. Furthermore, within men of African descent this signature separated men with the most severe clinical characteristics. Abstract An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins.
Collapse
|
50
|
Floro J, Dai A, Metzger A, Mora-Martin A, Ganem N, Cifuentes D, Wu CS, Dalal J, Lyons S, Labadorf A, Flynn R. SDE2 is an essential gene required for ribosome biogenesis and the regulation of alternative splicing. Nucleic Acids Res 2021; 49:9424-9443. [PMID: 34365507 PMCID: PMC8450105 DOI: 10.1093/nar/gkab647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA-binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosome biogenesis and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of the complexes that carry out two of the most fundamental processes in mammalian cells.
Collapse
Affiliation(s)
- Jess Floro
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anqi Dai
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, Boston University, Boston, MA 02118 USA
| | - Abigail Metzger
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ching-Shyi Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Jasbir Dalal
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam Labadorf
- Bioinformatics Program, Boston University, Boston, MA 02118 USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Rachel L Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|