1
|
Bernardi O, Fréville M, Ramé C, Reverchon M, Dupont J. Chicken chemerin alone or in mixture with adiponectin-visfatin impairs progesterone secretion by primary hen granulosa cells. Poult Sci 2024; 103:104398. [PMID: 39447332 DOI: 10.1016/j.psj.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Adipokines including adiponectin (ADIPO), chemerin (CHEM) and visfatin (VISF) are involved in metabolism and reproductive functions. These 3 adipokines are present in ovarian cells in different preovulatory follicles in hens. We have previously shown that VISF and ADIPO are able to modulate in vitro steroid production by hen granulosa cells (GCs). It is, however, unclear whether CHEM acts on hen ovarian cells. In addition, no study has yet investigated the effect of a mixture of several adipokines such ADIPO, VISF, and CHEM on GCs from different preovulatory follicles. In this study, we investigated the effect of CHEM alone and in combination with ADIPO and VISF on cell viability, proliferation and progesterone secretion in cultured granulosa cells (GCs) from the largest follicles F1 and smaller ones (F3/F4) in the presence of gonadotropins (oLH and oFSH) or hIGF-1. First, various concentrations of chemerin were examined (0, 12, 25, 50, and 100 ng/mL) and then we determined the response to CHEM (at 25 ng/mL) in combination with ADIPO (10 µg/mL) and VISF (100 ng/mL). Chemerin exposure did not affect F1 and F3/F4 granulosa cell viability and proliferation whatever the concentation and in the presence of the mixture. However, it reduced progesterone secretion in dose dependent manner in both F1 and F3/F4 follicles. Furthermore, this CHEM inhibitory effect was significantly higher when CHEM was combined with ADIPO and VISF. Furthermore, CHEM reduced significantly oLH and oFSH- induced progesterone secretion in F1 GCs and oFSH and hIGF-1-induced progesterone secretion in F3/F4 GCs. Interestingly, this inhibitory effect of CHEM was similar in F1 GCs when CHEM was in mixture with ADIPO and VISF whereas it was significantly higher in F3/F4 GCs. Taken together, CHEM impairs progesterone secretion in cultured hen GCs and this inhibitory effect can be potentiated when it is in combination with other adipokines.
Collapse
Affiliation(s)
- Ophélie Bernardi
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, Nouzilly, F-37380, France; Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Mathias Fréville
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, Nouzilly, F-37380, France
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
| |
Collapse
|
2
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Uddandrao VVS, Brahma Naidu P, Chandrasekaran P, Saravanan G. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int J Obes (Lond) 2024; 48:147-165. [PMID: 37963998 DOI: 10.1038/s41366-023-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Obesity is a complex multifactorial disease in which the accumulation of excess body fat has adverse health effects, as it can increase the risk of several problems, including infertility, in both men and women. Obesity and infertility have risen together in recent years. Against this background, the present review aims to highlight the impact of obesity on infertility and the underlying pathophysiology of obesity-related infertility (ORI) in men and women, and to provide readers with knowledge of current trends in the effective development of phytotherapeutics for its treatment. METHODS We thoroughly searched in PubMed, MEDLINE, Scopus, EMBASE, and Google Scholar to find all relevant papers on ORI and the therapeutic effects of phytotherapeutics on ORI in men and women. RESULTS The extensive search of the available literature revealed that obesity affects reproductive function through several complex mechanisms such as hyperlipidaemia, hyperinsulinaemia, hyperandrogenism, increased body mass index, disruption of the hormonal milieu, systemic inflammation, oxidative stress, alterations in epigenetics and dysbiosis. On the other hand, several studies reported that phytotherapeutics has a broad therapeutic spectrum of action by improving sex hormone homeostasis, ovarian dysfunction, menstrual cycle and inhibiting ovarian hyperplasia, as well as down-regulating ovarian apoptosis, inflammation and oxidative stress, and controlling metabolic dysfunction in obese women. Male infertility is also addressed by phytotherapeutics by suppressing lipogenesis, increasing testosterone, 3β-HSD and 17β-HSD levels, improving sperm parameters and attenuating testicular dyslipidaemia, oxidative stress, inflammation and germ cell apoptosis. CONCLUSIONS In the present review, we discussed the effects of obesity on reproductive dysfunction in men and women and the underlying pathophysiology of ORI. In addition, the therapeutic effect of phytotherapeutics against ORI was highlighted.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India.
| | - Parim Brahma Naidu
- Department of Animal Physiology and Biochemistry, National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, 500078, India
| | - P Chandrasekaran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| | - G Saravanan
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| |
Collapse
|
4
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
5
|
Li H, Pei X, Yu H, Wang W, Mao D. Autophagic and apoptotic proteins in goat corpus luteum and the effect of Adiponectin/AdipoRon on luteal cell autophagy and apoptosis. Theriogenology 2024; 214:245-256. [PMID: 37944429 DOI: 10.1016/j.theriogenology.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The most abundant adipokine Adiponectin (APN) is present in ovaries. AdipoRon is a small molecule oral APN receptor agonist that binds and activates APN receptors. However, the function of APN/AdipoRon in regulation of luteal cell processes has not been elucidated. To investigate autophagic and apoptotic proteins in goat CLs and effects of APN/AdipoRon on goat luteal autophagy and apoptosis, goat CLs were collected during the early, mid and late luteal stages of the estrous cycle to evaluate autophagic and apoptotic protein patterns. LC3B, Beclin 1, Caspase-3 and Bax/Bcl-2 as well as p-AMPK were differentially abundant at different stages of CL development. All these proteins were primarily localized in large and small luteal steroidogenic cells. Then, isolated luteal steroidogenic cells were evaluated to ascertain the functions and mechanism of APN/AdipoRon in luteal autophagy and apoptosis. Treatment with AdipoRon (25 and 50 μM) and APN (1 μg/mL) for 48 h resulted in a decrease in cell viability and P4 level, increased autophagic and apoptotic proteins. Treatment with AdipoRon (25 μM) led to rapid and transient p-AMPK activation, with p-AMPK elevated at 30 min to 1 h with there being a return to a basal concentration at 2 h post-treatment. Moreover, treatment with AdipoRon led to an increase in autophagy by activating AMPK, which was markedly reduced with treatment with an AMPK inhibitor Compound C and siAMPK, however, abundances of apoptotic proteins were not affected by these treatments. In conclusion, autophagy and apoptosis are involved in the structural regression of goat CL. APN/AdipoRon led to a lesser cell viability and P4 concentration, and activated autophagy through induction of the AMPK while there was induction of apoptosis through an AMPK - independent pathway in goat luteal cells.
Collapse
Affiliation(s)
- Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
6
|
Nikolettos K, Nikolettos N, Vlahos N, Pagonopoulou O, Asimakopoulos B. Role of leptin, adiponectin, and kisspeptin in polycystic ovarian syndrome pathogenesis. Minerva Obstet Gynecol 2023; 75:460-467. [PMID: 36255161 DOI: 10.23736/s2724-606x.22.05139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Polycystic ovarian syndrome (PCOS) affects 5-20% of females and is the most common cause of anovulatory infertility. Leptin seems to have an important role in reproduction. Many reproductive pathologies such as preeclampsia, PCOS, and endometriosis are associated to plasma adiponectin levels. Kisspeptin levels are increased in PCOS women. EVIDENCE ACQUISITION A review of the literature was completed through the PubMed database aiming to find articles regarding leptin, adiponectin and kisspeptin and if they are related to PCOS pathogenesis. EVIDENCE SYNTHESIS Even today it is not clear what is the role of leptin in women with PCOS, although most of the researchers found increased levels of leptin as well as leptin resistance in PCOS (both obese and lean individuals). Many more longitudinal studies should be done to discover the usefulness of measuring adiponectin in prepubertal women who apparently have a possibility to develop PCOS to find out if they finally develop PCOS. Most of the researchers found that PCOS women have decreased levels of adiponectin unrelated to BMI levels. Nevertheless, not all studies had the same result. Moreover, it is necessary more studies to be made to investigate the connection between kisspeptin and other metabolic factors such as LH and insulin resistance. CONCLUSIONS In general, it remains inconclusive whether leptin, adiponectin, and kisspeptin can be used as clinical and/or biochemical markers of PCOS. Therefore, it is essential to review the current data with regards to the association between PCOS and circulating leptin, adiponectin, and kisspeptin in women with PCOS.
Collapse
Affiliation(s)
- Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece -
| | - Nikos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, Aretaieion Hospital, Athens, Greece
| | - Olga Pagonopoulou
- Laboratory of Physiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
7
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
8
|
Qin L, Sitticharoon C, Petyim S, Keadkraichaiwat I, Sririwichitchai R, Maikaew P, Churintaraphan M. A Longitudinal Study of the Relationship of Adiponectin with Reproduction in Infertile Women Undergoing IVF/ICSI Treatment, and an Experimental Study in Human Granulosa Cells. Life (Basel) 2023; 13:life13040994. [PMID: 37109523 PMCID: PMC10141627 DOI: 10.3390/life13040994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the roles of adiponectin in IVF treatment during Phase I (the basal stage before gonadotropin administration), Phase II (approximately 8 days after gonadotropin administration), and Phase III (on the ovum pick-up day), as well as the effects of adiponectin on CYP19A1 and the FSH receptor (FSHR) mRNA expression in a human granulosa-like tumor cell line (KGN). In human subjects (a longitudinal study, n = 30), blood samples were collected in all phases, while follicular fluid (FF) was only collected in Phase III. The participants were classified into successful and unsuccessful groups based on the determination of fetal heartbeats. KGN cells were treated with adiponectin/FSH/IGF-1 (an experimental study, n = 3). There was no difference in the adiponectin levels between successful and unsuccessful pregnancies in the FF (Phase III) and in serum (all phases), as well as among the three phases in both groups. Serum FSH (Phase I) was positively associated with serum adiponectin in the unsuccessful group, but it had a negative association in the successful group (all phases). Serum adiponectin and serum FSH (Phase I) were positively correlated in the unsuccessful group, whereas they were negatively correlated (all phases) in the successful group. The serum adiponectin levels (Phase III) were significantly higher than in the FF in unsuccessful pregnancies, but there was no difference in successful pregnancies. FF adiponectin concentrations were negatively correlated with serum LH in successful subjects. In KGN cells, adiponectin had no influence on CYP19A1 and FSHR mRNA expression. High adiponectin levels in serum compared to FF (Phase III) in unsuccessful subjects might negatively impact IVF treatment.
Collapse
Affiliation(s)
- Lixian Qin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| | - Somsin Petyim
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok 10700, Thailand
| |
Collapse
|
9
|
Batalha IM, Maylem ERS, Spicer LJ, Pena Bello CA, Archilia EC, Schütz LF. Effects of asprosin on estradiol and progesterone secretion and proliferation of bovine granulosa cells. Mol Cell Endocrinol 2023; 565:111890. [PMID: 36822263 DOI: 10.1016/j.mce.2023.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Asprosin is an adipokine synthesized by the white adipose tissue that regulates glucose homeostasis and that has been reported to affect bovine theca cell function and follicular growth, but its role on granulosa cell functions remains to be unveiled. Hence, the objective of this study was to investigate asprosin impacts on granulosa cell steroidogenesis. Bovine granulosa cells from small ovarian follicles were cultured in vitro to investigate the effects of asprosin on cell proliferation, production of steroids, mRNA abundance of genes that encode steroidogenic enzymes and cell cycle regulators, and protein relative abundance of steroidogenic signaling pathways. Asprosin was shown to affect granulosa cell functions in a dose-dependent manner. In the presence of FSH, asprosin enhanced estradiol production and stimulated an increase in mRNA expression of FSHR and CYP19A1 in a dose-dependent manner. In the presence of IGF1, asprosin decreased estradiol production, increased progesterone production, altered PKA relative protein expression, and tended to alter the ratio of p-ERK1/2/total ERK1/2 protein expression in a dose-dependent manner. Furthermore, asprosin increased p-53 gene expression in basal culture conditions and with or without FSH and IGF1. Taken together, findings of this study show that asprosin is a regulator of granulosa cell functions and the effects of asprosin depend on dose and cell culture conditions.
Collapse
Affiliation(s)
- Isadora Maria Batalha
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University Stillwater, OK 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University Stillwater, OK 74078, USA
| | - Camilo Andres Pena Bello
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Evandro Carlos Archilia
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Luis Fernando Schütz
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Chlorogenic Acid Restores Ovarian Functions in Mice with Letrozole-Induced Polycystic Ovarian Syndrome Via Modulation of Adiponectin Receptor. Biomedicines 2023; 11:biomedicines11030900. [PMID: 36979879 PMCID: PMC10045653 DOI: 10.3390/biomedicines11030900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Around the world, polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic condition that typically affects 6–20% of females. Our study’s major goal was to examine how chlorogenic acid (CGA) affected mice with endocrine and metabolic problems brought on by letrozole-induced PCOS. Group I served as the control for 81 days; Group II was given Letrozole (LETZ) orally at a dose of 6 mg/kg bw for 21 days to induce PCOS; Group III was given LETZ (6 mg/kg) for 21 days, followed by treatment with CGA (50 mg/kg bw daily) for 60 days. The study indicated that LETZ-treated mice displayed symptoms of PCOS, such as dyslipidemia, hyperinsulinemia, elevated testosterone, increases in inflammatory markers and malonaldehyde, and a decline in antioxidants (Ar, lhr, fshr, and esr2) in the ovaries. These alterations were affected when the mice were given CGA and were associated with reduced levels of adiponectin. Adiponectin showed interactions with hub genes, namely MLX interacting protein like (MLXIPL), peroxisome proliferator-activated receptor gamma Coactivator 1- alpha (PPARGC1), peroxisome proliferator-activated receptor gamma (Pparg), and adiponectin receptor 1 (Adipor1). Lastly, the gene ontology of adiponectin revealed that adiponectin was highly involved in biological processes. The findings from our research suggest that adiponectin has direct impacts on metabolic and endocrine facets of PCOS.
Collapse
|
11
|
Francis EC, Oken E, Hivert MF, Rifas-Shiman SL, Chavarro JE, Perng W. Antimüllerian hormone and adiposity across midlife among women in Project Viva. Menopause 2023; 30:247-253. [PMID: 36728523 PMCID: PMC9974681 DOI: 10.1097/gme.0000000000002143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study aimed to examine the association of antimüllerian hormone (AMH) with concurrent and prospective measures of adiposity during approximately 9 years of follow-up. METHODS Participants were 697 parous women from the Project Viva prebirth cohort without polycystic ovarian syndrome. We measured AMH at approximately 3 years postpartum (baseline). Outcomes were weight, body mass index (BMI), and waist circumference assessed at baseline, 4, and 9 years later; % body fat was assessed by bioimpedance at the 4- and 9-year visit. We used linear mixed-effect models including all outcome time points and accounting for age across follow-up and hormonal contraception prescription. In an additional model, we further adjusted for height. RESULTS Median AMH was 1.97 ng/mL (interquartile range, 0.83-4.36 ng/mL), 29.1% had AMH <1.0 ng/mL, and mean age at AMH measurement was 36.7 years (SD, 4.9 y; range, 20-48 y). AMH was inversely associated with average weight, BMI, and waist circumference over follow-up. In age-adjusted models, women with AMH <1.0 versus ≥1.0 ng/mL were 4.92 kg (95% CI, 2.01-7.82 kg) heavier, had a 2.51 cm (95% CI, 0.12-4.89 cm) greater waist circumference, and a 1.46 kg/m 2 (95% CI, 0.44-2.48 kg/m 2 ) greater BMI across the 9 years of follow-up. Findings were similar after covariate adjustment and when AMH was modeled continuously. AMH was also inversely associated with higher fat mass %; however, the CI crossed the null. CONCLUSION Low AMH at baseline was associated with greater adiposity concurrently and across approximately 9 years of follow-up. Whether low AMH is a useful marker of metabolic risk across midlife requires further research.
Collapse
Affiliation(s)
- Ellen C Francis
- From the Lifecourse Epidemiology of Adiposity and Diabetes Center, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | | | | | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, and Harvard Pilgrim Health Care Institute, Landmark Center, Boston, MA
| | | | | |
Collapse
|
12
|
Gareis NC, Rodríguez FM, Cattaneo Moreyra ML, Stassi AF, Angeli E, Etchevers L, Salvetti NR, Ortega HH, Hein GJ, Rey F. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle. Theriogenology 2023; 197:209-223. [PMID: 36525860 DOI: 10.1016/j.theriogenology.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The alteration of signaling molecules involved in the general metabolism of animals can negatively influence reproduction. In dairy cattle, the development of follicular cysts and the subsequent appearance of ovarian cystic disease (COD) often lead to decreased reproductive efficiency in the herd. The objective of this review is to summarize the contribution of relevant metabolic and nutritional sensors to the development of COD in dairy cows. In particular, we focus on the study of alterations of the insulin signaling pathway, adiponectin, and other sensors and metabolites relevant to ovarian functionality, which may be related to the development of follicular persistence and follicular formation of cysts in dairy cattle. The results of these studies support the hypothesis that systemic factors could alter the local scenario in the follicle, generating an adverse microenvironment for the resumption of ovarian activity and possibly leading to the persistence of follicles and to the development and recurrence of COD.
Collapse
Affiliation(s)
- N C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - M L Cattaneo Moreyra
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez (CUG-UNL), Gálvez, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
13
|
Khamoshina MB, Artemenko YS, Bayramova AA, Ryabova VA, Orazov MR. Polycystic ovary syndrome and obesity: a modern paradigm. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-4-382-395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polycystic ovary syndrome is a heterogeneous endocrine disease that affects women of childbearing age. The pathogenesis of polycystic ovary syndrome has not been fully studied to date, its paradigm considers the genetic determinism of the manifestation of hormonal and metabolic disorders, which are considered to be criteria for the verification of the disease (hyperandrogenism, oligo/anovulation and/or polycystic ovarian transformation during ultrasound examination (ultrasound). This review discusses the main ways of interaction between hyperandrogenism, insulin resistance and obesity and their role in the pathogenesis of polycystic ovary syndrome, as well as possible methods of treatment for this category of patients. The review analyzes the role of hyperandrogenism and insulin resistance in the implementation of the genetic scenario of polycystic ovary syndrome and finds out the reasons why women with polycystic ovary syndrome often demonstrate the presence of a «metabolic trio» - hyperinsulinemia, insulin resistance and type 2 diabetes mellitus. It is noted that obesity is not included in the criteria for the diagnosis of polycystic ovary syndrome, but epidemiological data confirm the existence of a relationship between these diseases. Obesity, especially visceral, which is often found in women with polycystic ovary syndrome, enhances and worsens metabolic and reproductive outcomes with polycystic ovary syndrome, as well as increases insulin resistance and compensatory hyperinsulinemia, which, in turn, stimulates adipogenesis and suppresses lipolysis. Obesity increases the sensitivity of tech cells to luteinizing hormone stimulation and enhances functional hyperandrogenism of the ovaries, increasing the production of androgens by the ovaries. Excess body weight is associated with a large number of inflammatory adipokines, which, in turn, contribute to the growth of insulin resistance and adipogenesis. Obesity and insulin resistance exacerbate the symptoms of hyperandrogenism, forming a vicious circle that contributes to the development of polycystic ovary syndrome. These data allow us to conclude that bariatric surgery can become an alternative to drugs (metformin, thiazolidinedione analogs of glucagon-like peptide-1), which has shown positive results in the treatment of patients with polycystic ovary syndrome and obesity.
Collapse
|
14
|
Bongrani A, Plotton I, Mellouk N, Ramé C, Guerif F, Froment P, Dupont J. High androgen concentrations in follicular fluid of polycystic ovary syndrome women. Reprod Biol Endocrinol 2022; 20:88. [PMID: 35701786 PMCID: PMC9195430 DOI: 10.1186/s12958-022-00959-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/03/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND According to current definitions of Polycystic Ovary Syndrome (PCOS), hyperandrogenism is considered as a key element in the pathogenesis of this common endocrinopathy. However, until now, studies about ovarian androgen profile in women are very rare. Our aim was then to characterise the expression profile of the androgens in follicular fluid of 30 PCOS patients, and compare it to those of 47 Control women and 29 women with only polycystic ovary morphology on ultrasounds (ECHO group). METHODS A retrospective, single-centre cohort study was performed. The intrafollicular concentrations of the key androgens were assessed and correlated with the intrafollicular levels of some adipokines of interest. Androgens were quantified by mass spectrophotometry combined with ultra-high-performance liquid chromatography, while adipokine concentrations were measured by ELISA assays. RESULTS In PCOS patients, the intrafollicular concentrations of the androgens synthesised by ovarian theca cells, i.e., 17OH-pregnenolone, dehydroepiandrosterone, Δ4-androstenedione and testosterone, were significantly higher than those of the androgens of adrenal origin, and positively correlated with the main PCOS clinical and biological features, as well as with the adipokines mostly expressed in the follicular fluid of PCOS patients, i.e. resistin, omentin, chemerin and apelin. Conversely, Control women showed the highest levels of 17OH-progesterone, deoxycorticosterone and 11-deoxycortisol. Confirming these results, apelin levels were negatively associated with pregnenolone and deoxycorticosterone concentrations, while visfatin levels, which were higher in the Control group, negatively correlated with the Δ4-androstenedione and testosterone ones. CONCLUSIONS PCOS is characterised by a selective increase in the intrafollicular levels of the androgens synthesised by theca cells, strengthening the hypothesis that ovarian hyperandrogenism plays a central role in its pathogenesis. Further, the significant correlation between the intrafollicular concentrations of the androgens and most of the adipokines of interest, including apelin, chemerin, resistin and omentin, confirms the existence of a close relationship between these two hormonal systems, which appear deeply involved in ovarian physiology and PCOS physiopathology.
Collapse
Affiliation(s)
- Alice Bongrani
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, 69677, Bron, France
| | - Namya Mellouk
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Ile de France, 78352, Jouy-en-Josas, France
| | - Christelle Ramé
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
| | - Fabrice Guerif
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
- Reproductive Medicine and Biology Department, University Hospital of Tours, 37000, Tours, France
| | - Pascal Froment
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France
| | - Joëlle Dupont
- UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
15
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
16
|
Flores R, Ramirez M, Ayala L, Benavides EA, Xie F, Arellano AA, Stanko RL, Garcia MR. Adiponectin Influences FGF2 in the Developing Porcine Corpus Luteum. Vet Sci 2022; 9:vetsci9020077. [PMID: 35202330 PMCID: PMC8875662 DOI: 10.3390/vetsci9020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Luteal angiogenesis is regulated by pro-angiogenic hormones including fibroblast growth factor 2 (FGF2) and angiopoietin 1 (Ang1), which are regulated by the adipokine leptin during development. Another adipokine, adiponectin, exhibits an inverse relationship with leptin and has been identified in the CL. Therefore, it is hypothesized that adiponectin will influence pro-angiogenic hormones in the developing porcine CL. Crossbred sows were randomly allocated to one of two days of the estrous cycle, day 5 (D5; n = 4) or day 7 (D7; n = 5) for CL collection. Tissue was processed for immunohistochemical localization of adiponectin receptor 2 (AdipoR2), gene expression of FGF2, Ang1, leptin, AdipoR2, and cell culture for adiponectin treatment. The expression of AdipoR2 tended (p = 0.09) to be higher in D7 lutea and was more prevalently localized to the cell surface of large and small luteal cells than in D5 tissue. Adiponectin influenced (p ≤ 0.05) FGF2, leptin, and AdipoR2 gene expression relative to the dose and day (D5 or D7). Collectively, the evidence supports the supposition that adiponectin influences angiogenic factors in the developing CL.
Collapse
Affiliation(s)
- Rita Flores
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Martha Ramirez
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
| | - Luis Ayala
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
| | | | - Fang Xie
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94142, USA;
| | - Adrian Aaron Arellano
- College of Veterinary Medicine, College Station, Texas A&M University, Corpus Christi, TX 77843, USA;
| | - Randy Louis Stanko
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
| | - Michelle Renee Garcia
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
- Correspondence: ; Tel.: +1-361-593-3197
| |
Collapse
|
17
|
Turmeric extract alleviates endocrine-metabolic disturbances in letrozole-induced PCOS by increasing adiponectin circulation: A comparison with Metformin. Metabol Open 2022; 13:100160. [PMID: 35005596 PMCID: PMC8717583 DOI: 10.1016/j.metop.2021.100160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
One of the most common causes of female infertility is polycystic ovarian syndrome, which affects 6–21% of the population. Regrettably, the currently available treatments are mostly symptomatic and ineffective. As a result, safer options are needed now more than ever. In a letrozole PCOS albino mouse model, the current study compares the therapeutic advantages of Turmeric extract (Curcuma longa) to metformin. Adiponectin is a circulating protein generated by adipocytes that has been linked to metabolic diseases (MDs) in an inverse relationship. The effects of Turmeric Extract (Curcuma Longa) in contrast to Metformin, as well as the involvement of adiponectin in endocrine-metabolic abnormalities in experimentally induced PCOS mice model, were studied in this study. Letrozole (6 mg/kg) was administered orally (p.o) for 21 days to induce PCOS, followed by a dose of Turmeric Extract (Curcuma longa) (175 mg/kg and p.o) and Metformin (150 mg/kg) for 30 days, both with normal saline water (0.9%) as the carrier. The findings revealed that LET-treated mice displayed PCOS-like characteristics, such as higher LH levels, increased body weight growth, and ovarian morphology with numerous cysts, increase in fasting blood glucose, lipid profile, plasma lipid peroxidation (MDA) and IL-6, as well as a decrease in serum Progesterone, Estrogen, FSH, SOD and GSH levels in the ovary. These changes were linked to lower levels of circulating adiponectin and were reversed when treated Turmeric extract. By altering circulating androgen-adiponectin balance, the data implies that Turmeric extract alleviates endocrine-metabolic abnormalities and inflammation-related comorbidities associated with LET-induced PCOS.
Collapse
|
18
|
ul haq Shah MZ, Soni M, Shrivastava VK, Mir MA, Muzamil S. Gallic acid reverses ovarian disturbances in mice with letrozole-induced PCOS via modulating Adipo R1 expression. Toxicol Rep 2022; 9:1938-1949. [DOI: 10.1016/j.toxrep.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
|
19
|
Nguyen HT, Martin LJ. Transcriptomic analysis of MA-10 tumor Leydig cells treated with adipose derived hormones adiponectin and resistin. Reprod Biol 2021; 22:100598. [PMID: 34929619 DOI: 10.1016/j.repbio.2021.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Obesity contributes to a decrease in testosterone production in men. Indeed, adipose tissue produces several hormones, including adiponectin and resistin, and these may influence the activity of signaling pathways responsible for regulating the expression of genes related to steroidogenesis. In this study, we wanted to identify which genes are directly regulated by these hormones using the MA-10 tumor Leydig cell model. To do this, we treated these cells with adiponectin or resistin, followed by RNA extraction and RNA-Seq transcriptome analysis. Interestingly, genes upregulated by the globular form of adiponectin (gACRP30) were associated to steroid hormones biosynthesis, whereas resistin had no effect on the transcriptome of MA-10 Leydig cells. Moreover, the expression of the Star gene, encoding the steroidogenic acute regulatory protein, was increased in response to treatments with 0.5 mM 8Br-cAMP. Such stimulation was further increased by adiponectin, resulting in increased progesterone production. However, resistin had no effect on steroid production from MA-10 tumor Leydig cells under the treatment conditions investigated. Thus, our data suggest that a direct regulation of steroidogenic genes' expressions in Leydig cells by adipose derived hormones involves cooperation between the cAMP/PKA pathway and adiponectin, but not resistin, to activate Star expression and improve progesterone synthesis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada.
| |
Collapse
|
20
|
Bernardi O, Estienne A, Reverchon M, Bigot Y, Froment P, Dupont J. Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol Cell Endocrinol 2021; 534:111370. [PMID: 34171419 DOI: 10.1016/j.mce.2021.111370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Adipose tissue is now recognized as an active endocrine organ, which synthesizes and secretes numerous peptides factors called adipokines. In mammals, they exert pleiotropic effects affecting energy metabolism but also fertility. In mammals, secretion of adipokines is altered in adipose tissue dysfunctions and may participate to obesity-associated disorders. Thus, adipokines are promising candidates both for novel pharmacological treatment strategies and as diagnostic tools. As compared to mammals, birds exhibit several unique physiological features, which make them an interesting model for comparative studies on endocrine control of metabolism and adiposity and reproductive functions. Some adipokines such as leptin and visfatin may have different roles in avian species as compared to mammals. In addition, some of them found in mammals such as CCL2 (chemokine ligand 2), resistin, omentin and FGF21 (Fibroblast Growth factor 21) have not yet been mapped to the chicken genome model and among its annotated gene models. This brief review aims to summarize data (structure, metabolic and reproductive roles and molecular mechanisms involved) related to main avian adipokines (leptin, adiponectin, visfatin, and chemerin) and we will briefly discuss the adipokines that are still lacking in avian species.
Collapse
Affiliation(s)
- Ophélie Bernardi
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France; SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
21
|
Wu Y, Chanclón B, Micallef P, Stener-Victorin E, Wernstedt Asterholm I, Benrick A. Maternal adiponectin prevents visceral adiposity and adipocyte hypertrophy in prenatal androgenized female mice. FASEB J 2021; 35:e21299. [PMID: 33715227 DOI: 10.1096/fj.202002212r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023]
Abstract
Hyperandrogenism is the main characteristic of polycystic ovary syndrome, which affects placental function and fetal growth, and leads to reproductive and metabolic dysfunction in female offspring. Adiponectin acts on the placenta and may exert endocrine effects on the developing fetus. This study aims to investigate if maternal and/or fetal adiponectin can prevent metabolic and reproductive dysfunction in prenatal androgenized (PNA) female offspring. Adiponectin transgenic (APNtg) and wild-type dams received dihydrotestosterone/vehicle injections between gestational days 16.5-18.5 to induce PNA offspring, which were followed for 4 months. Offspring from APNtg dams were smaller than offspring from wild-type dams, independent of genotype. Insulin sensitivity was higher in wild-type mice from APNtg dams compared to wild-types from wild-type dams, and insulin sensitivity correlated with fat mass and adipocyte size. PNA increased visceral fat% and adipocyte size in wild-type offspring from wild-type dams, while wild-type and APNtg offspring from APNtg dams were protected against this effect. APNtg mice had smaller adipocytes than wild-types and this morphology was associated with an increased expression of genes regulating adipogenesis (Ppard, Pparg, Cebpa, and Cebpb) and metabolism (Chrebp and Lpl). Anogenital distance was increased in all PNA-exposed wild-type offspring, but there was no increase in PNA APNtg offspring, suggesting that adiponectin overexpression protects against this effect. In conclusion, elevated adiponectin levels in utero improve insulin sensitivity, reduce body weight and fat mass gain in the adult offspring and protect against PNA-induced visceral adiposity. In conclusion, these data suggest that PNA offspring benefit from prenatal adiponectin supplementation.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Belén Chanclón
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Micallef
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ingrid Wernstedt Asterholm
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,School of Health Sciences, University of Skövde, Skövde, Sweden
| |
Collapse
|
22
|
Messini CI, Vasilaki A, Korona E, Anifandis G, Katsiani E, Georgoulias P, Dafopoulos K, Garas A, Daponte A, Messinis IE. Effect of adiponectin on estradiol and progesterone secretion from human luteinized granulosa cells in vitro. Syst Biol Reprod Med 2021; 67:374-382. [PMID: 34148437 DOI: 10.1080/19396368.2021.1929559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ιnformation on the role of adiponectin in human ovarian steroidogenesis is limited. The present study aimed to investigate the effect of different doses of adiponectin on the secretion of estradiol and progesterone by human luteinized granulosa cells in culture. Granulosa cells, obtained from women undergoing in vitro fertilization (IVF) treatment, were pre-incubated for 24 h and then cultured for 48 h. Adiponectin was used in 3 doses, i.e., 5, 10, and 100 μg/ml alone and in combinations with FSH (10 and 100 ng/ml). Estradiol and progesterone were measured by radioimmunoassays in culture supernatants at 24 h and 48 h. Adiponectin after 48 h of culture stimulated the secretion of estradiol and, to a lesser extent, progesterone in a dose-dependent manner. FSH showed a variable effect on steroidogenesis. However, when the low dose FSH was combined with adiponectin, estradiol, and progesterone secretion were increased disproportionally to the dose of adiponectin. With the high dose FSH, the positive effect of adiponectin on FSH-induced estradiol secretion was less pronounced, while the effect on progesterone secretion was negligible. This study shows for the first time a stimulatory effect of adiponectin on the secretion of estradiol and progesterone by human luteinized granulosa cells in vitro. It is suggested that adiponectin plays a paracrine role in human ovarian steroidogenesis by sensitizing the granulosa cells to FSH.
Collapse
Affiliation(s)
- Christina I Messini
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Anna Vasilaki
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia Korona
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Katsiani
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Antonios Garas
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis E Messinis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
23
|
Effect of turmeric on adiponectin, sexual function and sexual hormones in stressed mice. Life Sci 2021; 277:119575. [PMID: 33961859 DOI: 10.1016/j.lfs.2021.119575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022]
Abstract
Sexual function is essential for species survival. Melanocortin, progesterone, and estrogen can improve sexual function and they are modulated by adiponectin hormone which can be increased by Turmeric. In various studies shows Turmeric ability that is easily accessible to increase serum adiponectin levels. Therefore, the researchers decided to conduct a study to determine the effect of turmeric on serum adiponectin levels, sexual behavior, and profile of steroid hormones in stressed mice. Thirty female mice, six in each group (1. control group, 2. mice that received stress, 3. stress mice received 100 mg/kg turmeric (extract daily) for 4 weeks, 4. stress mice received turmeric (extract daily) for 4 weeks and also received adiponectin antagonist, and 5. stress groups received adiponectin antagonist), were used in the current study. The mice first underwent blood sampling. Then all mice were subjected to stress testing before the intervention except one group, which considered as a control group. The intervention in this study was done as a 100 mg/kg turmeric extract that was gavaged daily for each mouse. After the intervention, all mice were tested for sexual behavior, and then blood samples were taken to check serum levels of adiponectin, estradiol, progesterone and prolactin. So, the results showed before the intervention there were no significant difference among 5 group in levels of adiponectin (p = 0.145), estradiol (p = 0.148), progesterone (p = 0.166) and prolactin (p = 0.206) but after intervention there were significant difference between 5 group in levels of adiponectin, estradiol and progesterone (p < 0.001). Also there was significant difference among 5 groups in sexual behavior (p < 0.001). Therefore, consumption of turmeric, which increases serum adiponectin in the stressed mice, can improve sexual function and estradiol hormones profiling.
Collapse
|
24
|
Nikanfar S, Oghbaei H, Rastgar Rezaei Y, Zarezadeh R, Jafari-Gharabaghlou D, Nejabati HR, Bahrami Z, Bleisinger N, Samadi N, Fattahi A, Nouri M, Dittrich R. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol 2021; 209:105852. [PMID: 33610800 DOI: 10.1016/j.jsbmb.2021.105852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Adipokines are mainly produced by adipose tissue; however, their expression has been reported in other organs including female reproductive tissues. Therefore, adipokines have opened new avenues of research in female fertility. In this regard, studies reported different roles for certain adipokines in ovarian function, although the role of other recently identified adipokines is still controversial. It seems that adipokines are essential for normal ovarian function and their abnormal levels could be associated with ovarian-related disorders. The objective of this study is to review the available information regarding the role of adipokines in ovarian functions including follicular development, oogenesis and steroidogenesis and also their involvement in ovary-related disorders.
Collapse
Affiliation(s)
- Saba Nikanfar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahrami
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| | - Naser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
Li J, Ma XJ, Wu X, Si SJ, Li C, Yang PK, Li GX, Liu XJ, Tian YD, Kang XT. Adiponectin modulates steroid hormone secretion, granulosa cell proliferation and apoptosis via binding its receptors during hens' high laying period. Poult Sci 2021; 100:101197. [PMID: 34089930 PMCID: PMC8182267 DOI: 10.1016/j.psj.2021.101197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
Adiponectin is an important adipocytokine and plays the roles in multiple metabolic processes via binding its receptors - AdipoR1 and AdipoR2, which has also been found to participate in the regulation of the reproductive system of animals, in particular by influencing the secretion of ovarian steroid hormones. To further investigate the expression of adiponectin and its receptors in follicles after in vitro incubation, and their role in the steroid synthesis of laying hens’ ovaries, we performed qRT-PCR and ELISA to detect the expressions of AdipoQ, AdipoR1, and AidpoR2, and determined the key genes involved in steroidogenesis and the secretion of estradiol (E2) and progesterone (P4) through the in vitro activation of adiponectin (AipoRon) and overexpression or knockdown of AdipoR1 and AdipoR2. Our results revealed that adiponectin and its receptors wildly exist in follicles and granulosa cells, and AdipoRon (5 and 10 µg/mL) had no effect on granulosa cell proliferation and apoptosis but significantly stimulated the secretion of adiponectin and its receptors in granulosa cells after incubation for 24 h. Furthermore, AdipoRon could significantly stimulate the secretion of P4 and inhibit E2 level compared to those of the control group through modulating the key genes expression of steroidogenesis (CYP19A1, StAR, CYP11A1, FSHR, and LHR). The secretion of E2 was also decreased in granulosa cells by the treatments of overexpression and knockdown of AdipoR1/2, however, there was no difference in terms of the level of P4 and StAR expression between them if there was overexpression or knockdown of AdipoR1/2. In addition, it was shown that the secretion of E2 only exhibits a marked drop if co-processing 10 µg/mL AdipoRon and pGMLV AdipoR2 compared to single treatments. Taken together, the study highlighted the role of adiponectin and its receptors in the regulation of steroid synthesis and secretion in ovarian granulosa cells in laying hens.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xue-Jie Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Su-Jin Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Peng-Kun Yang
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xiao-Jun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Ya-Dong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China.
| | - Xiang-Tao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| |
Collapse
|
26
|
Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice. Life Sci 2021; 276:119409. [PMID: 33781825 DOI: 10.1016/j.lfs.2021.119409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome is a common reproductive disorder in the female of reproductive age, which is characterized by hyperandrogenism, insulin resistance, cystic ovary and infertility. The level of pro-inflammatory adipokine, visfatin is elevated in PCOS conditions in human and animal. In this study, letrozole induced hyperandrogenised PCOS mice model have been used to unravel the effects of visfatin inhibition. The results showed that letrozole induced hyperandrogenisation significantly (p < 0.05) elevates ovarian visfatin concentration from 66.03 ± 1.77 to 112.08 ± 3.7 ng/ml, and visfatin expression to 2.5 fold (p < 0.05) compared to control. Visfatin inhibition in PCOS by FK866 has significantly (p < 0.05) suppressed the secretion of androgens, androstenedione (from 0.329 ± 0.07 to 0.097 ± 0.01 ng/ml) and testosterone levels (from 0.045 ± 0.003 to 0.014 ± 0.0009 ng/ml). Ovarian histology showed that visfatin inhibition suppressed cyst formation and promotes corpus luteum formation. Visfatin inhibition has suppressed apoptosis and increases the expression of BCL2 along with increase in the proliferation (GCNA expression elevated). Visfatin inhibition has increased ovarian glucose content (from 167.05 ± 8.5 to 210 ± 7 mg/dl), along with increase in ovarian GLUT8 expression. In vitro study has also supported the in vivo findings where FK866 treatment significantly (p < 0.05) suppressed testosterone (control-3.84 ± 0.44 ng/ml, 1 nM FK866-2.02 ± 0.048 ng/ml, 10 nM FK866-1.74 ± 0.20 ng/ml) and androstenedione (control-4.68 ± 0.91 ng/ml, 1 nM FK866-3.38 ± 0.27 ng/ml, 10 nM FK866-4.55 ± 0.83 ng/ml) production from PCOS ovary. In conclusion, this is first report, which showed that visfatin inhibition by FK866 in hyperandrogenised mice ameliorates pathogenesis of PCOS. Thus, it may be suggested that visfatin inhibition could have a therapeutic potential in PCOS management along with other intervention.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
27
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Kurowska P, Mlyczyńska E, Dawid M, Sierpowski M, Estienne A, Dupont J, Rak A. Adipokines change the balance of proliferation/apoptosis in the ovarian cells of human and domestic animals: A comparative review. Anim Reprod Sci 2021; 228:106737. [PMID: 33756403 DOI: 10.1016/j.anireprosci.2021.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Adipose tissue secretes multiple hormones termed adipokines, which are important regulators of many processes. There are four types of evidence supporting an association between adipokines and female fertility which are effects that occur: centrally at the pituitary; peripherally and locally at the ovary and reproductive tract; directly on the oocyte/embryo and during pregnancy. In this review, there was a focus on the description of adipokines (leptin, apelin, resistin, chemerin, adiponectin, vaspin and visfatin) on ovarian cell proliferation, cell cycle progression and apoptosis in comparison to effects on human and domestic animal ovaries including pigs, cattle and chickens. Knowledge about molecules which regulate the balance between proliferation and apoptosis so that these processes are optimal for ovarian function is essential for understanding the physiology and reducing the incidence of infertility. Furthermore, oogenesis, folliculogenesis, oocyte loss/selection and atresia are important processes for optimal ovarian physiological functions. There, however, is ovulation from only a few follicles, while the majority undergo atresia that is induced by apoptosis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mateusz Sierpowski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anthony Estienne
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
29
|
Olaniyi KS, Oniyide AA, Adeyanju OA, Ojulari LS, Omoaghe AO, Olaiya OE. Low dose spironolactone-mediated androgen-adiponectin modulation alleviates endocrine-metabolic disturbances in letrozole-induced PCOS. Toxicol Appl Pharmacol 2021; 411:115381. [PMID: 33359182 DOI: 10.1016/j.taap.2020.115381] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Polycystic ovarian syndrome (PCOS), is a multifactorial endocrine disorder in women of reproductive age. It usually associates with metabolic disorders (MDs), which aggravates the risk of infertility, cardiometabolic events and associated comorbidities in women with PCOS. Adiponectin, a circulating protein produced by adipocytes, which has been suggested to inversely correlate with MDs. Spironolactone, a non-selective mineralocorticoid receptor (MR) antagonist, has been in wide clinical use for several decades. Herein, we investigated the effects of low dose spironolactone (LDS) and the role of adiponectin in endocrine-metabolic disturbances in experimentally-induced PCOS rats. Eighteen female Wistar rats (160-180 g) were randomly allotted into 3 groups and treated with vehicle (p.o.), letrozole (LET; 1 mg/kg) and LET + LDS (0.25 mg/kg), once daily for 21 days, respectively. The results showed that LET-treated animals had features of PCOS, characterized by elevated plasma testosterone and prolactin, increased body weight gain and ovarian weight as well as disrupted ovarian cytoarchitecture and degenerated follicles. Additionally, elevated fasting blood glucose, 1 h-postload glucose and plasma insulin, impaired glucose tolerance, insulin resistance, reduced insulin sensitivity, increased plasma and ovarian lipid profile, plasma lipid peroxidation, TNF-α, IL-6 and decreased plasma glutathione peroxidase and glutathione content were observed. These alterations were associated with decreased circulating adiponectin and were reversed when treated with LDS. The present results suggest that LDS ameliorates endocrine-metabolic disturbances and inflammation-related comorbidities associated with LET-induced PCOS by modulating circulating androgen-adiponectin status.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria.
| | - Adesola A Oniyide
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Oluwaseun A Adeyanju
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria.
| | - Lekan S Ojulari
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Adams O Omoaghe
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Oluranti E Olaiya
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| |
Collapse
|
30
|
Grandhaye J, Hmadeh S, Plotton I, Levasseur F, Estienne A, LeGuevel R, Levern Y, Ramé C, Jeanpierre E, Guerif F, Dupont J, Froment P. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells. Mol Cell Endocrinol 2021; 520:111080. [PMID: 33189865 DOI: 10.1016/j.mce.2020.111080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
During obesity, excess body weight is not only associated with an increased risk of type 2-diabetes, but also several other pathological processes, such as infertility. Adipose tissue is the largest endocrine organ of the body that produces adipokines, including adiponectin. Adiponectin has been reported to control fertility through the hypothalamic-pituitary-gonadal axis, and folliculogenesis in the ovaries. In this study, we focused on a recent adiponectin-like synthetic agonist called AdipoRon, and its action in human luteinized granulosa cells. We demonstrated that AdipoRon activated the adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor alpha (PPAR) signalling pathways in human luteinized granulosa cells. A 25 μM AdipoRon stimulation reduced granulosa cell proliferation by inducing cell cycle arrest in G1, associated with PTEN and p53 pathway activation. In addition, AdipoRon perturbed cell metabolism by decreasing mitochondrial activity and ATP production. In human luteinized granulosa cells, AdipoRon increased phosphodiesterase activity, leading to a drop in cyclic adenosine monophosphate (cAMP) production, aromatase expression and oestrogens secretion. In conclusion, AdipoRon impacted folliculogenesis by altering human luteinized granulosa cell function, via steroid production and cell proliferation. This agonist may have applications for improving ovarian function in metabolic disorders or granulosa cancers.
Collapse
Affiliation(s)
- Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Sandy Hmadeh
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, Bron, France
| | - Floriane Levasseur
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Rémy LeGuevel
- Plate-forme ImPACcell, Université de Rennes 1, France
| | - Yves Levern
- INRA UMR Infectiologie et Santé Publique, Service de Cytométrie, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Eric Jeanpierre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | | | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France.
| |
Collapse
|
31
|
Androgen Reduces Mitochondrial Respiration in Mouse Brown Adipocytes: A Model for Disordered Energy Balance in Polycystic Ovary Syndrome. Int J Mol Sci 2020; 22:ijms22010243. [PMID: 33383677 PMCID: PMC7796281 DOI: 10.3390/ijms22010243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is associated with an adverse metabolic profile including reduced postprandial thermogenesis. Although abnormalities in adipose tissue function have been widely reported in women with PCOS, less is known about direct effects of androgen on white and, particularly, brown adipocytes. The purpose of this study was to investigate the effect of the nonaromatizable androgen dihydrotestosterone (DHT) on (1) lipid accumulation and expression of adipogenic markers in immortalized mouse brown adipose cell lines (IMBATs), (2) mitochondrial respiration in IMBATs, (3) mitochondrial DNA content and gene expression, (4) expression of brown adipose tissue (BAT) markers and thermogenic activation. In addition, we profiled the relative levels of 38 adipokines secreted from BAT explants and looked at androgen effects on adipokine gene expression in both IMBATs and immortalized mouse white adipose (IMWATs) cell lines. Androgen treatment inhibited IMBAT differentiation in a dose-dependent manner, reduced markers of adipogenesis, and attenuated the β-adrenoceptor-stimulated increase in uncoupling protein-1 (UCP1) expression. In explants of mouse interscapular BAT, androgen reduced expression of UCP1, peroxisome proliferator-activated receptor-γ coactivator-1 (PCG-1) and Cidea. Significantly, as well as affecting genes involved in thermogenesis in BAT, androgen treatment reduced mitochondrial respiration in IMBATs, as measured by the Seahorse XF method. The results of this study suggest a role for excess androgen in inhibiting brown adipogenesis, attenuating the activation of thermogenesis and reducing mitochondrial respiration in BAT. Together, these data provide a plausible molecular mechanism that may contribute to reduced postprandial thermogenesis and the tendency to obesity in women with PCOS.
Collapse
|
32
|
Luti S, Fiaschi T, Magherini F, Modesti PA, Piomboni P, Semplici B, Morgante G, Amoresano A, Illiano A, Pinto G, Modesti A, Gamberi T. Follicular microenvironment: Oxidative stress and adiponectin correlated with steroids hormones in women undergoing in vitro fertilization. Mol Reprod Dev 2020; 88:175-184. [PMID: 33336494 DOI: 10.1002/mrd.23447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 12/06/2020] [Indexed: 01/31/2023]
Abstract
Research has been focused on determining the follicular microenviroment produced by the theca and granulosa cells since the molecular characterisation of this body fluid could lead to the understanding of several fertility problems. Oxidative stress may be one of the factors involved in female infertility since it plays a key role in the modulation of oocyte maturation and finally pregnancy. An increase in oxidative stress is correlated with inflammation and intense research was developed to understand the interaction between inflammation and adiponectin, based on the fact that many adipokines are inflammation related proteins linked to reactive oxygen species production. The aim of this study is to investigate the correlation between total adiponectin levels and oxidative stress amount in the serum and follicular fluid (FF) of women who undergone in vitro fertilization. Moreover we verified the expression of adiponectin in granulosa and cumulus cells. To clarify the predictive value of steroid hormones in human assisted reproduction, twelve steroid hormones in FF and serum, were quantified in a single run liquid chromatography/mass spectrometry, by using a multiple reaction monitoring mode and we related the serum and follicular fluids adiponectin levels with the concentration of the investigated steroid hormones.
Collapse
Affiliation(s)
- Simone Luti
- Department of Biomedical, Experimental, and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Biomedical, Experimental, and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Magherini
- Department of Biomedical, Experimental, and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro A Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bianca Semplici
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Morgante
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental, and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental, and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
33
|
Qin L, Sitticharoon C, Petyim S, Keadkraichaiwat I, Sririwichitchai R, Maikeaw P, Churintaraphan M, Sripong C. Roles of kisspeptin in IVF/ICSI-treated infertile women and in human granulosa cells. Exp Biol Med (Maywood) 2020; 246:996-1010. [PMID: 33327782 DOI: 10.1177/1535370220981006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kisspeptin, a crucial central regulator of reproduction, has been used as a trigger in in vitro fertilization (IVF) treatment. This study aimed to investigate the roles of kisspeptin in IVF treatment in infertile females (n = 30); and in steroidogenesis in human granulosa-like tumor cell line (KGN). In the human study, blood was collected at three time points including (1) the beginning of gonadotropin stimulation (Phase I), (2) around eight days after gonadotropin stimulation (Phase II), and (3) on the day of ovum pick-up (Phase III). Follicular fluid (FF) was collected at Phase III. Serum human chorionic gonadotropin (hCG) was measured 15 days after embryo transfer and fetal heart beats were determined around 42 days of menstrual cycle to classify the subjects into successful and unsuccessful groups. FF kisspeptin levels were higher in successful compared with unsuccessful subjects (P < 0.01). Kisspeptin levels were significantly higher in FF than in serum in successful subjects (P < 0.05) but were comparable in unsuccessful subjects. Serum kisspeptin was comparable among three phases in the successful group but its levels in Phase III were significantly lower compared with Phase I in the unsuccessful group (P < 0.01). Serum kisspeptin in Phase II/III had positive correlations with serum E2 in Phases II and III and the outcomes of IVF/intracytoplasmic sperm injection (ICSI) treatment including serum hCG levels. For the cell experiment (n = 3), kisspeptin treatment in the presence of FSH together with IGF-1 enhanced CYP19A1 (aromatase) mRNA expression compared with control. FSH alone increased aromatase concentrations in the supernatant compared with control and kisspeptin at the dose of 10-2 mmol/L with FSH enhanced aromatase concentrations in the supernatant compared with FSH alone (P < 0.001 all). In conclusion, kisspeptin enhanced aromatase expression and secretion and was associated with positive outcomes of IVF/ICSI treatment. Further studies regarding supplementation of kisspeptin could reveal its beneficial effects on IVF/ICSI treatment.
Collapse
Affiliation(s)
- Lixian Qin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somsin Petyim
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pailin Maikeaw
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
34
|
Expression and localization of adiponectin and its receptors (AdipoR1 and AdipoR2) in the hypothalamic-pituitary-ovarian axis of laying hens. Theriogenology 2020; 159:35-44. [PMID: 33113442 DOI: 10.1016/j.theriogenology.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Adiponectin is a hormone secreted by adipose tissue that is involved in the regulation of energy homeostasis and reproduction. In this study, the expression levels of adiponectin and its receptors in the hypothalamic-pituitary-ovarian (HPO) axis of laying hens were investigated using quantitative real-time PCR (qRT-PCR) and Western blotting, and the localization of these proteins was explored using immunohistochemistry. The morphological relationships between adiponectin receptors and gonadotropin-releasing hormone (GnRH) neurons were analyzed using double immunofluorescence labeling. The results showed that adiponectin mRNA and protein were widely expressed in all tissues involved in the HPO axis in laying hens, with especially high expression in the hypothalamus. Both AdipoR1 and AdipoR2 were more highly expressed in the pituitary than in other tissues and exhibited similar mRNA and protein expression patterns. The immunohistochemistry results showed that adiponectin and AdipoR2 were localized in the major hypothalamic nuclei that regulate food intake and energy balance (i.e., the lateral hypothalamic area (LHA), infundibular nucleus (IN), dorsomedial nucleus (DMN), and paraventricular nucleus (PVN)). Immunostaining revealed that adiponectin and its receptors were also localized in the cytoplasm of cells in the adenohypophysis. In the ovaries, adiponectin was localized in the granulosa layer, in the theca externa of follicles and in basal cells, while AdipoR1 and AdipoR2 were localized in basal cells. In the double immunofluorescence labeling experiment, AdipoR1 and AdipoR2 were localized in GnRH neurons in the IN and DMN. These results suggest that adiponectin and its receptors may play major roles in the endocrine network, which integrates energy balance and reproduction.
Collapse
|
35
|
Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Bogus-Nowakowska K, Kaminska B, Smolinska N, Kaminski T. Expression of chemerin receptors CMKLR1, GPR1 and CCRL2 in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways. Theriogenology 2020; 157:181-198. [PMID: 32814246 DOI: 10.1016/j.theriogenology.2020.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Studies on adipokines, substances that are produced in adipose tissue, indicate that they influence both metabolism and reproduction. Chemerin is a novel addition to the adipokine family. It is believed that chemerin receptors are expressed in different structures of the hypothalamic-pituitary-gonadal (HPG) axis, which are crucial for endocrine control of reproductive functions, including the pituitary. The aim of this study was to investigate the expression of chemerin receptors (CMKLR1, GPR1, CCRL2) genes and proteins in the porcine pituitary. The effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways was also investigated. The anterior (AP) and posterior (PP) lobes of the pituitary were examined on days 2 to 3, 10 to 12, 14 to 16, and 17 to 19 of the oestrous cycle and on days 10 to 11, 12 to 13, 15 to 16, and 27 to 28 of pregnancy. This is the first study to demonstrate that CMKLR1, GPR1 and CCRL2 are expressed in the porcine AP and PP, which implies that this gland is sensitive to chemerin action. The expression of the studied chemerin receptors fluctuated during different phases of the cycle and early gestation, which could be related to changes in the endocrine status of female pigs. The study also revealed that CMKLR1 and CCRL2 proteins were present in gonadotrophs and thyrotrophs, whereas CCRL2 was also present in somatotrophs, during the cycle and early pregnancy. We observed that chemerin affected MAPK/Erk1/2, Akt and AMPK signalling pathways in the porcine AP. These results suggest that chemerin may participate in the regulation of reproductive functions at the level of the pituitary.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
36
|
Estienne A, Brossaud A, Reverchon M, Ramé C, Froment P, Dupont J. Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds. Int J Mol Sci 2020; 21:E3581. [PMID: 32438614 PMCID: PMC7279299 DOI: 10.3390/ijms21103581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Adeline Brossaud
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380 Nouzilly, France;
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| |
Collapse
|
37
|
Artimani T, Najafi R. APPL1 as an important regulator of insulin and adiponectin‐signaling pathways in the PCOS: A narrative review. Cell Biol Int 2020; 44:1577-1587. [DOI: 10.1002/cbin.11367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tayebe Artimani
- Endometrium and Endometriosis Research CenterHamadan University of Medical Sciences Hamadan Iran
| | - Rezvan Najafi
- Research Center for Molecular MedicineHamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
38
|
Salem AM, Latif R, Rafique N. Comparison of Adiponectin Levels During the Menstrual Cycle Between Normal Weight and Overweight/Obese Young Females. Physiol Res 2019; 68:939-945. [PMID: 31647300 DOI: 10.33549/physiolres.934197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To compare serum adiponectin changes across the menstrual cycle between normal weight and overweight/obese young women and its correlation with serum estradiol. Young women (n=56) with regular menstrual cycle had been grouped according to their BMI into normal weight group (n=26) and overweight /obese group (n=30). Blood samples were drawn during early follicular (FP), pre-ovulatory (OP) and luteal phases (LP) of menstrual cycle for serum adiponectin and estradiol levels determination using enzyme-linked immunosorbent assay. Adiponectin serum level showed a significant decreasing pattern across the phases of menstrual cycle in normal weight group. This pattern was absent in the overweight/obese group. In addition, serum adiponectin was lower in overweight/obese group compared to normal weight subjects through all phases of menstrual cycle. No correlation was found between adiponectin and estradiol levels in both groups. A significant variation of serum adiponectin level was detected across the menstrual cycle in females with normal weight. In comparison, overweight/obese group showed a relatively stable adiponectin level throughout the cycle. This lack of adiponectin variation might be added to the complex mechanisms lies behind obesity-related female infertility.
Collapse
Affiliation(s)
- A M Salem
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | | | | |
Collapse
|
39
|
Effect of cryopreservation on human granulosa cell viability and responsiveness to gonadotropin. Cell Tissue Res 2019; 379:635-645. [PMID: 31788759 DOI: 10.1007/s00441-019-03123-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
In human, the use of freshly recovered granulosa cells for experiments remains difficult. Because of the single use of human cells, the experiments cannot be repeated, and no additional conditions can be tested afterwards with the cells of the same patient. Therefore, granulosa cell cryopreservation could be a good alternative to keep part of these cells for later controls or experiments. The aim of this study is to compare the responsiveness to FSH of fresh and frozen-thawed human primary granulosa-lutein cells (hGLC) and determine if cryopreserved granulosa cells can be used in place of fresh cells. Two cryopreservation methods were also compared: a conventional versus a simplified freezing method. This experimental study was undertaken at Igyxos S.A., Nouzilly, France. Seventy women undergoing oocyte retrieval at the IVF Unit from Bretonneau University Hospital (Tours, France) were recruited in 2016. Fresh and frozen-thawed hGLC were cultured for 7 days and then stimulated by r-FSH for 48 h. To assess r-FSH efficacy and potency, extracellular cAMP accumulated in the supernatant for each stimulation point was measured. We demonstrated that hGLC remain responsive to FSH stimulation after freezing-thawing and 7 days of pre-culture. They are able to secrete cAMP with a similar EC50 value as fresh hGLC, but FSH efficacy is lowered. As our study did not show any significant difference between the two freezing methods concerning the sensitivity of hGLC to FSH, hGLC could be cryopreserved with the simplified freezing method without taking up too much time for IVF laboratories.
Collapse
|
40
|
Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta 2019; 502:214-221. [PMID: 31733195 DOI: 10.1016/j.cca.2019.11.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disease characterized by clinical or laboratorial hyperandrogenism, oligo-anovulation and metabolic abnormalities, including insulin resistance, excessive weight or obesity, type II diabetes, dyslipidemia and an increased risk of cardiovascular disease. The most significant clinical manifestation of PCOS is hyperandrogenism. Excess androgen profoundly affects granulosa cell function and follicular development via complex mechanisms that lead to obesity and insulin resistance. Most PCOS patients with hyperandrogenism have steroid secretion defects that result in abnormal folliculogenesis and failed dominant follicle selection. Hyperandrogenism induces obesity, hairy, acne, and androgenetic alopecia. These symptoms can bring great psychological stress to women. Drugs such as combined oral contraceptive pills, metformin, pioglitazone and low-dose spironolactone help improve pregnancy rates by decreasing androgen levels in vivo. Notably, PCOS is heterogeneous, and hyperandrogenism is not the only pathogenic factor. Obesity and insulin resistance aggravate the symptoms of hyperandrogenism, forming a vicious cycle that promotes PCOS development. Although numerous studies have been conducted, the definitive pathogenic mechanisms of PCOS remain uncertain. This review summarizes and discusses previous and recent findings regarding the relationship between hyperandrogenism, insulin resistance, obesity and PCOS.
Collapse
|
41
|
Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142:61-72. [PMID: 30954546 PMCID: PMC6791125 DOI: 10.1016/j.freeradbiomed.2019.03.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Thirty years ago, there was an emerging appreciation for the significance of oxidative stress in newborn disease. This prompted a renewed interest in the impact of oxygen therapy for the newborn in the delivery room and beyond, especially in premature infants. Today, the complexity of oxidative stress both in normal regulation and pathology is better understood, especially as it relates to neonatal mitochondrial oxidative stress responses to hyperoxia. Mitochondria are recipients of oxidative damage and have a propensity for oxidative self-injury that has been implicated in the pathogenesis of neonatal lung diseases. Similarly, both intrauterine growth restriction (IUGR) and macrosomia are associated with mitochondrial dysfunction and oxidative stress. Additionally, reoxygenation with 100% O2 in a hypoxic-ischemic newborn lamb model increased the production of pro-inflammatory cytokines in the brain. Moreover, the interplay between inflammation and oxidative stress in the newborn is better understood because of animal studies. Transcriptomic analyses have found a number of genes to be differentially expressed in murine models of bronchopulmonary dysplasia (BPD). Epigenetic changes have also been detected both in animal models of BPD and premature infants exposed to oxygen. Antioxidant therapy to prevent newborn disease has not been very successful; however, new therapeutic principles, like melatonin, are under investigation.
Collapse
Affiliation(s)
- Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Mary E Robbins
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Cecilie Revhaug
- Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway
| | - Ola D Saugstad
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
42
|
Singh A, Bora P, Krishna A. Systemic adiponectin treatment reverses polycystic ovary syndrome-like features in an animal model. Reprod Fertil Dev 2019; 30:571-584. [PMID: 28911368 DOI: 10.1071/rd17255] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
The present study examined the efficacy of adiponectin for regulating the reproductive, metabolic and fertility status of mice with polycystic ovary syndrome (PCOS). PCOS was induced in prepubertal (21- to 22-day-old) mice using dehydroepiandrosterone (6mg 100g-1day-1 for 25days), after which mice were administered either a low or high dose of adiponectin (5 or 15µgmL-1, s.c., respectively). PCOS mice exhibited typical features, including the presence of numerous cystic follicles, increased circulating androgens, increased body mass, altered steroidogenesis, decreased insulin receptor expression and increased serum triglycerides, serum glucose, Toll-like receptor (TLR)-4 (a marker of inflammation) and vascular endothelial growth factor (VEGF; a marker of angiogenesis). These parameters were significantly correlated with a reduction in adiponectin in PCOS mice compared with vehicle-treated control mice. Exogenous adiponectin treatment of PCOS mice restored body mass and circulating androgen, triglyceride and glucose levels. Adiponectin also restored ovarian expression of steroidogenic markers (LH receptors, steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase), insulin receptor, TLR-4 and VEGF levels in control mice. Adiponectin restored ovulation in PCOS mice, as indicated by the presence of a corpus luteum and attainment of pregnancy. These findings suggest that adiponectin effectively facilitates fertility in anovulatory PCOS. We hypothesise that systemic adiponectin treatment may be a promising therapeutic strategy for the management of PCOS.
Collapse
Affiliation(s)
- Anusha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Puran Bora
- Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
43
|
Gupta M, Bahiram KB, Sardar VM, Korde JP, Magar SP, Bonde SW, Kurkure NV. Expression and localization of adiponectin and its receptors in ovarian follicles during different stages of development and the modulatory effect of adiponectin on steroid production in water buffalo. Reprod Domest Anim 2019; 54:1291-1303. [DOI: 10.1111/rda.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mahesh Gupta
- Department of Veterinary Physiology Nagpur Veterinary College Nagpur India
| | | | | | | | - Swapnil P. Magar
- Department of Veterinary Physiology Nagpur Veterinary College Nagpur India
| | | | | |
Collapse
|
44
|
Bongrani A, Mellouk N, Rame C, Cornuau M, Guérif F, Froment P, Dupont J. Ovarian Expression of Adipokines in Polycystic Ovary Syndrome: A Role for Chemerin, Omentin, and Apelin in Follicular Growth Arrest and Ovulatory Dysfunction? Int J Mol Sci 2019; 20:ijms20153778. [PMID: 31382403 PMCID: PMC6695651 DOI: 10.3390/ijms20153778] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Adipokines are a potential link between reproduction and energy metabolism and could partly explain some infertilities related to some pathophysiology, such as polycystic ovary syndrome (PCOS). However, adipokines were predominantly assessed in blood samples, while very little is known concerning their variations in follicular fluid (FF) and ovarian granulosa cells (GCs) of PCOS women. Thus, the objectives of our study were to investigate adiponectin, chemerin, resistin, visfatin, omentin, and apelin ovarian expression in PCOS women in comparison with controls and women with only a polycystic ovary morphology. In total, 78 women undergoing an in vitro fertilization procedure were divided into three groups: 23 PCOS women, 28 women presenting only ≥12 follicles per ovary (ECHO group), and 27 control women. Each group almost equally included normal weight and obese women. Follicular fluid (FF) concentration and granulosa cells (GCs) mRNA expression of adipokines and their receptors were assessed by ELISA and RT-qPCR, respectively. Omentin levels in FF and GC were higher in PCOS than in ECHO and control women, while apelin expression was increased in both PCOS and ECHO groups. FF chemerin concentration was predominant in normal-weight PCOS women compared to BMI (Body Mass Index)-matched ECHO and control women, while GC mRNA levels were higher in the obese PCOS group than in the ECHO one. Compared to PCOS, ECHO women had increased FF adiponectin concentrations and lower plasma AMH levels. The FF concentration of all adipokines was higher in obese subjects except for adiponectin, predominant in normal-weight women. In conclusion, women with PCOS expressed higher GC chemerin and omentin, whereas the ECHO group presented higher levels of FF adiponectin and apelin and lower plasma AMH and LH concentrations. Chemerin, omentin, and apelin expression was differently regulated in women with PCOS, suggesting their possible role in follicular growth arrest and ovulatory dysfunction characterizing PCOS pathogenesis.
Collapse
Affiliation(s)
- Alice Bongrani
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Namya Mellouk
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Christelle Rame
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Marion Cornuau
- Service de Médecine et Biologie de la Reproduction, CHRU Bretonneau, 2, boulevard Tonnellé, F-37044 Tours, France
| | - Fabrice Guérif
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU Bretonneau, 2, boulevard Tonnellé, F-37044 Tours, France
| | - Pascal Froment
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Joëlle Dupont
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France.
| |
Collapse
|
45
|
Tao T, Wang Y, Xu B, Mao X, Sun Y, Liu W. Role of adiponectin/peroxisome proliferator-activated receptor alpha signaling in human chorionic gonadotropin-induced estradiol synthesis in human luteinized granulosa cells. Mol Cell Endocrinol 2019; 493:110450. [PMID: 31116958 DOI: 10.1016/j.mce.2019.110450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022]
Abstract
Impaired steroid production in polycystic ovary syndrome (PCOS) may result from adiponectin system dysfunction. However, adiponectin's role in ovulatory dysfunction remains unclear. We aimed to determine whether human chorionic gonadotropin (hCG) and adiponectin affect progesterone and estradiol secretion by granulosa cells (GCs) from overweight or obese women with PCOS or normal ovulation. ADIPOR2 expression was higher in hCG-treated GCs from PCOS patients than in those from normovulatory women. hCG may upregulate ADIPOR2 expression through cAMP/PKA signaling in GCs. GCs from both groups expressed PPARA. Estradiol levels were lower in hCG + adiponectin-treated GCs from PCOS patients than in those from normovulatory women. hCG + adiponectin decreased P450 aromatase expression through adiponectin/PPARα signaling in GCs. Adiponectin downregulates hCG-induced estradiol levels in GCs from overweight or obese women through gonadotropin-adiponectin crosstalk. Changes in gonadotropin and adiponectin signaling in the ovarian microenvironment may improve symptoms in women with PCOS.
Collapse
Affiliation(s)
- Tao Tao
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yuying Wang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Bing Xu
- Shanghai Key laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Xiuying Mao
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yun Sun
- Shanghai Key laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wei Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
46
|
Choubey M, Ranjan A, Bora PS, Baltazar F, Krishna A. Direct actions of adiponectin on changes in reproductive, metabolic, and anti-oxidative enzymes status in the testis of adult mice. Gen Comp Endocrinol 2019; 279:1-11. [PMID: 29908833 DOI: 10.1016/j.ygcen.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a major health problem that is linked to decreased sperm count. It is hypothesized that an obesity-associated reduction in adiponectin secretion may be responsible for impairment of spermatogenesis. Therefore, the aim of the study was to evaluate the direct role of adiponectin in spermatogenesis and steroid synthesis in adult mice. This study showed that adiponectin receptors (AdipoR1 and AdipoR2) were localized in Leydig cells and seminiferous tubules in the testis of adult mice. The result of the in vitro study showed the direct action of adiponectin on spermatogenesis by stimulating cell proliferation (PCNA) and survival (Bcl2) and by suppressing cell apoptosis. Treatment of testis with adiponectin also enhanced transport of the energetic substrates glucose and lactate to protect cells from undergoing apoptosis. Adiponectin treatment further showed a significant reduction in oxidative stress and nitric oxide. Our findings suggest that adiponectin effectively facilitates cell survival and proliferation, as well as protects from apoptosis. Thus, adiponectin treatment may be responsible for enhancing sperm counts. Interestingly, this study showed the stimulatory effect of adiponectin in spermatogenesis but showed an inhibitory effect on testosterone and estradiol synthesis in the testes. Based on the present study, it is hypothesized that systemic adiponectin treatment may be a promising therapeutic strategy for the improvement of spermatogenesis and sperm count.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Ranjan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Puran S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, 4301 West Markham, University of Arkansas for Medical Sciences, AR 72205, USA
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
47
|
Chan KA, Jazwiec PA, Gohir W, Petrik JJ, Sloboda DM. Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss. Biol Reprod 2019; 98:664-682. [PMID: 29351580 DOI: 10.1093/biolre/ioy008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/15/2018] [Indexed: 11/14/2022] Open
Abstract
Reproductive abnormalities are included as health complications in offspring exposed to poor prenatal nutrition. We have previously shown in a rodent model that offspring born to nutrient restriction during pregnancy are born small, enter puberty early, and display characteristics of early ovarian aging as adults. The present study investigated whether key proteins involved in follicle recruitment and growth mediate ovarian follicle loss. Pregnant rats were randomized to a standard diet throughout pregnancy and lactation (CON), or a calorie-restricted (50% of control) diet (UN) during pregnancy. Offspring reproductive phenotype was investigated at postnatal days 4, 27, and 65. Maternal UN resulted in young adult (P65) irregular estrous cyclicity due to persistent estrus, a significant loss of antral follicles, corpora lutea, and an increase in atretic follicles. This decrease in growing follicles in UN offspring appears to be due to increased apoptosis as seen by immunopositive staining of pro-apoptotic factor CASP3 (caspase 3) in ovaries of young adult offspring. UN prepubertal offspring had reduced expression levels of Fshr in antral follicles, which may contribute to a decrease in PI3K/AKT activation evident as a decrease in pAKT immunolocalization in prepubertal antral follicles. Moreover, neonatal ovaries of UN offspring show decreased levels of immunopositive staining for AMHR2 (anti-mullerian hormone receptor 2). Collectively, these data demonstrate that maternal UN during pregnancy impacts ovarian function in offspring as early as P65 and provides a model for understanding the mechanisms driving early life UN-induced follicle loss and reproductive dysfunction.
Collapse
Affiliation(s)
- Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada.,The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
48
|
Transcriptomic profile of anterior pituitary cells of pigs is affected by adiponectin. Anim Reprod Sci 2019; 206:17-26. [DOI: 10.1016/j.anireprosci.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
|
49
|
Abundance of adiponectin mRNA transcript in the buffalo corpus luteum during the estrous cycle and effects on progesterone secretion in vitro. Anim Reprod Sci 2019; 208:106110. [PMID: 31405469 DOI: 10.1016/j.anireprosci.2019.106110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Adiponectin is an adipocyte derived cytokine implicated in energy homeostasis, insulin resistance and is involved in the regulation of reproduction both centrally and peripherally in animals. The present study was conducted to investigate adiponectin (ADIPOQ) and its receptors ADIPOR1 and ADIPOR2 abundance of mRNA transcript and protein in different stages of corpora lutea (CL) development during the estrous cycle of water buffalo and to determine the effect of adiponectin on cultured luteal cells of water buffalo (Bubalus bubalis). The results indicate adiponectin, ADIPOR1, and ADIPOR2 were present in buffalo corpora lutea (CL) throughout the estrous cycle. The abundance of adiponectin and its receptors was greater in the early and regressing and was less in mid- and late-stages of CL functionality. Adiponectin and its receptors were localized in the cytoplasm of small and large luteal cells. Furthermore, luteal cells were cultured in the in-vitro culture system and were treated with 1 and 10 μg/mL dose of adiponectin for 48 h. Adiponectin at both doses decreased (P < 0.05) progesterone (P4) secretion from cultured luteal cells and also suppressed the abundance of factors involved in P4productionv [Steroidogenic Acute Regulatory Protein (STAR), cytochrome P45011A1 (CYP11A1) and 3β-hydroxysteroid dehydrogenase (HSD3B1) at the 10 μg/mL dose as compared to adiponectin non-supplemented cells]. In conclusion, results of the present study indicate adiponectin and its receptors are present in bubaline CL and adiponectin inhibits P4 production in cultured luteal cells. The findings indicate adiponectin affects luteal dynamics and reproductive functions in water buffalo.
Collapse
|
50
|
Effects of recombinant goose adiponectin on steroid hormone secretion in Huoyan geese ovarian granulosa cells. Anim Reprod Sci 2019; 205:34-43. [DOI: 10.1016/j.anireprosci.2019.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
|