1
|
Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE. Chemistry and Analysis of Organic Compounds in Dinosaurs. BIOLOGY 2022; 11:670. [PMID: 35625398 PMCID: PMC9138232 DOI: 10.3390/biology11050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
This review provides an overview of organic compounds detected in non-avian dinosaur fossils to date. This was enabled by the development of sensitive analytical techniques. Non-destructive methods and procedures restricted to the sample surface, e.g., light and electron microscopy, infrared (IR) and Raman spectroscopy, as well as more invasive approaches including liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), time-of-flight secondary ion mass spectrometry, and immunological methods were employed. Organic compounds detected in samples of dinosaur fossils include pigments (heme, biliverdin, protoporphyrin IX, melanin), and proteins, such as collagens and keratins. The origin and nature of the observed protein signals is, however, in some cases, controversially discussed. Molecular taphonomy approaches can support the development of suitable analytical methods to confirm reported findings and to identify further organic compounds in dinosaur and other fossils in the future. The chemical properties of the various organic compounds detected in dinosaurs, and the techniques utilized for the identification and analysis of each of the compounds will be discussed.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany;
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Paul Martin Sander
- Institute of Geosciences, Section Paleontology, University of Bonn, D-53113 Bonn, Germany;
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| |
Collapse
|
2
|
Sala D, Grossi V, Agogué H, Leboulanger C, Jézéquel D, Sarazin G, Antheaume I, Bernard C, Ader M, Hugoni M. Influence of aphotic haloclines and euxinia on organic biomarkers and microbial communities in a thalassohaline and alkaline volcanic crater lake. GEOBIOLOGY 2022; 20:292-309. [PMID: 34687126 DOI: 10.1111/gbi.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Studies on microbial communities, and their associated organic biomarkers, that are found thriving in the aphotic euxinic waters in modern stratified ecosystems are scarce compared to those undertaken in euxinic photic zones. The Dziani Dzaha (Mayotte, Indian Ocean) is a tropical, saline, alkaline crater lake that has recently been presented as a modern analog of Proterozoic Oceans due to its thalassohaline classification (having water of marine origin) and specific biogeochemical characteristics. Continuous intense photosynthetic production and microbial mineralization keep most of the water column permanently aphotic and anoxic preventing the development of a euxinic (sulfidic and anoxic) photic zone despite a high sulfide/sulfate ratio and the presence of permanent or seasonal haloclines. In this study, the molecular composition of the organic matter in Lake Dziani Dzaha was investigated and compared to the microbial diversity evaluated through 16S rRNA gene amplicon sequencing, over two contrasting seasons (rainy vs. dry) that influence water column stratification. Depth profiles of organic biomarker concentrations (chlorophyll-a and lipid biomarkers) and bacterial and archaeal OTU abundances appeared to be strongly dependent on the presence of aphotic haloclines and euxinia. OTU abundances revealed the importance of specific haloalkaliphilic bacterial and archaeal assemblages in phytoplanktonic biomass recycling and the biogeochemical functioning of the lake, suggesting new haloalkaline non-phototrophic anaerobic microbial precursors for some of the lipid biomarkers. Uncultured Firmicutes from the family Syntrophomonadaceae (Clostridiales), and Bacteroidetes from the ML635J-40 aquatic group, emerged as abundant chemotrophic bacterial members in the anoxic or euxinic waters and were probably responsible for the production of short-chain n-alkenes, wax esters, diplopterol, and tetrahymanol. Halocline-dependent euxinia also had a strong impact on the archaeal community which was dominated by Woesearchaeota in the sulfide-free waters. In the euxinic waters, methanogenic Euryarchaeota from the Methanomicrobia, Thermoplasmata, and WSA2 classes dominated and were likely at the origin of common hydrocarbon biomarkers of methanogens (phytane, pentamethyl-eicosenes, and partially hydrogenated squalene).
Collapse
Affiliation(s)
- David Sala
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Vincent Grossi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Hélène Agogué
- LIENSs, UMR 7266, La Rochelle Université - CNRS, La Rochelle, France
| | | | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, France
| | - Gérard Sarazin
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Ingrid Antheaume
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Magali Ader
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Naafs BDA, Bianchini G, Monteiro FM, Sánchez-Baracaldo P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. GEOBIOLOGY 2022; 20:41-59. [PMID: 34291867 DOI: 10.1111/gbi.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The 2-methylhopanes (2-MeHops) are molecular fossils of 2-methylbacteriohopanepolyols (2-MeBHPs) and among the oldest biomarkers on Earth. However, these biomarkers' specific sources are currently unexplained, including whether they reflect an expansion of marine cyanobacteria. Here, we study the occurrence of 2-MeBHPs and the genes involved in their synthesis in modern bacteria and explore the occurrence of 2-MeHops in the geological record. We find that the gene responsible for 2-MeBHP synthesis (hpnP) is widespread in cyano- and ⍺-proteobacteria, but absent or very limited in other classes/phyla of bacteria. This result is consistent with the dominance of 2-MeBHP in cyano- and ⍺-proteobacterial cultures. The review of their geological occurrence indicates that 2-MeHops are found from the Paleoproterozoic onwards, although some Precambrian samples might be biased by drilling contamination. During the Phanerozoic, high 2-MeHops' relative abundances (index >15%) are associated with climatic and biogeochemical perturbations such as the Permo/Triassic boundary and the Oceanic Anoxic Events. We analyzed the modern habitat of all hpnP-containing bacteria and find that the only one species coming from an undisputed open marine habitat is an ⍺-proteobacterium acting upon the marine nitrogen cycle. Although organisms can change their habitat in response to environmental stress and evolutionary pressure, we speculate that the high sedimentary 2-MeHops' occurrence observed during the Phanerozoic reflect ⍺-proteobacteria expansion and marine N-cycle perturbations in response to climatic and environmental change.
Collapse
Affiliation(s)
- B D A Naafs
- Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, Bristol, UK
| | - G Bianchini
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - F M Monteiro
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
4
|
Niu C, Hou D, Cheng X, Han X, Li Y, Li Y. Origin and Geochemical Implications of Hopanoids in Saline Lacustrine Crude Oils from Huanghekou East Sag and Laizhouwan Northeastern Sag, Bohai Bay Basin. ACS OMEGA 2021; 6:30298-30314. [PMID: 34805662 PMCID: PMC8600536 DOI: 10.1021/acsomega.1c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
A suite of low-mature crude oils (five high-sulfur oils and six low-sulfur oils) from the Huanghekou and the Laizhouwan Sags, Bohai Bay Basin, are analyzed to investigate the fate of the hopanoids. Abundant hopanes, such as secohopanes, 25-norhopanes, benzohopanes, aromatized secohopanes, and sulfide hopanes, are identified, and their carbon isotope compositions are determined. Varying 13C isotope values of C31 hopane (-38.7-34.0‰) and C29-30 hopanes (-38.5-31.5‰) suggest different bacterial sources of these compounds. The presence of 25-norhopanes with enriched heavy carbon isotopes in severely biodegraded oils suggests that they are microbially mediated products. The detection of the isotopically depleted C29 and C30 D-ring-8,14-secohopanes (-45.6-41.2‰) indicates that secohopanes are from methane-oxidizing bacteria (methanotrophs). The presence of isorenieratane, lower aryl isoprenoid ratios, and a good correlation between the sulfur content and the gammacerane index indicate the presence of green sulfur bacteria (Chlorobiaceae) under photic zone euxinic conditions. Water column stratification results in good preservation of the organic matter, and it is in favor of diversity of aquatic microorganisms. The ratios of C35/C34 sulfide hopane, C35 sulfide hopane-2/C35 sulfide hopane-1, and C35/C34 benzohopane are influenced by the reducing environments in this region. In addition, the D-ring monoaromatized 8,14-secohopanoid/(D-ring monoaromatized 8,14-secohopanoid + benzohopanes) and C31-C35 secomoretanes/secohopanes are affected by the maturity. We hypothesize that the reducing environments and thermal effects are important markers for the hopanoid transformation, including the incorporation of inorganic sulfur in substituting functional groups, cyclizing, aromatizing, and opening ring C of the hopanoids.
Collapse
Affiliation(s)
- Congkai Niu
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation
Mechanism, Ministry of Education, China
University of Geosciences (Beijing), Beijing 100083, China
| | - Dujie Hou
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation
Mechanism, Ministry of Education, China
University of Geosciences (Beijing), Beijing 100083, China
| | - Xiong Cheng
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation
Mechanism, Ministry of Education, China
University of Geosciences (Beijing), Beijing 100083, China
| | - Xu Han
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation
Mechanism, Ministry of Education, China
University of Geosciences (Beijing), Beijing 100083, China
| | - Yan Li
- School
of Energy Resources, China University of
Geosciences (Beijing), Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation
Mechanism, Ministry of Education, China
University of Geosciences (Beijing), Beijing 100083, China
| | - Yaxi Li
- Consulting
and Research Center, Ministry of Natural
Resources, Beijing 100035, China
| |
Collapse
|
5
|
Liu TT, Xiao H, Xiao JH, Zhong JJ. Impact of oxygen supply on production of terpenoids by microorganisms: State of the art. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Wei W, Plymale A, Zhu Z, Ma X, Liu F, Yu XY. In Vivo Molecular Insights into Syntrophic Geobacter Aggregates. Anal Chem 2020; 92:10402-10411. [PMID: 32614167 DOI: 10.1021/acs.analchem.0c00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Direct interspecies electron transfer (DIET) has been considered as a novel and highly efficient strategy in both natural anaerobic environments and artificial microbial fuel cells. A syntrophic model consisting of Geobacter metallireducens and Geobacter sulfurreducens was studied in this work. We conducted in vivo molecular mapping of the outer surface of the syntrophic community as the interface of nutrients and energy exchange. System for Analysis at the Liquid Vacuum Interface combined with time-of-flight secondary ion mass spectrometry was employed to capture the molecular distribution of syntrophic Geobacter communities in the living and hydrated state. Principal component analysis with selected peaks revealed that syntrophic Geobacter aggregates were well differentiated from other control samples, including syntrophic planktonic cells, pure cultured planktonic cells, and single population biofilms. Our in vivo imaging indicated that a unique molecular surface was formed. Specifically, aromatic amino acids, phosphatidylethanolamine components, and large water clusters were identified as key components that favored the DIET of syntrophic Geobacter aggregates. Moreover, the molecular changes in depths of the Geobacter aggregates were captured using dynamic depth profiling. Our findings shed new light on the interface components supporting electron transfer in syntrophic communities based on in vivo molecular imaging.
Collapse
Affiliation(s)
- Wenchao Wei
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China.,Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Andrew Plymale
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zihua Zhu
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiang Ma
- Department of Chemistry, Grand View University, Des Moines, Iowa 50316, United States
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
8
|
Johnson DB, Beddows PA, Flynn TM, Osburn MR. Microbial diversity and biomarker analysis of modern freshwater microbialites from Laguna Bacalar, Mexico. GEOBIOLOGY 2018; 16:319-337. [PMID: 29656514 DOI: 10.1111/gbi.12283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Laguna Bacalar is a sulfate-rich freshwater lake on the Yucatan Peninsula that hosts large microbialites. High sulfate concentrations distinguish Laguna Bacalar from other freshwater microbialite sites such as Pavilion Lake and Alchichica, Mexico, as well as from other aqueous features on the Yucatan Peninsula. While cyanobacterial populations have been described here previously, this study offers a more complete characterization of the microbial populations and corresponding biogeochemical cycling using a three-pronged geobiological approach of microscopy, high-throughput DNA sequencing, and lipid biomarker analyses. We identify and compare diverse microbial communities of Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria that vary with location along a bank-to-bank transect across the lake, within microbialites, and within a neighboring mangrove root agglomeration. In particular, sulfate-reducing bacteria are extremely common and diverse, constituting 7%-19% of phylogenetic diversity within the microbialites, and are hypothesized to significantly influence carbonate precipitation. In contrast, Cyanobacteria account for less than 1% of phylogenetic diversity. The distribution of lipid biomarkers reflects these changes in microbial ecology, providing meaningful biosignatures for the microbes in this system. Polysaturated short-chain fatty acids characteristic of cyanobacteria account for <3% of total abundance in Laguna Bacalar microbialites. By contrast, even short-chain and monounsaturated short-chain fatty acids attributable to both Cyanobacteria and many other organisms including types of Alphaproteobacteria and Gammaproteobacteria constitute 43%-69% and 17%-25%, respectively, of total abundance in microbialites. While cyanobacteria are the largest and most visible microbes within these microbialites and dominate the mangrove root agglomeration, it is clear that their smaller, metabolically diverse associates are responsible for significant biogeochemical cycling in this microbialite system.
Collapse
Affiliation(s)
- D B Johnson
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| | - P A Beddows
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| | - T M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - M R Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Matys ED, Sepúlveda J, Pantoja S, Lange CB, Caniupán M, Lamy F, Summons RE. Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile. GEOBIOLOGY 2017; 15:844-857. [PMID: 28771908 DOI: 10.1111/gbi.12250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Marine oxygen minimum zones (OMZs) are characterized by the presence of subsurface suboxic or anoxic waters where diverse microbial processes are responsible for the removal of fixed nitrogen. OMZs have expanded over past decades and are expected to continue expanding in response to the changing climate. The implications for marine biogeochemistry, particularly nitrogen cycling, are uncertain. Cell membrane lipids (biomarkers), such as bacterial bacteriohopanepolyols (BHPs) and their degradation products (hopanoids), have distinctive structural attributes that convey information about their biological sources. Since the discovery of fossil hopanoids in ancient sediments, the study of BHPs has been of great biogeochemical interest due to their potential to serve as proxies for bacteria in the geological record. A stereoisomer of bacteriohopanetetrol (BHT), BHT II, has been previously identified in OMZ waters and has as been unequivocally identified in culture enrichments of anammox bacteria, a key group contributing to nitrogen loss in marine OMZs. We tested BHT II as a proxy for suboxia/anoxia and anammox bacteria in suspended organic matter across OMZ waters of the Humboldt Current System off northern Chile, as well as in surface and deeply buried sediments (125-150 ky). The BHT II ratio (BHT II/total BHT) increases as oxygen content decreases through the water column, consistent with previous results from Perú, the Cariaco Basin and the Arabian Sea, and in line with microbiological evidence indicating intense anammox activity in the Chilean OMZ. Notably, BHT II is transported from the water column to surface sediments, and preserved in deeply buried sediments, where the BHT II ratio correlates with changes in δ15 N sediment values during glacial-interglacial transitions. This study suggests that BHT II offers a proxy for past changes in the relative importance of anammox, and fluctuations in nitrogen cycling in response to ocean redox changes through the geological record.
Collapse
Affiliation(s)
- E D Matys
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Sepúlveda
- Department of Geological Sciences, Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| | - S Pantoja
- Department of Oceanography and COPAS Sur-Austral, University of Concepción, Concepción, Chile
| | - C B Lange
- Department of Oceanography and COPAS Sur-Austral, University of Concepción, Concepción, Chile
| | - M Caniupán
- Department of Oceanography and COPAS Sur-Austral, University of Concepción, Concepción, Chile
| | - F Lamy
- Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Ueno A, Shimizu S, Hashimoto M, Adachi T, Matsushita T, Okuyama H, Yoshida K. Effects of Aerobic Growth on the Fatty Acid and Hydrocarbon Compositions of Geobacter bemidjiensis Bem T. J Oleo Sci 2017; 66:93-101. [PMID: 27928141 DOI: 10.5650/jos.ess16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Geobacter spp., regarded as strict anaerobes, have been reported to grow under aerobic conditions. To elucidate the role of fatty acids in aerobiosis of Geobacter spp., we studied the effect of aerobiosis on fatty acid composition and turnover in G. bemidjiensis BemT. G. bemidjiensis BemT was grown under the following different culture conditions: anaerobic culture for 4 days (type 1) and type 1 culture followed by 2-day anaerobic (type 2) or aerobic culture (anaerobic-to-aerobic shift; type 3). The mean cell weight of the type 3 culture was approximately 2.5-fold greater than that of type 1 and 2 cultures. The fatty acid methyl ester and hydrocarbon fraction contained hexadecanoic (16:0), 9-cis-hexadecenoic [16:1(9c)], tetradecanoic (14:0), tetradecenoic [14:1(7c)] acids, hentriacontanonaene, and hopanoids, but not long-chain polyunsaturated fatty acids. The type 3 culture contained higher levels of 14:0 and 14:1(7c) and lower levels of 16:0 and 16:1(9c) compared with type 1 and 2 cultures. The weight ratio of extracted lipid per dry cell was lower in the type 3 culture than in the type 1 and 2 cultures. We concluded that anaerobically-grown G. bemidjiensis BemT followed by aerobiosis were enhanced in growth, fatty acid turnover, and de novo fatty acid synthesis.
Collapse
Affiliation(s)
- Akio Ueno
- Horonobe Research Institute for the Subsurface Environment (H-RISE), NOASTEC
| | | | | | | | | | | | | |
Collapse
|
11
|
From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Prog Lipid Res 2016; 63:1-13. [DOI: 10.1016/j.plipres.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
|
12
|
Wei JH, Yin X, Welander PV. Sterol Synthesis in Diverse Bacteria. Front Microbiol 2016; 7:990. [PMID: 27446030 PMCID: PMC4919349 DOI: 10.3389/fmicb.2016.00990] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria produced demethylated and saturated sterol products even though they lacked homologs of the eukaryotic proteins required for these modifications emphasizing that several aspects of bacterial sterol synthesis are still completely unknown.
Collapse
Affiliation(s)
| | | | - Paula V. Welander
- Department of Earth System Science, Stanford UniversityStanford, CA, USA
| |
Collapse
|
13
|
Lopez D. Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 2015; 192:3-11. [PMID: 26320704 DOI: 10.1016/j.chemphyslip.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
Abstract
Membranes of eukaryotic cells organize a number of proteins related to signal transduction and membrane trafficking into microdomains, which are enriched in particular lipids, like cholesterol and sphingolipids and are commonly referred as to lipid rafts or membrane rafts. The existence of this type of signaling platforms was traditionally associated with eukaryotic membranes because prokaryotic cells were considered too simple organisms to require a sophisticated organization of their signaling networks. However, the research that have been performed during last years have shown that bacteria organize many signaling transduction processes in Functional Membrane Microdomains (FMMs), which are similar to the lipid rafts that are found in eukaryotic cells. The current knowledge of the existence of FMMs in bacteria is described in this review and the specific structural and biological properties of these membrane microdomains are introduced. The organization of FMMs in bacterial membranes reveals an unexpected level of sophistication in signaling transduction and membrane organization that is unprecedented in bacteria, suggesting that bacteria as more complex organisms than previously considered.
Collapse
Affiliation(s)
- Daniel Lopez
- Research Center for Infectious Diseases (ZINF), Institute for Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider Strasse (2), 97080 Würzburg, Germany; Spanish National Center for Biotechnology (CNB), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Lee YY, Kim TG, Cho KS. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells. J Biotechnol 2015; 211:130-7. [PMID: 26235818 DOI: 10.1016/j.jbiotec.2015.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/24/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p<0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p<0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p<0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised ≥62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation>0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Gwan Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
15
|
Hopanoid inventory of Rhodoplanes spp. Arch Microbiol 2015; 197:861-7. [PMID: 25935452 DOI: 10.1007/s00203-015-1112-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Hopanoids are pentacyclic triterpenoid lipids and are important for bacterial membrane stability and functioning. These pentacyclic triterpenoids of hopane series are biomarkers for eubacteria and can be used as chemotaxonomic markers. Anoxygenic phototrophic bacteria are good producers of hopanoids, and their inventory to date is restricted to a few members. Rhodoplanes spp. are phototrophic prokaryotes which grow and thrive in subsurface and sediment environments. A study on the diversity of hopanoids of several species of Rhodoplanes revealed a rich diversity of hopanoids with carbon length of C30/C31 and C35. Hop-22(29)-ene (II), diplopterol (V), tetrahymanol (VII), 2-methyldiplopterol (VI), 2-methyltetrahymanol (VIII), bacteriohopanetetrol (IX), bacteriohopaneaminotriol (X) and bacteriohopanepolyols [BHP-492 (XIII), BHP-550 (XIV), BHP-508 (XII)] are the major hopanoids of the genus Rhodoplanes. Tetrahymanol (VII) content is high (38-60 %) among all the members, except for Rhodoplanes elegans. Hopanoid fingerprints allowed differentiation of species of the genus Rhodoplanes. Statistical analyses also indicate hopanoids as good chemotaxonomic markers to distinguish species of the genus Rhodoplanes.
Collapse
|
16
|
Abstract
An interesting concept in the organization of cellular membranes is the proposed existence of lipid rafts. Membranes of eukaryotic cells organize signal transduction proteins into membrane rafts or lipid rafts that are enriched in particular lipids such as cholesterol and are important for the correct functionality of diverse cellular processes. The assembly of lipid rafts in eukaryotes has been considered a fundamental step during the evolution of cellular complexity, suggesting that bacteria and archaea were organisms too simple to require such a sophisticated organization of their cellular membranes. However, it was recently discovered that bacteria organize many signal transduction, protein secretion, and transport processes in functional membrane microdomains, which are equivalent to the lipid rafts of eukaryotic cells. This review contains the most significant advances during the last 4 years in understanding the structural and biological role of lipid rafts in bacteria. Furthermore, this review shows a detailed description of a number of molecular and genetic approaches related to the discovery of bacterial lipid rafts as well as an overview of the group of tentative lipid-protein and protein-protein interactions that give consistency to these sophisticated signaling platforms. Additional data suggesting that lipid rafts are widely distributed in bacteria are presented in this review. Therefore, we discuss the available techniques and optimized protocols for the purification and analysis of raft-associated proteins in various bacterial species to aid in the study of bacterial lipid rafts in other laboratories that could be interested in this topic. Overall, the discovery of lipid rafts in bacteria reveals a new level of sophistication in signal transduction and membrane organization that was unexpected for bacteria and shows that bacteria are more complex than previously appreciated.
Collapse
Affiliation(s)
- Marc Bramkamp
- Department of Biology I, University of Munich (LMU), Planegg/Martinsried, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Dubinina GA, Sorokina AY. Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714020052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Jahnke LL, Turk-Kubo KA, N Parenteau M, Green SJ, Kubo MDY, Vogel M, Summons RE, Des Marais DJ. Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. GEOBIOLOGY 2014; 12:62-82. [PMID: 24325308 DOI: 10.1111/gbi.12068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/28/2013] [Indexed: 06/03/2023]
Abstract
Modern evaporitic microbial ecosystems are important analogs for understanding the record of earliest life on Earth. Although mineral-depositing shallow-marine environments were prevalent during the Precambrian, few such environments are now available today for study. We investigated the molecular and lipid biomarker composition of an endoevaporitic gypsarenite microbial mat community in Guerrero Negro, Mexico. The 16S ribosomal RNA gene-based phylogenetic analyses of this mat corroborate prior observations indicating that characteristic layered microbial communities colonize gypsum deposits world-wide despite considerable textural and morphological variability. Membrane fatty acid analysis of the surface tan/orange and lower green mat crust layers indicated cell densities of 1.6 × 10(9) and 4.2 × 10(9) cells cm(-3) , respectively. Several biomarker fatty acids, ∆7,10-hexadecadienoic, iso-heptadecenoic, 10-methylhexadecanoic, and a ∆12-methyloctadecenoic, correlated well with distributions of Euhalothece, Stenotrophomonas, Desulfohalobium, and Rhodobacterales, respectively, revealed by the phylogenetic analyses. Chlorophyll (Chl) a and cyanobacterial phylotypes were present at all depths in the mat. Bacteriochlorophyl (Bchl) a and Bchl c were first detected in the oxic-anoxic transition zone and increased with depth. A series of monomethylalkanes (MMA), 8-methylhexadecane, 8-methylheptadecane, and 9-methyloctadecane were present in the surface crust but increased in abundance in the lower anoxic layers. The MMA structures are similar to those identified previously in cultures of the marine Chloroflexus-like organism 'Candidatus Chlorothrix halophila' gen. nov., sp. nov., and may represent the Bchl c community. Novel 3-methylhopanoids were identified in cultures of marine purple non-sulfur bacteria and serve as a probable biomarker for this group in the lower anoxic purple and olive-black layers. Together microbial culture and environmental analyses support novel sources for lipid biomarkers in gypsum crust mats.
Collapse
Affiliation(s)
- L L Jahnke
- Exobiology Branch, NASA, Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jaeschke A, Jørgensen SL, Bernasconi SM, Pedersen RB, Thorseth IH, Früh-Green GL. Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge. GEOBIOLOGY 2012; 10:548-561. [PMID: 23006788 DOI: 10.1111/gbi.12009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaerobic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communities in the most extreme environments, partly because of their temperature-resistant and robust membrane lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial diversity in black smoker chimneys from the newly discovered Loki's Castle hydrothermal vent field on the Arctic Mid-Ocean Ridge (AMOR) with vent fluid temperatures of 310-320 °C and pH of 5.5. Archaeal glycerol dialkyl glycerol tetraether lipids (GDGTs) and H-shaped GDGTs with 0-4 cyclopentane moieties were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Euryarchaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquificales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our observations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial communities thriving within the porous sulfide structures of active and inactive deep-sea hydrothermal vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria in the chimney exterior may be the prevailing biogeochemical processes in this system.
Collapse
MESH Headings
- Arctic Regions
- Atlantic Ocean
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Temperature
- Hydrogen-Ion Concentration
- Hydrothermal Vents/microbiology
- Lipids/analysis
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- A Jaeschke
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
20
|
Functional convergence of hopanoids and sterols in membrane ordering. Proc Natl Acad Sci U S A 2012; 109:14236-40. [PMID: 22893685 DOI: 10.1073/pnas.1212141109] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Liquid-ordered phases are one of two biochemically active membrane states, which until now were thought to be a unique consequence of the interactions between eukaryotic membrane lipids. The formation of a liquid-ordered phase depends crucially on the ordering properties of sterols. However, it is not known whether this capacity exists in organisms that lack sterols, such as bacteria. We show that diplopterol, the simplest bacterial hopanoid, has similar properties and that hopanoids are bacterial "sterol surrogates" with the ability to order saturated lipids and to form a liquid-ordered phase in model membranes. These observations suggest that the evolution of an ordered biochemically active liquid membrane could have evolved before the oxygenation of Earth's surface and the emergence of sterols.
Collapse
|
21
|
Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J Bacteriol 2011; 193:6712-23. [PMID: 21965564 DOI: 10.1128/jb.05979-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Δshc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Δshc mutant produced only very small amounts of the hopanoid peak. The Δshc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Δshc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.
Collapse
|
22
|
|
23
|
Abstract
Hopanoids are triterpenoic, pentacyclic compounds that are structurally similar to sterols, which are required for normal cell function in eukaryotes. Hopanoids are thought to be an important component of bacterial cell membranes because they control membrane fluidity and diminish passive diffusion of ions, and a few taxons modulate their hopanoid content in response to environmental stimuli. However, to our knowledge, mutational studies to assess the importance of hopanoids in bacterial physiology have never been performed. Genome sequencing of the potato scab pathogen, Streptomyces scabies 87-22, revealed a hopanoid biosynthetic gene cluster (HBGC) that is predicted to synthesize hopene and aminotrihydroxybacteriohopane products. Hopene was produced by fully sporulated cultures of S. scabies on solid ISP4 (International Streptomyces Project 4) medium as well as by submerged mycelia grown in liquid minimal medium. The elongated hopanoid aminotrihydroxybacteriohopane was not detected under either growth condition. Transcription of the S. scabies HBGC was upregulated during aerial growth, which suggests a link between hopanoid production and morphological development. Functional analysis of the S. scabies Delta hop615-1 and Delta hop615-7 mutant strains, the first hopanoid mutants created in any bacterial taxon, revealed that hopanoids are not required for normal growth or for tolerance of ethanol, osmotic and oxidative stress, high temperature, or low pH. This suggests that hopanoids are not essential for normal streptomycete physiology.
Collapse
|
24
|
Bühring SI, Smittenberg RH, Sachse D, Lipp JS, Golubic S, Sachs JP, Hinrichs KU, Summons RE. A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach. GEOBIOLOGY 2009; 7:308-323. [PMID: 19476506 DOI: 10.1111/j.1472-4669.2009.00198.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with (13)C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed (13)C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C(19:0) fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC(19:0) and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their (13)C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of (13)C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.
Collapse
Affiliation(s)
- S I Bühring
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pearson A, Leavitt WD, Sáenz JP, Summons RE, Tam MCM, Close HG. Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environ Microbiol 2009; 11:1208-23. [DOI: 10.1111/j.1462-2920.2008.01817.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Frickey T, Kannenberg E. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer. Environ Microbiol 2009; 11:1224-41. [PMID: 19207562 DOI: 10.1111/j.1462-2920.2008.01851.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Functional constraints to modifications in triterpene cyclase amino acid sequences make them good candidates for evolutionary studies on the phylogenetic relatedness of these enzymes in prokaryotes as well as in eukaryotes. In this study, we used a set of identified triterpene cyclases, a group of mainly bacterial squalene cyclases and a group of predominantly eukaryotic oxidosqualene cyclases, as seed sequences to identify 5288 putative triterpene cyclase homologues in publicly available databases. The Cluster Analysis of Sequences software was used to detect groups of sequences with increased pairwise sequence similarity. The sequences fall into two main clusters, a bacterial and a eukaryotic. The conserved, informative regions of a multiple sequence alignment of the family were used to construct a neighbour-joining phylogenetic tree using the AsaturA and maximum likelihood phylogenetic tree using the PhyML software. Both analyses showed that most of the triterpene cyclase sequences were similarly grouped to the accepted taxonomic relationships of the organism the sequences originated from, supporting the idea of vertical transfer of cyclase genes from parent to offspring as the main evolutionary driving force in this protein family. However, a small group of sequences from three bacterial species (Stigmatella, Gemmata and Methylococcus) grouped with an otherwise purely eukaryotic cluster of oxidosqualene cyclases, while a small group of sequences from seven fungal species and a sequence from the fern Adiantum grouped consistently with a cluster of otherwise purely bacterial squalene cyclases. This suggests that lateral gene transfer may have taken place, entailing a transfer of oxidosqualene cyclases from eukaryotes to bacteria and a transfer of squalene cyclase from bacteria to an ancestor of the group of Pezizomycotina fungi.
Collapse
Affiliation(s)
- Tancred Frickey
- Max Planck Institut fuer Entwicklungsbiologie, Tübingen, Germany
| | | |
Collapse
|
27
|
Pearson A, Rusch DB. Distribution of microbial terpenoid lipid cyclases in the global ocean metagenome. ISME JOURNAL 2008; 3:352-63. [DOI: 10.1038/ismej.2008.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Coolen MJL, Talbot HM, Abbas BA, Ward C, Schouten S, Volkman JK, Damsté JSS. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environ Microbiol 2008; 10:1783-803. [DOI: 10.1111/j.1462-2920.2008.01601.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Wang Z, Chen M, Xu Y, Li S, Lu W, Ping S, Zhang W, Lin M. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Biotechnol Lett 2007; 30:657-63. [DOI: 10.1007/s10529-007-9597-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 11/29/2022]
|
30
|
Pearson A, Flood Page SR, Jorgenson TL, Fischer WW, Higgins MB. Novel hopanoid cyclases from the environment. Environ Microbiol 2007; 9:2175-88. [PMID: 17686016 DOI: 10.1111/j.1462-2920.2007.01331.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record.
Collapse
Affiliation(s)
- Ann Pearson
- Department of Earth and Planetary Sciences, 20 Oxford St., Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
31
|
Rashby SE, Sessions AL, Summons RE, Newman DK. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci U S A 2007; 104:15099-104. [PMID: 17848515 PMCID: PMC1986619 DOI: 10.1073/pnas.0704912104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sedimentary 2-methyhopanes have been used as biomarker proxies for cyanobacteria, the only known bacterial clade capable of oxygenic photosynthesis and the only group of organisms found thus far to produce abundant 2-methylbacteriohopanepolyols (2-MeBHPs). Here, we report the identification of significant quantities of 2-MeBHP in two strains of the anoxygenic phototroph Rhodopseudomonas palustris. Biosynthesis of 2-MeBHP can occur in the absence of O(2), deriving the C-2 methyl group from methionine. The relative abundance of 2-MeBHP varies considerably with culture conditions, ranging from 13.3% of total bacteriohopanepolyol (BHP) to trace levels of methylation. Analysis of intact BHPs reveals the presence of methylated bacteriohopane-32,33,34,35-tetrol but no detectable methylation of 35-aminobacteriohopane-32,33,34-triol. Our results demonstrate that an anoxygenic photoautotroph is capable of generating 2-MeBHPs and show that the potential origins of sedimentary 2-methylhopanoids are more diverse than previously thought.
Collapse
Affiliation(s)
| | | | - Roger E. Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Dianne K. Newman
- Divisions of *Geological and Planetary Sciences and
- Biology, California Institute of Technology and
- Howard Hughes Medical Institute, Pasadena, CA 91125; and
- To whom correspondence should be addressed at:
Massachusetts Institute of Technology, Building 68-380, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail:
| |
Collapse
|
32
|
Pancost RD, Steart DS, Handley L, Collinson ME, Hooker JJ, Scott AC, Grassineau NV, Glasspool IJ. Increased terrestrial methane cycling at the Palaeocene–Eocene thermal maximum. Nature 2007; 449:332-5. [PMID: 17882218 DOI: 10.1038/nature06012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/08/2007] [Indexed: 11/08/2022]
Abstract
The Palaeocene-Eocene thermal maximum (PETM), a period of intense, global warming about 55 million years ago, has been attributed to a rapid rise in greenhouse gas levels, with dissociation of methane hydrates being the most commonly invoked explanation. It has been suggested previously that high-latitude methane emissions from terrestrial environments could have enhanced the warming effect, but direct evidence for an increased methane flux from wetlands is lacking. The Cobham Lignite, a recently characterized expanded lacustrine/mire deposit in England, spans the onset of the PETM and therefore provides an opportunity to examine the biogeochemical response of wetland-type ecosystems at that time. Here we report the occurrence of hopanoids, biomarkers derived from bacteria, in the mire sediments from Cobham. We measure a decrease in the carbon isotope values of the hopanoids at the onset of the PETM interval, which suggests an increase in the methanotroph population. We propose that this reflects an increase in methane production potentially driven by changes to a warmer and wetter climate. Our data suggest that the release of methane from the terrestrial biosphere increased and possibly acted as a positive feedback mechanism to global warming.
Collapse
Affiliation(s)
- Richard D Pancost
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fischer WW, Pearson A. Hypotheses for the origin and early evolution of triterpenoid cyclases. GEOBIOLOGY 2007; 5:19-34. [PMID: 36298871 DOI: 10.1111/j.1472-4669.2007.00096.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hopanes and steranes are found almost universally in the sedimentary rock record where they often are used as proxies for aerobic organisms, metabolisms, and environments. In order to interpret ancient lipid signatures confidently we require a complementary understanding of how these modern biochemical pathways evolved since their conception. For example, generally it has been assumed that hopanoid biosynthesis was an evolutionary predecessor to steroid biosynthesis. Here we re-evaluate this assumption. Using a combined phylogenetic and biochemical perspective, we address the evolution of polycyclic triterpenoid biosynthesis and suggest several constraints on using these molecules as aerobic biomarkers. Amino acid sequence data show that the enzymes responsible for polycyclic triterpenoid biosynthesis (i.e. squalene and 2,3-oxidosqualene cyclases) are homologous. Numerous conserved domains correspond to active sites in the enzymes that are required to complete the complex cyclization reaction. From these sites we develop an evolutionary analysis of three independent characters to explain the evolution of the major classes of polycyclic triterpenoids. These characters are: (i) the number of unfavourable anti-Markovnikov ring closures, (ii) all-chair (CCC) or chair-boat-chair (CBC) substrate conformation, and (iii) the choice between squalene and 2,3-oxidosqualene as the substrate. We use these characters to construct four competing phylogenies to describe the evolution of polycyclic triterpenoid biosynthesis. The analysis suggests that malabaricanoids would be the most ancient polycyclic triterpenoids. The two most parsimonious evolutionary trees are the ones in which hopanoid and steroid cyclases diverged from a common ancestor. The transition from a CCC- to CBC-fold marks the major divergence in the evolution of these pathways, and it is diagnosable in the geological record. However, this transition does not require the simultaneous adoption of the aerobic substrate, 2,3-oxidosqualene, because these characters are controlled by independent parts of the enzyme.
Collapse
Affiliation(s)
- W W Fischer
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - A Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
34
|
Talbot HM, Rohmer M, Farrimond P. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:880-92. [PMID: 17294511 DOI: 10.1002/rcm.2911] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacteriohopanepolyols (BHPs) are membrane lipids produced by a wide range of eubacteria. Their use, however, as molecular markers of bacterial populations and processes has until recently been hampered by the lack of a suitable rapid method for fingerprinting their composition in complex environmental matrices. New analytical procedures employing ion trap mass spectrometry now allow us to investigate the occurrence of BHPs in diverse biological and environmental samples including bacterial cultures, soils, and recent and ancient sediments. Here, we describe the structural characterisation using atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry (APCI-LC/MS(n)) of a number of previously identified but less commonly occurring BHPs such as adenosylhopane and ribonylhopane. Many of the structures described here have previously only been reported in one or just a small number of cultured organisms having been isolated from large amounts of cellular mass (4-26 g) and identified by nuclear magnetic resonance (NMR) techniques after purification of individual compounds. Now, having established characteristic APCI fragmentation patterns, it is possible to rapidly screen many more bacterial cultures using only small amounts of material (<50 mg) as well as environmental samples for these atypical structures and a rapidly growing suite of novel structures.
Collapse
Affiliation(s)
- Helen M Talbot
- School of Civil Engineering and Geosciences, Devonshire Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| | | | | |
Collapse
|
35
|
Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann BI, Seifert R, Pape T, Michaelis W. Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 2006; 8:1220-7. [PMID: 16817930 DOI: 10.1111/j.1462-2920.2006.01014.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfate reduction accounts for about a half of the remineralization of organic carbon in anoxic marine shelf regions. Moreover, it was already a major microbial process in the very early ocean at least 2.4 billion years before the present. Here we demonstrate for the first time the capability of sulfate-reducing bacteria (SRB) to biosynthesize hopanoids, compounds that are quantitatively important and widely distributed biomarkers in recent and fossil sediments dating back to the late Archean. We found high concentrations (9.8-12.3 mg per gram of dry cells) of non-extended and extended bacteriohopanoids (bacteriohopanetetrol, aminobacteriohopanetriol, aminobacteriohopanetetrol) in pure cultures of SRB belonging to the widely distributed genus Desulfovibrio. Biohopanoids were found--considered as membrane rigidifiers--in more than 50% of bacterial species analysed so far. However, their biosynthesis appeared to be restricted to aerobes or facultative anaerobes with a very few recently described exceptions. Consequently, findings of sedimentary hopanoids are often used as indication for oxygenated settings. Nevertheless, our findings shed new light on the presence of hopanoids in specific anoxic settings and suggests that SRB are substantial sources of this quantitatively important lipid class in recent but also past anoxic environments.
Collapse
Affiliation(s)
- Martin Blumenberg
- Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|