1
|
Xiong K, Xue S, Guo H, Dai Y, Ji C, Dong L, Zhang S. Ergothioneine: new functional factor in fermented foods. Crit Rev Food Sci Nutr 2024; 64:7505-7516. [PMID: 36891762 DOI: 10.1080/10408398.2023.2185766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Ergothioneine (EGT) is a high-value natural sulfur-containing amino acid and has been shown to possess extremely potent antioxidant and cytoprotective activities. At present, EGT has been widely used in food, functional food, cosmetics, medicine, and other industries, but its low yield is still an urgent problem to overcome. This review briefly introduced the biological activities and functions of EGT, and expounded its specific applications in food, functional food, cosmetic, and medical industries, introduced and compared the main production methods of EGT and respective biosynthetic pathways in different microorganisms. Furthermore, the use of genetic and metabolic engineering methods to improve EGT production was discussed. In addition, the incorporation of some food-derived EGT-producing strains into fermentation process will allow the EGT to act as a new functional factor in the fermented foods.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Liang Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Zhang H, Zhang Y, Zhao M, Zabed HM, Qi X. Fermentative Production of Ergothioneine by Exploring Novel Biosynthetic Pathway and Remodulating Precursor Synthesis Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14264-14273. [PMID: 38860833 DOI: 10.1021/acs.jafc.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ergothioneine (EGT) is a naturally occurring derivative of histidine with diverse applications in the medicine, cosmetic, and food industries. Nevertheless, its sustainable biosynthesis faces hurdles due to the limited biosynthetic pathways, complex metabolic network of precursors, and high cost associated with fermentation. Herein, efforts were made to address these limitations first by reconstructing a novel EGT biosynthetic pathway from Methylobacterium aquaticum in Escherichia coli and optimizing it through plasmid copy number. Subsequently, the supply of precursor amino acids was promoted by engineering the global regulator, recruiting mutant resistant to feedback inhibition, and blocking competitive pathways. These metabolic modifications resulted in a significant improvement in EGT production, increasing from 35 to 130 mg/L, representing a remarkable increase of 271.4%. Furthermore, an economical medium was developed by replacing yeast extract with corn steep liquor, a byproduct of wet milling of corn. Finally, the production of EGT reached 595 mg/L with a productivity of 8.2 mg/L/h by exploiting fed-batch fermentation in a 10 L bioreactor. This study paves the way for exploring and modulating a de novo biosynthetic pathway for efficient and low-cost fermentative production of EGT.
Collapse
Affiliation(s)
- Huifang Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
3
|
Xiong K, Guo H, Xue S, Liu M, Dai Y, Lin X, Zhang S. Production optimization of food functional factor ergothioneine in wild-type red yeast Rhodotorula mucilaginosa DL-X01. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4050-4057. [PMID: 38353320 DOI: 10.1002/jsfa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kexin Xiong
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mengyang Liu
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Maini Rekdal V, van der Luijt CRB, Chen Y, Kakumanu R, Baidoo EEK, Petzold CJ, Cruz-Morales P, Keasling JD. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat Commun 2024; 15:2099. [PMID: 38485948 PMCID: PMC10940619 DOI: 10.1038/s41467-024-46314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Casper R B van der Luijt
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
6
|
Liu M, Yang Y, Huang JW, Dai L, Zheng Y, Cheng S, He H, Chen CC, Guo RT. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis. Int J Biol Macromol 2024; 256:128428. [PMID: 38013086 DOI: 10.1016/j.ijbiomac.2023.128428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon‑selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingyu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shujing Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hailin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
7
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
8
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
9
|
Zhang L, Tang J, Feng M, Chen S. Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:671-679. [PMID: 36571834 DOI: 10.1021/acs.jafc.2c07859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ergothioneine (ERG) is an unusual sulfur-containing amino acid with antioxidant activity that can be synthesized by certain bacteria and fungi. Microbial fermentation is a promising method for ERG production. In this study, the bifunctional enzyme methyltransferase-sulfoxide synthase NcEgt1 from Neurospora crassa was truncated to obtain sulfoxide synthase TNcEgt1, which showed a higher expression level in Escherichia coli BL21(DE3). Then, the genes egtD encoding methyltransferase EgtD and egtE encoding C-S lyase EgtE from Mycobacterium smegmatis were cloned with TncEgt1 into E. coli BL21(DE3) to produce 70 mg/L ERG. To improve ERG production, TNcEgt1 and EgtD were modified, and the resulting mutants were screened with an established high-throughput method which could directly analyze the ERG content in culture broths. After several rounds of mutation and screening, the optimal mutant MD4 was obtained and produced 290 mg/L ERG. Furthermore, a fed-batch culture was conducted in a 5 L bioreactor. After optimizing the fermentation process, the ERG yield reached 5.4 g/L after 94 h of cultivation supplemented with amino acids and glycerol, which is the highest ERG yield reported to date. The results showed that ERG production was significantly improved by modifying the key enzymes, and the engineered strains constructed in this study have potential industrial application prospects.
Collapse
Affiliation(s)
- Luwen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Jiawei Tang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China
| | - Shaoxin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
10
|
Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B, Forster ER, Zhou W, Booth CJ, Shen A, Kranzusch PJ, Hatzios SK. A microbial transporter of the dietary antioxidant ergothioneine. Cell 2022; 185:4526-4540.e18. [PMID: 36347253 PMCID: PMC9691600 DOI: 10.1016/j.cell.2022.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Anna B Seminara
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Emily R Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
11
|
Wu P, Gu Y, Liao L, Wu Y, Jin J, Wang Z, Zhou J, Shaik S, Wang B. Coordination Switch Drives Selective C−S Bond Formation by the Non‐Heme Sulfoxide Synthases**. Angew Chem Int Ed Engl 2022; 61:e202214235. [DOI: 10.1002/anie.202214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yang Gu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yanfei Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jiaoyu Jin
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhanfeng Wang
- Center for Advanced Materials Research Beijing Normal University Zhuhai 519087 China
| | - Jiahai Zhou
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| |
Collapse
|
12
|
A Single Aspergillus fumigatus Gene Enables Ergothioneine Biosynthesis and Secretion by Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms231810832. [PMID: 36142753 PMCID: PMC9502471 DOI: 10.3390/ijms231810832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The naturally occurring sulphur-containing histidine derivative, ergothioneine (EGT), exhibits potent antioxidant properties and has been proposed to confer human health benefits. Although it is only produced by select fungi and prokaryotes, likely to protect against environmental stress, the GRAS organism Saccharomyces cerevisiae does not produce EGT naturally. Herein, it is demonstrated that the recombinant expression of a single gene, Aspergillus fumigatus egtA, in S. cerevisiae results in EgtA protein presence which unexpectedly confers complete EGT biosynthetic capacity. Both High Performance Liquid Chromatography (HPLC) and LC−mass spectrometry (MS) analysis were deployed to detect and confirm EGT production in S. cerevisiae. The localisation and quantification of the resultant EGT revealed a significantly (p < 0.0001) larger quantity of EGT was extracellularly present in culture supernatants than intracellularly accumulated in 96 h yeast cultures. Methionine addition to cultures improved EGT production. The additional expression of two candidate cysteine desulfurases from A. fumigatus was thought to be required to complete EGT biosynthesis, namely AFUA_2G13295 and AFUA_3G14240, termed egt2a and egt2b in this study. However, the co-expression of egtA and egt2a in S. cerevisiae resulted in a significant decrease in the observed EGT levels (p < 0.05). The AlphaFold prediction of A. fumigatus EgtA 3-Dimensional structure illuminates the bidomain structure of the enzyme and the opposing locations of both active sites. Overall, we clearly show that recombinant S. cerevisiae can biosynthesise and secrete EGT in an EgtA-dependent manner which presents a facile means of producing EGT for biotechnological and biomedical use.
Collapse
|
13
|
Chen Z, He Y, Wu X, Wang L, Dong Z, Chen X. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway. Microb Cell Fact 2022; 21:76. [PMID: 35525939 PMCID: PMC9077841 DOI: 10.1186/s12934-022-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Ergothioneine (ERG) is a potent histidine-derived antioxidant that confers health-promoting effects. Only certain bacteria and fungi can biosynthesize ERG, but the ERG productivity in natural producers is low. ERG overproduction through genetic engineering represents an efficient and cost-effective manufacturing strategy. Results Here, we showed that Trichoderma reesei can synthesize ERG during conidiogenesis and hyphal growth. Co-expression of two ERG biosynthesis genes (tregt1 and tregt2) from T. reesei enabled E. coli to generate 70.59 mg/L ERG at the shaking flask level after 48 h of whole-cell biocatalysis, whereas minor amounts of ERG were synthesized by the recombinant E. coli strain bearing only the tregt1 gene. By fed-batch fermentation, the extracellular ERG production reached 4.34 g/L after 143 h of cultivation in a 2-L jar fermenter, which is the highest level of ERG production reported thus far. Similarly, ERG synthesis also occurred in the E. coli strain engineered with the two well-characterized genes from N. crassa and the ERG productivity was up to 4.22 g/L after 143 h of cultivation under the above-mentioned conditions. Conclusions Our results showed that the overproduction of ERG in E. coli could be achieved through two-enzymatic steps, demonstrating high efficiency of the fungal ERG biosynthetic pathway. Meanwhile, this work offers a more promising approach for the industrial production of ERG. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01807-3.
Collapse
Affiliation(s)
- Zhihui Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyu Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Cordell GA, Lamahewage SNS. Ergothioneine, Ovothiol A, and Selenoneine-Histidine-Derived, Biologically Significant, Trace Global Alkaloids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092673. [PMID: 35566030 PMCID: PMC9103826 DOI: 10.3390/molecules27092673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
Abstract
The history, chemistry, biology, and biosynthesis of the globally occurring histidine-derived alkaloids ergothioneine (10), ovothiol A (11), and selenoneine (12) are reviewed comparatively and their significance to human well-being is discussed.
Collapse
Affiliation(s)
- Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Sujeewa N. S. Lamahewage
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
- Department of Chemistry, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
15
|
Qiu Y, Chen Z, Su E, Wang L, Sun L, Lei P, Xu H, Li S. Recent Strategies for the Biosynthesis of Ergothioneine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13682-13690. [PMID: 34757754 DOI: 10.1021/acs.jafc.1c05280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ergothioneine (EGT) is a unique naturally occurring amino acid that is usually biosynthesized by bacteria and fungi. As a food-derived antioxidant and cytoprotectant, it has several physiological benefits and has a wide range of applications in food, medicine, and cosmetics. Traditional production of EGT is mainly through biological extraction or chemical synthesis; however, these methods are inefficient, making large-scale production to meet the growing market demand difficult. Nowadays, the rapid development of synthetic biology has greatly accelerated the research on the EGT production by microbial fermentation. In this paper, the biological characteristics, applications, biosynthesis, separation, and detection methods of EGT were fully reviewed. Furthermore, the approaches and challenges for engineering microbial cells to efficiently synthesize EGT were also discussed. This work provides new ideas and future research potentials in EGT production.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, P. R. China
| | - Zhonglin Chen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Libin Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
16
|
Functional Analysis of Keto-Acid Reductoisomerase ILVC in the Entomopathogenic Fungus Metarhizium robertsii. J Fungi (Basel) 2021; 7:jof7090737. [PMID: 34575775 PMCID: PMC8471054 DOI: 10.3390/jof7090737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Ketol-acid reductoisomerase (ILVC) is the second enzyme in the branched-chain amino acid (BCAA) biosynthesis, which regulates many physiological activities in a variety of organisms from bacteria to fungi and plants. In this work, function mechanisms of ILVC in Metarhizium robertsii Metchnikoff (Hypocreales: Clavicipitaceae) were explored with site-directed mutagenesis, reductase activity assays and transcriptomics analysis. The reductase activity assays showed that ILVC from phytopathogenic fungi exhibited significantly higher activities than those from entomopathogenic fungi but lower than those from yeast. Site-directed mutagenesis and enzymatic activities of MrILVC with different active-site mutants (Arg-113, Ser-118, Asp-152, Asp-260, and Glu-264) confirmed that active sites of MrILVC are conserved with plant and bacterial ILVCs. Deleting MrilvC causes the complete failures of vegetative growth and conidial germination, feeding with branched-chain amino acids (BCAAs) recovers the fungal growth but not conidial germination, while both characteristics are restored when supplemented with yeast extract. Compared to ΔMrilvC cultured in czapek agar (CZA), plenty of genes involved in the biosynthesis of antibiotics and amino acids were up- or down-regulated in the wild type or ΔMrilvC feeding with either BCAAs or yeast extract. Further analysis showed some genes, such as catalase A, participate in mycelial growth and conidial germination was down-regulated in ΔMrilvC from CZA, revealing that MrILVC might control the fungal development by gene regulation and BCAAs or yeast extract could play partial roles of MrILVC. This study will advance our understanding of ILVC function mechanisms in fungi.
Collapse
|
17
|
Han Y, Tang X, Zhang Y, Hu X, Ren LJ. The current status of biotechnological production and the application of a novel antioxidant ergothioneine. Crit Rev Biotechnol 2021; 41:580-593. [PMID: 33550854 DOI: 10.1080/07388551.2020.1869692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ergothioneine is a sulfur-containing histidine derivative, that possessesexcellent antioxidant activity and has been used in the food and cosmetics industries. It plays a significant role in anti-aging and the prevention of various diseases. This review will briefly introduce the functions and applications of ergothioneine, elaborate the biosynthetic pathways of ergothioneine and describe several strategies to increase the production of ergothioneine. Then the efficient extraction and detection methods of ergothioneine will be presented. Finally, several proposals are put forward to increase the yield of ergothioneine, and the development prospects of ergothioneine will be discussed.
Collapse
Affiliation(s)
- Yiwen Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiuyang Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yuting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China.,Jiangsu TianKai Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
19
|
Maurer A, Seebeck FP. Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate. Chembiochem 2020; 21:2908-2911. [PMID: 32614492 DOI: 10.1002/cbic.202000232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Ergothioneine has emerged as a crucial cytoprotectant in the pathogenic lifestyle of Mycobacterium tuberculosis. Production of this antioxidant from primary metabolites may be regulated by phosphorylation of Thr213 in the active site of the methyltransferase EgtD. The structure of mycobacterial EgtD suggests that this post-translational modification would require a large-scale change in conformation to make the active-site residue accessible to a protein kinase. In this report, we show that, under in vitro conditions, EgtD is not a substrate of protein kinase PknD.
Collapse
Affiliation(s)
- Alice Maurer
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
20
|
Frawley D, Bayram Ö. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genet Biol 2020; 144:103469. [PMID: 32950720 DOI: 10.1016/j.fgb.2020.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are highly conserved from yeast to human and are required for the regulation of a multitude of biological processes in eukaryotes. A pentameric MAPK pathway known as the Fus3 pheromone module was initially characterised in Saccharomyces cerevisiae and was shown to regulate cell fusion and sexual development. Individual orthologous pheromone module genes have since been found to be highly conserved in fungal genomes and have been shown to regulate a diverse array of cellular responses, such as cell growth, asexual and sexual development, secondary metabolite production and pathogenicity. However, information regarding the assembly and structure of orthologous pheromone modules, as well as the mechanisms of signalling and their biological significance is limited, specifically in filamentous fungal species. Recent studies have provided insight on the utilization of the pheromone module as a central signalling hub for the co-ordinated regulation of fungal development and secondary metabolite production. Various proteins of this pathway are also known to regulate reproduction and virulence in a range of plant pathogenic fungi. In this review, we discuss recent findings that help elucidate the structure of the pheromone module pathway in a myriad of fungal species and its implications in the control of fungal growth, development, secondary metabolism and pathogenicity.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
21
|
Flückger S, Igareta NV, Seebeck FP. Convergent Evolution of Fungal Cysteine Dioxygenases. Chembiochem 2020; 21:3082-3086. [PMID: 32543095 DOI: 10.1002/cbic.202000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.
Collapse
Affiliation(s)
- Sebastian Flückger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Nico V Igareta
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
22
|
Mavi PS, Singh S, Kumar A. Reductive Stress: New Insights in Physiology and Drug Tolerance of Mycobacterium. Antioxid Redox Signal 2020; 32:1348-1366. [PMID: 31621379 DOI: 10.1089/ars.2019.7867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance:Mycobacterium tuberculosis (Mtb) encounters reductive stress during its infection cycle. Notably, host-generated protective responses, such as acidic pH inside phagosomes and lysosomes, exposure to glutathione in alveolar hypophase (i.e., a thin liquid lining consisting of surfactant and proteins in the alveolus), and hypoxic environments inside granulomas are associated with the accumulation of reduced cofactors, such as nicotinamide adenine dinucleotide (reduced form), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (reduced form), and nonprotein thiols (e.g., mycothiol), leading to reductive stress in Mtb cells. Dissipation of this reductive stress is important for survival of the bacterium. If reductive stress is not dissipated, it leads to generation of reactive oxygen species, which may be fatal for the cells. Recent Advances: This review focuses on mechanisms utilized by mycobacteria to sense and respond to reductive stress. Importantly, exposure of Mtb cells to reductive stress leads to growth inhibition, altered metabolism, modulation of virulence, and drug tolerance. Mtb is equipped with thiol buffering systems of mycothiol and ergothioneine to protect itself from various redox stresses. These systems are complemented by thioredoxin and thioredoxin reductase (TR) systems for maintaining cellular redox homeostasis. A diverse array of sensors is used by Mycobacterium for monitoring its intracellular redox status. Upon sensing reductive stress, Mtb uses a flexible and robust metabolic system for its dissipation. Branched electron transport chain allows Mycobacterium to function with different terminal electron acceptors and modulate proton motive force to fulfill energy requirements under diverse scenarios. Interestingly, Mtb utilizes variations in the tricarboxylic cycle and a number of dehydrogenases to dissipate reductive stress. Upon prolonged exposure to reductive stress, Mtb utilizes biosynthesis of storage and virulence lipids as a dissipative mechanism. Critical Issues: The mechanisms utilized by Mycobacterium for sensing and tackling reductive stress are not well characterized. Future Directions: The precise role of thiol buffering and TR systems in neutralizing reductive stress is not well defined. Genetic systems that respond to metabolic reductive stress and thiol reductive stress need to be mapped. Genetic screens could aid in identification of such systems. Given that management of reductive stress is critical for both actively replicating and persister mycobacteria, an improved understanding of the mechanisms used by mycobacteria for dissipation of reductive stress may lead to identification of vulnerable choke points that could be targeted for killing Mtb in vivo.
Collapse
Affiliation(s)
- Parminder Singh Mavi
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Shweta Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashwani Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
23
|
Goncharenko KV, Flückiger S, Liao C, Lim D, Stampfli AR, Seebeck FP. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases. Chemistry 2020; 26:1328-1334. [PMID: 31545545 DOI: 10.1002/chem.201903898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 01/03/2023]
Abstract
Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon-sulfur (C-S) and sulfur-oxygen (S-O) bond formation as well as carbon-hydrogen (C-H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C-S and C-Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.
Collapse
Affiliation(s)
- Kristina V Goncharenko
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Sebastian Flückiger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Cangsong Liao
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - David Lim
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Anja R Stampfli
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
24
|
Traynor AM, Sheridan KJ, Jones GW, Calera JA, Doyle S. Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications. Front Microbiol 2019; 10:2859. [PMID: 31921039 PMCID: PMC6923255 DOI: 10.3389/fmicb.2019.02859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Fungal sulfur uptake is required for incorporation into the sidechains of the amino acids cysteine and methionine, and is also essential for the biosynthesis of the antioxidant glutathione (GSH), S-adenosylmethionine (SAM), the key source of methyl groups in cellular transmethylation reactions, and S-adenosylhomocysteine (SAH). Biosynthesis of redox-active gliotoxin in the opportunistic fungal pathogen Aspergillus fumigatus has been elucidated over the past 10 years. Some fungi which produce gliotoxin-like molecular species have undergone unexpected molecular rewiring to accommodate this high-risk biosynthetic process. Specific disruption of gliotoxin biosynthesis, via deletion of gliK, which encodes a γ-glutamyl cyclotransferase, leads to elevated intracellular antioxidant, ergothioneine (EGT), levels, and confirms crosstalk between the biosynthesis of both sulfur-containing moieties. Gliotoxin is ultimately formed by gliotoxin oxidoreductase GliT-mediated oxidation of dithiol gliotoxin (DTG). In fact, DTG is a substrate for both GliT and a bis-thiomethyltransferase, GtmA. GtmA converts DTG to bisdethiobis(methylthio)gliotoxin (BmGT), using 2 mol SAM and resultant SAH must be re-converted to SAM via the action of the Methyl/Met cycle. In the absence of GliT, DTG fluxes via GtmA to BmGT, which results in both SAM depletion and SAH overproduction. Thus, the negative regulation of gliotoxin biosynthesis via GtmA must be counter-balanced by GliT activity to avoid Methyl/Met cycle dysregulation, SAM depletion and trans consequences on global cellular biochemistry in A. fumigatus. DTG also possesses potent Zn2+ chelation properties which positions this sulfur-containing metabolite as a putative component of the Zn2+ homeostasis system within fungi. EGT plays an essential role in high-level redox homeostasis and its presence requires significant consideration in future oxidative stress studies in pathogenic filamentous fungi. In certain filamentous fungi, sulfur is additionally indirectly required for the formation of EGT and the disulfide-bridge containing non-ribosomal peptide, gliotoxin, and related epipolythiodioxopiperazines. Ultimately, interference with emerging sulfur metabolite functionality may represent a new strategy for antifungal drug development.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - José A Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
25
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
26
|
Zheng S, Loreto R, Smith P, Patterson A, Hughes D, Wang L. Specialist and Generalist Fungal Parasites Induce Distinct Biochemical Changes in the Mandible Muscles of Their Host. Int J Mol Sci 2019; 20:E4589. [PMID: 31533250 PMCID: PMC6769763 DOI: 10.3390/ijms20184589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
Some parasites have evolved the ability to adaptively manipulate host behavior. One notable example is the fungus Ophiocordyceps unilateralis sensu lato, which has evolved the ability to alter the behavior of ants in ways that enable fungal transmission and lifecycle completion. Because host mandibles are affected by the fungi, we focused on understanding changes in the metabolites of muscles during behavioral modification. We used High-Performance Liquid Chromatography-Mass/Mass (HPLC-MS/MS) to detect the metabolite difference between controls and O. unilateralis-infected ants. There was a significant difference between the global metabolome of O. unilateralis-infected ants and healthy ants, while there was no significant difference between the Beauveria bassiana treatment ants group compared to the healthy ants. A total of 31 and 16 of metabolites were putatively identified from comparisons of healthy ants with O. unilateralis-infected ants and comparisons of B. bassiana with O. unilateralis-infected samples, respectively. This result indicates that the concentrations of sugars, purines, ergothioneine, and hypoxanthine were significantly increased in O. unilateralis-infected ants in comparison to healthy ants and B. bassiana-infected ants. This study provides a comprehensive metabolic approach for understanding the interactions, at the level of host muscles, between healthy ants and fungal parasites.
Collapse
Affiliation(s)
- Shanshan Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- College of Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Raquel Loreto
- Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil.
| | - Philip Smith
- Metabolomics Core Facility, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Andrew Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - David Hughes
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Liande Wang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- College of Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Bayram ÖS, Dettmann A, Karahoda B, Moloney NM, Ormsby T, McGowan J, Cea-Sánchez S, Miralles-Durán A, Brancini GTP, Luque EM, Fitzpatrick DA, Cánovas D, Corrochano LM, Doyle S, Selker EU, Seiler S, Bayram Ö. Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa. Genetics 2019; 212:691-710. [PMID: 31068340 PMCID: PMC6614901 DOI: 10.1534/genetics.119.302277] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/04/2019] [Indexed: 01/24/2023] Open
Abstract
Neurospora crassa is an established reference organism to investigate carotene biosynthesis and light regulation. However, there is little evidence of its capacity to produce secondary metabolites. Here, we report the role of the fungal-specific regulatory velvet complexes in development and secondary metabolism (SM) in N. crassa Three velvet proteins VE-1, VE-2, VOS-1, and a putative methyltransferase LAE-1 show light-independent nucleocytoplasmic localization. Two distinct velvet complexes, a heterotrimeric VE-1/VE-2/LAE-1 and a heterodimeric VE-2/VOS-1 are found in vivo The heterotrimer-complex, which positively regulates sexual development and represses asexual sporulation, suppresses siderophore coprogen production under iron starvation conditions. The VE-1/VE-2 heterodimer controls carotene production. VE-1 regulates the expression of >15% of the whole genome, comprising mainly regulatory and developmental features. We also studied intergenera functions of the velvet complex through complementation of Aspergillus nidulans veA, velB, laeA, vosA mutants with their N. crassa orthologs ve-1, ve-2, lae-1, and vos-1, respectively. Expression of VE-1 and VE-2 in A. nidulans successfully substitutes the developmental and SM functions of VeA and VelB by forming two functional chimeric velvet complexes in vivo, VelB/VE-1/LaeA and VE-2/VeA/LaeA, respectively. Reciprocally, expression of veA restores the phenotypes of the N. crassa ve-1 mutant. All N. crassa velvet proteins heterologously expressed in A. nidulans are localized to the nuclear fraction independent of light. These data highlight the conservation of the complex formation in N. crassa and A. nidulans However, they also underline the intergenera similarities and differences of velvet roles according to different life styles, niches and ontogenetic processes.
Collapse
Affiliation(s)
| | - Anne Dettmann
- Institute for Biology II, Molecular Plant Physiology, Albert-Ludwigs-University 79104 Freiburg, Germany
| | - Betim Karahoda
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Nicola M Moloney
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Tereza Ormsby
- Institute of Molecular Biology, University of Oregon, Eugene, 97403 Oregon
| | - Jamie McGowan
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Sara Cea-Sánchez
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Guilherme T P Brancini
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Eva M Luque
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - David Cánovas
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Luis M Corrochano
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, 97403 Oregon
| | - Stephan Seiler
- Institute for Biology II, Molecular Plant Physiology, Albert-Ludwigs-University 79104 Freiburg, Germany
| | - Özgür Bayram
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
- Human Health Research Institute, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| |
Collapse
|
28
|
The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:44-55. [PMID: 31153518 DOI: 10.1016/j.tube.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Low molecular weight (LMW) thiols are molecules with a functional sulfhydryl group that enable them to detoxify reactive oxygen species, reactive nitrogen species and other free radicals. Their roles range from their ability to modulate the immune system to their ability to prevent damage of biological molecules such as DNA and proteins by protecting against oxidative, nitrosative and acidic stress. LMW thiols are synthesized and found in both eukaryotes and prokaryotes. Due to their beneficial role to both eukaryotes and prokaryotes, their specific functions need to be elucidated, most especially in pathogenic prokaryotes such as Mycobacterium tuberculosis (M.tb), in order to provide a rationale for targeting their biosynthesis for drug development. Ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC) are LMW thiols that have been shown to interplay to protect M.tb against cellular stress. Though ERG, MSH and GGC seem to have overlapping functions, studies are gradually revealing their unique physiological roles. Understanding their unique physiological role during the course of tuberculosis (TB) infection, would pave the way for the development of drugs that target their biosynthetic pathway. This review identifies the knowledge gap in the unique physiological roles of LMW thiols and proposes their mechanistic roles based on previous studies. In addition, it gives an update on identified inhibitors of their biosynthetic enzymes.
Collapse
|
29
|
Stampfli AR, Goncharenko KV, Meury M, Dubey BN, Schirmer T, Seebeck FP. An Alternative Active Site Architecture for O 2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum. J Am Chem Soc 2019; 141:5275-5285. [PMID: 30883103 DOI: 10.1021/jacs.8b13023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.
Collapse
Affiliation(s)
- Anja R Stampfli
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland.,Focal Area Structural Biology and Biophysics, Biozentrum , University of Basel , Basel 4056 , Switzerland
| | - Kristina V Goncharenko
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland
| | - Marcel Meury
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland
| | - Badri N Dubey
- Focal Area Structural Biology and Biophysics, Biozentrum , University of Basel , Basel 4056 , Switzerland
| | - Tilman Schirmer
- Focal Area Structural Biology and Biophysics, Biozentrum , University of Basel , Basel 4056 , Switzerland
| | - Florian P Seebeck
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland
| |
Collapse
|
30
|
Takusagawa S, Satoh Y, Ohtsu I, Dairi T. Ergothioneine production with Aspergillus oryzae. Biosci Biotechnol Biochem 2018; 83:181-184. [PMID: 30286703 DOI: 10.1080/09168451.2018.1527210] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To establish a reliable and practical ergothioneine (ERG) supply, we employed fermentative ERG production using Aspergillus oryzae, a fungus used for food production. We heterologously overexpressed the egt-1 and -2 genes of Neurospora crassa in A. oryzae and succeeded in producing ERG (231.0 mg/kg of media, which was 20 times higher than the wild type). Abbreviations: ERG: ergothioneine; HER: hercynine; Cys-HER: hercynylcysteine-sulfoxide; SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; l-His: l-histidine; l-Cys: l-cysteine; LC-ESI-MS: liquid chromatography-electrospray ionization-mass spectrometry.
Collapse
Affiliation(s)
- Shun Takusagawa
- a Graduate School of Chemical Science and Engineering , Hokkaido University , Sapporo , Hokkaido , Japan
| | - Yasuharu Satoh
- b Graduate School of Engineering , Hokkaido University , Sapporo, Hokkaido , Japan
| | - Iwao Ohtsu
- c Innovation Medical Research Institute , University of Tsukuba , Tsukuba, Ibaraki , Japan
| | - Tohru Dairi
- b Graduate School of Engineering , Hokkaido University , Sapporo, Hokkaido , Japan
| |
Collapse
|
31
|
Naowarojna N, Huang P, Cai Y, Song H, Wu L, Cheng R, Li Y, Wang S, Lyu H, Zhang L, Zhou J, Liu P. In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C–S Lyase and Methyltransferase Reactions. Org Lett 2018; 20:5427-5430. [DOI: 10.1021/acs.orglett.8b02332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Pei Huang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200032, China
| | - Yujuan Cai
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Heng Song
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Lian Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yan Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu Wang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Huijue Lyu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Lixin Zhang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
32
|
Misson L, Burn R, Vit A, Hildesheim J, Beliaeva MA, Blankenfeldt W, Seebeck FP. Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD. ACS Chem Biol 2018; 13:1333-1342. [PMID: 29658702 DOI: 10.1021/acschembio.8b00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.
Collapse
Affiliation(s)
- Laëtitia Misson
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Reto Burn
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Allegra Vit
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Julia Hildesheim
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Mariia A. Beliaeva
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Florian P. Seebeck
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| |
Collapse
|
33
|
Naowarojna N, Cheng R, Chen L, Quill M, Xu M, Zhao C, Liu P. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry 2018; 57:3309-3325. [PMID: 29589901 DOI: 10.1021/acs.biochem.8b00239] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.
Collapse
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Ronghai Cheng
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Li Chen
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Melissa Quill
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Meiling Xu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Changming Zhao
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
34
|
Chen L, Naowarojna N, Song H, Wang S, Wang J, Deng Z, Zhao C, Liu P. Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation. J Am Chem Soc 2018; 140:4604-4612. [PMID: 29544051 PMCID: PMC5884719 DOI: 10.1021/jacs.7b13628] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ovothiol is a histidine thiol derivative. The biosynthesis of ovothiol involves an extremely efficient trans-sulfuration strategy. The nonheme iron enzyme OvoA catalyzed oxidative coupling between cysteine and histidine is one of the key steps. Besides catalyzing the oxidative coupling between cysteine and histidine, OvoA also catalyzes the oxidation of cysteine to cysteine sulfinic acid (cysteine dioxygenase activity). Thus far, very little mechanistic information is available for OvoA-catalysis. In this report, we measured the kinetic isotope effect (KIE) in OvoA-catalysis using the isotopically sensitive branching method. In addition, by replacing an active site tyrosine (Tyr417) with 2-amino-3-(4-hydroxy-3-(methylthio)phenyl)propanoic acid (MtTyr) through the amber suppressor mediated unnatural amino acid incorporation method, the two OvoA activities (oxidative coupling between cysteine and histidine, and cysteine dioxygenase activity) can be modulated. These results suggest that the two OvoA activities branch out from a common intermediate and that the active site tyrosine residue plays some key roles in controlling the partitioning between these two pathways.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Heng Song
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Shu Wang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
35
|
Abstract
SIGNIFICANCE L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments. In particular, ergothioneine enables pathogenic microbes, such as Mycobacterium tuberculosis (Mtb), to withstand hostile environments within the host to establish infection. Recent Advances: Ergothioneine has been reported to maintain bioenergetic homeostasis in Mtb and protect Mtb against oxidative stresses, thereby enhancing the virulence of Mtb in a mouse model. Furthermore, ergothioneine augments the resistance of Mtb to current frontline anti-TB drugs. Recently, an opportunistic fungus, Aspergillus fumigatus, which infects immunocompromised individuals, has been found to produce ergothioneine, which is important in conidial health and germination, and contributes to the fungal resistance against redox stresses. CRITICAL ISSUES The molecular mechanisms of the functions of ergothioneine in microbial physiology and pathogenesis are poorly understood. It is currently not known if ergothioneine is used in detoxification or antioxidant enzymatic pathways. As ergothioneine is involved in bioenergetic and redox homeostasis and antibiotic susceptibility of Mtb, it is of utmost importance to advance our understanding of these mechanisms. FUTURE DIRECTIONS A clear understanding of the role of ergothioneine in microbes will advance our knowledge of how this thione enhances microbial virulence and resistance to the host's defense mechanisms to avoid complete eradication. Antioxid. Redox Signal. 28, 431-444.
Collapse
Affiliation(s)
| | - Krishna C Chinta
- 2 Deptartment of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Vineel P Reddy
- 2 Deptartment of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adrie J C Steyn
- 1 Africa Health Research Institute , Durban, South Africa .,2 Deptartment of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama.,3 UAB Center for Free Radical Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
36
|
Tang RMY, Cheah IKM, Yew TSK, Halliwell B. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci Rep 2018; 8:1601. [PMID: 29371632 PMCID: PMC5785509 DOI: 10.1038/s41598-018-20021-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
L-ergothioneine (ET) is a diet-derived amino acid that accumulates at high concentrations in animals and humans. Numerous studies have highlighted its antioxidant abilities in vitro, and possible cytoprotective capabilities in vivo. We investigated the uptake and distribution of ET in various organs by a highly sensitive and specific liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) technique, both before and after oral administration of pure ET (35 and 70 mg/kg/day for 1, 7, and 28 days) to male C57BL6J mice. ET primarily concentrates in the liver and whole blood, and also in spleen, kidney, lung, heart, intestines, eye, and brain tissues. Strong correlations were found between ET and its putative metabolites - hercynine, ET-sulfonate (ET-SO3H), and S-methyl ET. Hercynine accumulates in the brain after prolonged ET administration. This study demonstrates the uptake and distribution of ET and provides a foundation for future studies with ET to target oxidative damage in a range of tissues in human diseases.
Collapse
Affiliation(s)
- Richard Ming Yi Tang
- National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Irwin Kee-Mun Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore
| | - Terry Shze Keong Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
37
|
Sao Emani C, Williams M, Van Helden P, Taylor M, Wiid I, Baker B. Gamma-glutamylcysteine protects ergothioneine-deficient Mycobacterium tuberculosis mutants against oxidative and nitrosative stress. Biochem Biophys Res Commun 2018; 495:174-178. [DOI: 10.1016/j.bbrc.2017.10.163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/29/2017] [Indexed: 11/15/2022]
|
38
|
Abstract
Ergothioneine (ESH), the betaine of 2-mercapto-L-histidine, is a water-soluble naturally occurring amino acid with antioxidant properties. ESH accumulates in several human and animal tissues up to millimolar concentration through its high affinity transporter, namely the organic cation transporter 1 (OCTN1). ESH, first isolated from the ergot fungus (Claviceps purpurea), is synthesized only by Actinomycetales and non-yeast-like fungi. Plants absorb ESH via symbiotic associations between their roots and soil fungi, whereas mammals acquire it solely from dietary sources. Numerous evidence demonstrated the antioxidant and cytoprotective effects of ESH, including protection against cardiovascular diseases, chronic inflammatory conditions, ultraviolet radiation damages, and neuronal injuries. Although more than a century after its discovery has gone by, our understanding on the in vivo ESH mechanism is limited and this compound still intrigues researchers. However, recent evidence about differences in chemical redox behavior between ESH and alkylthiols, such as cysteine and glutathione, has opened new perspectives on the role of ESH during oxidative damage. In this short review, we discuss the role of ESH in the complex machinery of the cellular antioxidant defense focusing on the current knowledge on its chemical mechanism of action in the protection against cardiovascular disease.
Collapse
|
39
|
Liao C, Seebeck FP. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. Chembiochem 2017; 18:2115-2118. [DOI: 10.1002/cbic.201700354] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Cangsong Liao
- Department for Chemistry; University of Basel; Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry; University of Basel; Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
40
|
Affiliation(s)
- Reto Burn
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Laëtitia Misson
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Meury
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
41
|
Burn R, Misson L, Meury M, Seebeck FP. Anaerobic Origin of Ergothioneine. Angew Chem Int Ed Engl 2017; 56:12508-12511. [DOI: 10.1002/anie.201705932] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Reto Burn
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Laëtitia Misson
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Meury
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
42
|
Faponle AS, Seebeck FP, de Visser SP. Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. J Am Chem Soc 2017; 139:9259-9270. [PMID: 28602090 DOI: 10.1021/jacs.7b04251] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sulfoxide synthase EgtB represents a unique family of nonheme iron enzymes that catalyze the formation of a C-S bond between N-α-trimethyl histidine and γ-glutamyl cysteine, which is the key step in the biosynthesis of ergothioneine, an important amino acid related to aging. A controversy has arisen regarding its catalytic mechanism related to the function of the active-site Tyr377 residue. The biosynthesis of ergothioneine in EgtB shows structural similarities to cysteine dioxygenase which transfers two oxygen atoms to the thiolate group of cysteine. The question, therefore, is how do EgtB enzymes catalyze the C-S bond-formation reaction, while also preventing a dioxygenation of its cysteinate substrate? In this work we present a quantum mechanics/molecular mechanics study into the mechanism of sulfoxide synthase enzymes as compared to cysteine dioxygenase enzymes and present pathways for both reaction channels in EgtB. We show that EgtB contains a conserved tyrosine residue that reacts via proton-coupled electron transfer with the iron(III)-superoxo species and creates an iron(III)-hydroperoxo intermediate, thereby preventing the possible thiolate dioxygenation side reaction. The nucleophilic C-S bond-formation step happens subsequently concomitant to relay of the proton of the iron(II)-hydroperoxo back to Tyr377. This is the rate-determining step in the reaction cycle and is followed by hydrogen-atom transfer from the CE1-H group of trimethyl histidine substrate to iron(II)-superoxo. In the final step, a quick and almost barrierless sulfoxidation leads to the sulfoxide product complexes. The work highlights a unique machinery and active-site setup of the enzyme that drives the sulfoxide synthase reaction.
Collapse
Affiliation(s)
- Abayomi S Faponle
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Florian P Seebeck
- Department for Chemistry, University of Basel , St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
43
|
Abstract
Synthetic methods inspired by Nature often offer unique advantages including mild conditions and biocompatibility with aqueous media. Inspired by an ergothioneine biosynthesis protein EgtB, a mononuclear non-haem iron enzyme capable of catalysing the C-S bond formation and sulfoxidation, herein, we discovered a mild and metal-free C-H sulfenylation/intramolecular rearrangement cascade reaction employing an internally oxidizing O-N bond as a directing group. Our strategy accommodates a variety of oxyamines with good site selectivity and intrinsic oxidative properties. Combining an O-N bond with an X-S bond generates a C-S bond and an S=N bond rapidly. The newly discovered cascade reaction showed excellent chemoselectivity and a wide substrate scope for both oxyamines and sulfenylation reagents. We demonstrated the biocompatibility of the C-S bond coupling reaction by applying a coumarin-based fluorogenic probe in bacterial lysates. Finally, the C-S bond coupling reaction enabled the first fluorogenic formation of phospholipids, which self-assembled to fluorescent vesicles in situ.
Collapse
|
44
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
45
|
Sheridan KJ, Lechner BE, Keeffe GO, Keller MA, Werner ER, Lindner H, Jones GW, Haas H, Doyle S. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus. Sci Rep 2016; 6:35306. [PMID: 27748436 PMCID: PMC5066259 DOI: 10.1038/srep35306] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Grainne O' Keeffe
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Markus A Keller
- Division of Biological Chemistry, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
46
|
Singh AR, Strankman A, Orkusyan R, Purwantini E, Rawat M. Lack of mycothiol and ergothioneine induces different protective mechanisms in Mycobacterium smegmatis. Biochem Biophys Rep 2016; 8:100-106. [PMID: 28220152 PMCID: PMC5315357 DOI: 10.1016/j.bbrep.2016.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium smegmatis contains the low molecular weight thiols, mycothiol (MSH) and ergothioneine (ESH). Examination of transposon mutants disrupted in mshC and egtA, involved in the biosynthesis of MSH and ESH respectively, demonstrated that both mutants were sensitive to oxidative, alkylating, and metal stress. However, the mshC mutant exhibited significantly more protein carbonylation and lipid peroxidation than wildtype, while the egtA mutant had less protein and lipid damage than wildtype. We further show that Ohr, KatN, and AhpC, involved in protection against oxidative stress, are upregulated in the egtA mutant. In the mshC mutant, an Usp and a putative thiol peroxidase are upregulated. In addition, mutants lacking MSH also contained higher levels of Coenzyme F420 as compared to wildtype and two Coenzyme F420 dependent enzymes were found to be upregulated. These results indicate that lack of MSH and ESH result in induction of different mechanisms for protecting against oxidative stress.
Collapse
Affiliation(s)
| | - Andrew Strankman
- Department of Biology, California State University, Fresno, Fresno, CA 93740, United States
| | - Ruzan Orkusyan
- Department of Biology, California State University, Fresno, Fresno, CA 93740, United States
| | - Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Mamta Rawat
- Department of Biology, California State University, Fresno, Fresno, CA 93740, United States
- Corresponding author.
| |
Collapse
|
47
|
Halliwell B, Cheah IK, Drum CL. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis. Biochem Biophys Res Commun 2016; 470:245-250. [PMID: 26772879 DOI: 10.1016/j.bbrc.2015.12.124] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022]
Abstract
Ergothioneine (ET) is a diet-derived, thiolated derivative of histidine with antioxidant properties. Although ET is produced only by certain fungi and bacteria, it can be found at high concentrations in certain human and animal tissues and is absorbed through a specific, high affinity transporter (OCTN1). In liver, heart, joint and intestinal injury, elevated ET concentrations have been observed in injured tissues. The physiological role of ET remains unclear. We thus review current literature to generate a specific hypothesis: that the accumulation of ET in vivo is an adaptive mechanism, involving the regulated uptake and concentration of an exogenous natural compound to minimize oxidative damage.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| | - Irwin K Cheah
- Department of Biochemistry, National University of Singapore, Singapore
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Translational Laboratory in Genetic Medicine, 8A Biomedical Grove, Immunos, Level 5, 138648, Singapore
| |
Collapse
|
48
|
Liu H, Zhao X, Guo M, Liu H, Zheng Z. Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol 2015; 15:267. [PMID: 26581712 PMCID: PMC4652391 DOI: 10.1186/s12866-015-0592-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Background Fungi are ubiquitous in nature and have evolved over time to colonize a wide range of ecosystems including pest control. To date, most research has focused on the hypocrealean genera Beauveria bassiana, which is a typical filamentous fungus with a high potential for insect control. The morphology and components of fungi are important during the spores germination and outgrow to mycelia. However, to the best of our knowledge, there is no report on the morphology and components of B. bassiana spores and mycelia. In the work, the growth and metabolism of Beauveria bassiana spores and mycelia were studied. High performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to study the metabolism of B. bassiana spores and mycelia. Principal component analysis (PCA) based on HPLC-MS was conducted to study the different components of the spores and mycelia of the fungus. Metabolic network was established based on HPLC-MS and KEGG database. Results Through Gompertz model based on macroscopic and microscopic techniques, spore elongation length was found to increase exponentially until approximately 23.1 h after cultivation, and then growth became linear. In the metabolic network, the decrease of glyoxylate, pyruvate, fumarate, alanine, succinate, oxaloacetate, dihydrothymine, ribulose, acetylcarnitine, fructose-1, 6-bisphosphate, mycosporin glutamicol, and the increase of betaine, carnitine, ergothioneine, sphingosine, dimethyl guanosine, glycerophospholipids, and in spores indicated that the change of the metabolin can keep spores in inactive conditions, protect spores against harmful effects and survive longer. Conclusions Analysis of the metabolic pathway in which these components participate can reveal the metabolic difference between spores and mycelia, which provide the tools for understand and control the process of of spores germination and outgrow to mycelia.
Collapse
Affiliation(s)
- Hongxia Liu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Xusheng Zhao
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Mingxin Guo
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Hui Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| | - Zhiming Zheng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
49
|
Liu H, Zhao X, Guo M, Liu H, Zheng Z. Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol 2015. [PMID: 26581712 DOI: 10.1186/s12866-015-0592-594?] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Fungi are ubiquitous in nature and have evolved over time to colonize a wide range of ecosystems including pest control. To date, most research has focused on the hypocrealean genera Beauveria bassiana, which is a typical filamentous fungus with a high potential for insect control. The morphology and components of fungi are important during the spores germination and outgrow to mycelia. However, to the best of our knowledge, there is no report on the morphology and components of B. bassiana spores and mycelia. In the work, the growth and metabolism of Beauveria bassiana spores and mycelia were studied. High performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to study the metabolism of B. bassiana spores and mycelia. Principal component analysis (PCA) based on HPLC-MS was conducted to study the different components of the spores and mycelia of the fungus. Metabolic network was established based on HPLC-MS and KEGG database. RESULTS Through Gompertz model based on macroscopic and microscopic techniques, spore elongation length was found to increase exponentially until approximately 23.1 h after cultivation, and then growth became linear. In the metabolic network, the decrease of glyoxylate, pyruvate, fumarate, alanine, succinate, oxaloacetate, dihydrothymine, ribulose, acetylcarnitine, fructose-1, 6-bisphosphate, mycosporin glutamicol, and the increase of betaine, carnitine, ergothioneine, sphingosine, dimethyl guanosine, glycerophospholipids, and in spores indicated that the change of the metabolin can keep spores in inactive conditions, protect spores against harmful effects and survive longer. CONCLUSIONS Analysis of the metabolic pathway in which these components participate can reveal the metabolic difference between spores and mycelia, which provide the tools for understand and control the process of of spores germination and outgrow to mycelia.
Collapse
Affiliation(s)
- Hongxia Liu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Xusheng Zhao
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Mingxin Guo
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Hui Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| | - Zhiming Zheng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
50
|
Richard-Greenblatt M, Bach H, Adamson J, Peña-Diaz S, Li W, Steyn AJC, Av-Gay Y. Regulation of Ergothioneine Biosynthesis and Its Effect on Mycobacterium tuberculosis Growth and Infectivity. J Biol Chem 2015; 290:23064-76. [PMID: 26229105 DOI: 10.1074/jbc.m115.648642] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Ergothioneine (EGT) is synthesized in mycobacteria, but limited knowledge exists regarding its synthesis, physiological role, and regulation. We have identified Rv3701c from Mycobacterium tuberculosis to encode for EgtD, a required histidine methyltransferase that catalyzes first biosynthesis step in EGT biosynthesis. EgtD was found to be phosphorylated by the serine/threonine protein kinase PknD. PknD phosphorylates EgtD both in vitro and in a cell-based system on Thr(213). The phosphomimetic (T213E) but not the phosphoablative (T213A) mutant of EgtD failed to restore EGT synthesis in a ΔegtD mutant. The findings together with observed elevated levels of EGT in a pknD transposon mutant during in vitro growth suggests that EgtD phosphorylation by PknD negatively regulates EGT biosynthesis. We further showed that EGT is required in a nutrient-starved model of persistence and is needed for long term infection of murine macrophages.
Collapse
Affiliation(s)
| | - Horacio Bach
- From the Division of Infectious Diseases, Department of Medicine and
| | - John Adamson
- Kwazulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa 4001
| | - Sandra Peña-Diaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Wu Li
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China, and
| | - Adrie J C Steyn
- Kwazulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa 4001, Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama, Birmingham, Alabama 35233
| | - Yossef Av-Gay
- From the Division of Infectious Diseases, Department of Medicine and
| |
Collapse
|