1
|
El-Sayed MH, AlHarbi M, Elsehemy IA, Haggag WM, Refaat BM, Ali SM, Elkelish A. Natural Inhibitory Treatment of Fungi-Induced Deterioration of Carbonate and Cellulosic Ancient Monuments: Isolation, Identification and Simulation of Biogenic Deterioration. J Microbiol Biotechnol 2024; 34:2049-2069. [PMID: 39263788 PMCID: PMC11540613 DOI: 10.4014/jmb.2404.04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Fungi play a significant role in the deterioration of various types of monuments. Therefore, the protection of ancient monuments from fungal attacks is an important goal that must attract the attention of researchers worldwide. A total of 69 fungal isolates were recovered from 22 deteriorated objects compromising paper, textiles, wood, and stone in the National Museum of Egyptian Civilization (NMEC) storeroom, Cairo, Egypt. The isolates were identified as 12 different species categorized into three different genera, namely, Aspergillus (9 species), Penicillium (2 species) and Trichoderma (1 species). Among them, Aspergillus fumigatus was the most prevalent species. Three essential oils were assessed for antifungal activity and compared with the antifungal effects of five synthetic microcides to identify a natural inhibitory treatment. Thyme oil and sodium azide were found to be the most active growth inhibitors, with minimum inhibitory concentrations (MICs) of 625 and 100 ppm, with inhibition zone diameters of 19.0 ± 0.70 - 23.76 ± 1.15 and 13.30 ± 0.35 - 19.66 ± 0.54 mm, respectively. An in vitro simulation of the biodeterioration process was conducted using spores of the A. fumigatus strain NMEC-PSTW.1 on model cubes made of paper, textile, wood, and stone materials. The changes in the characteristics of the artificially deteriorated materials were analyzed using environmental scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The results revealed changes in the morphology, physical properties, and chemical composition induced by A. fumigatus NMEC-PSTW.1. Overall, thyme oil is recommended as a natural inhibitor to protect carbonate and cellulosic monuments in NMEC against fungal attack.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Islam A. Elsehemy
- Department of Natural and Microbial Products Chemistry, Pharmaceutical Industry Division, National Research Centre, Dokki, Egypt
| | - Wafaa M. Haggag
- Department of Plant Pathology, National Research Centre, Dokki, Egypt
| | - Bahgat M. Refaat
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Sharaf M. Ali
- Central Research Laboratory, National Museum of Egyptian Civilization, Ministry of Antiquities, Cairo, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Ye C, Jing T, Sha Y, Mo M, Yu Z. Two new Trichoderma species (Hypocreales, Hypocreaceae) isolated from decaying tubers of Gastrodiaelate. MycoKeys 2023; 99:187-207. [PMID: 37719304 PMCID: PMC10504636 DOI: 10.3897/mycokeys.99.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Species of Trichoderma are widely distributed around the world. In this study, two new species in Trichoderma, named as T.albidum and T.variegatum, were introduced and illustrated. These species were isolated from diseased tubers of Gastrodiaelata in China and identified based on morphological characteristics and multi-gene sequence analyses of three loci that is the internal transcribed spacer regions of the ribosomal DNA (ITS), the translation elongation factor 1-α encoding gene (tef1-α) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Distinctions between the new species and their close relatives were discussed. According to results of the phylogenetic analyses, T.albidum belonged to the Harzianum clade and T.variegatum are grouped with species of the Spirale clade. The expansion of two clades provided research foundations for the prevention and control of tuber diseases in G.elata.
Collapse
Affiliation(s)
- Chuwen Ye
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Tingting Jing
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Yuru Sha
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
3
|
Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J Fungi (Basel) 2022; 8:jof8070704. [PMID: 35887460 PMCID: PMC9318549 DOI: 10.3390/jof8070704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.
Collapse
|
4
|
Contreras-Cornejo HA, Macías-Rodríguez L, Larsen J. The Role of Secondary Metabolites in Rhizosphere Competence of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Cai F, Dou K, Wang P, Chenthamara K, Chen J, Druzhinina IS. The Current State of Trichoderma Taxonomy and Species Identification. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
de Andrade Reis RJ, Alves AF, Dos Santos PHD, Aguiar KP, da Rocha LO, da Silveira SF, Canellas LP, Olivares FL. Mutualistic interaction of native Serratia marcescens UENF-22GI with Trichoderma longibrachiatum UENF-F476 boosting seedling growth of tomato and papaya. World J Microbiol Biotechnol 2021; 37:211. [PMID: 34729659 DOI: 10.1007/s11274-021-03179-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
A plethora of bacteria-fungal interactions occur on the extended fungal hyphae network in soil. The mycosphere of saprophytic fungi can serve as a bacterial niche boosting their survival, dispersion, and activity. Such ecological concepts can be converted to bioproducts for sustainable agriculture. Accordingly, we tested the hypothesis that the well-characterised beneficial bacterium Serratia marcescens UENF-22GI can enhance plant growth-promoting properties when combined with Trichoderma longibrachiatum UENF-F476. The cultural and cell interactions demonstrated S. marcescens and T. longibrachiatum mutual compatibility. Bacteria cells were able to attach, forming aggregates to biofilms and migrating through the fungal hyphae network. Long-distance bacterial migration through growing hyphae was confirmed using a two-compartment Petri dishes assay. Fungal inoculation increased the bacteria survival rates into the vermicompost substrate over the experimental time. Also, in vitro indolic compound, phosphorus, and zinc solubilisation bacteria activities increased in the presence of the fungus. In line with the ecophysiological bacteria fitness, the bacterium-fungal combination boosted tomato and papaya plantlet growth when applied into the plant substrate under nursery conditions. Mutualistic interaction between mycosphere-colonizing bacterium S. marcescens UENF-22GI and the saprotrophic fungi T. longibrachiatum UENF-F467 increased the ecological fitness of the bacteria alongside with beneficial potential for plant growth. A proper combination and delivery of mutual compatible beneficial bacteria-fungal represent an open avenue for microbial-based products for the biological enrichment of plant substrates in agricultural systems.
Collapse
Affiliation(s)
- Régis Josué de Andrade Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Alice Ferreira Alves
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Pedro Henrique Dias Dos Santos
- Laboratório de Entomologia e Fitopatologia (LEF), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Kamilla Pereira Aguiar
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Letícia Oliveira da Rocha
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Silvaldo Felipe da Silveira
- Laboratório de Entomologia e Fitopatologia (LEF), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil. .,Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Barrera VA, Iannone L, Romero AI, Chaverri P. Expanding the Trichoderma harzianum species complex: Three new species from Argentine natural and cultivated ecosystems. Mycologia 2021; 113:1136-1155. [PMID: 34473608 DOI: 10.1080/00275514.2021.1947641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A study was performed on a collection of 84 isolates from decaying plant tissues and soils in Argentina previously identified as Trichoderma harzianum. Based on multiple phenotypic characters and multilocus phylogenetic analyses, 10 species were distinguished, three of which are described as new species: T. austroindianum, T. hortense, and T. syagri. Among the remaining seven identified species, the following five can be added to the Argentine mycobiota: T. afarasin, T. afroharzianum, T. endophyticum, T. guizhouense, and T. neotropicale. Trichoderma afroharzianum and T. endophyticum were the most frequent species found in the samples. In addition, a collection of isolates previously identified as T. harzianum with antagonistic abilities were reidentified as T. afroharzianum, thus highlighting the importance of correct identification of biocontrol species.
Collapse
Affiliation(s)
- Viviana A Barrera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, N. Repetto y De los Reseros, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Leopoldo Iannone
- Instituto de Micología y Botánica-Consejo Nacional de Investigaciones Científicas y Técnicas (INMIBO-CONICET), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Güiraldes 2620, Buenos Aires C1428EHA, Argentina
| | - Andrea Irene Romero
- Instituto de Micología y Botánica-Consejo Nacional de Investigaciones Científicas y Técnicas (INMIBO-CONICET), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Güiraldes 2620, Buenos Aires C1428EHA, Argentina
| | - Priscila Chaverri
- Escuela de Biología and Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San Pedro, San José, Costa Rica.,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
8
|
Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, Siddiquee S. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep 2021; 48:3285-3301. [PMID: 33880673 DOI: 10.1007/s11033-021-06321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
Collapse
Affiliation(s)
- Azriah Asis
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Laila Naher
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600 Pengkalan Chepa, Jeli Campus, Kelantan Darul Naim, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Hasan Nudin Nur Fatihah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, 22200, Besut, Terengganu, Malaysia
| | - Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
9
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
10
|
Hinterdobler W, Li G, Spiegel K, Basyouni-Khamis S, Gorfer M, Schmoll M. Trichoderma reesei Isolated From Austrian Soil With High Potential for Biotechnological Application. Front Microbiol 2021; 12:552301. [PMID: 33584603 PMCID: PMC7876326 DOI: 10.3389/fmicb.2021.552301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Fungi of the genus Trichoderma are of high importance for biotechnological applications, in biocontrol and for production of homologous and heterologous proteins. However, sexual crossing under laboratory conditions has so far only been achieved with the species Trichoderma reesei, which was so far only isolated from tropical regions. Our isolation efforts aimed at the collection of Trichoderma strains from Austrian soils surprisingly also yielded 12 strains of the species T. reesei, which was previously not known to occur in Europe. Their identity was confirmed with tef1- and rpb2-sequencing and phylogenetic analysis. They could clearly be distinguished from tropical strains including the common laboratory wildtypes by UP-PCR and genetic variations adjacent to the mating type locus. The strains readily mated with reference strains derived from CBS999.97. Secreted cellulase and xylanase levels of these isolates were up to six-fold higher than those of QM6a indicating a high potential for strain improvement. The strains showed different responses to injury in terms of induction of sporulation, but a correlation to alterations in the nox1-gene sequence was not detected. Several synonymous SNPs were found in the sequence of the regulator gene noxR of the soil isolates compared to QM6a. Only in one strain, non-synonymous SNPs were found which impact a PEST sequence of NoxR, suggesting altered protein stability. The availability of sexually fertile strains from middle Europe naturally producing decent amounts of plant cell wall degrading enzymes opens up novel perspectives for non-GMO strain improvement and biological pretreatment of plant biomass for bioethanol production. Moreover, the varied response of these strains to injury in terms of sporulation, which is independent of Nox1 and NoxR suggests that additional regulators impact this phenomenon in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guofen Li
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Katharina Spiegel
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Samira Basyouni-Khamis
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria.,Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
11
|
Ecological Genomics and Evolution of Trichoderma reesei. Methods Mol Biol 2021; 2234:1-21. [PMID: 33165775 DOI: 10.1007/978-1-0716-1048-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) is an efficient industrial cell factory for the production of cellulolytic enzymes used for biofuel and other applications. Therefore, researches addressing T. reesei are relatively advanced compared to other Trichoderma spp. because of the significant bulk of available knowledge, multiple genomic data, and gene manipulation techniques. However, the established role of T. reesei in industry has resulted in a frequently biased understanding of the biology of this fungus. Thus, the recent studies unexpectedly show that the superior cellulolytic activity of T. reesei and other Trichoderma species evolved due to multiple lateral gene transfer events, while the innate ability to parasitize other fungi (mycoparasitism) was maintained in the genus, including T. reesei. In this chapter, we will follow the concept of ecological genomics and describe the ecology, distribution, and evolution of T. reesei, as well as critically discuss several common misconceptions that originate from the success of this species in applied sciences and industry.
Collapse
|
12
|
Haouhach S, Karkachi N, Oguiba B, Sidaoui A, Chamorro I, Kihal M, Monte E. Three New Reports of Trichoderma in Algeria: T. atrobrunneum, (South) T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms 2020; 8:E1455. [PMID: 32977378 PMCID: PMC7597948 DOI: 10.3390/microorganisms8101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
The genus Trichoderma (Hypocreaceae, Ascomycota) consists of globally distributed fungi. In Algeria, few studies have explored the diversity of this genus, and in the majority of works identification is based on phenotypic characters. Here, nine Trichoderma strains were collected from Algeria in different locations, namely: seven in the south and two in the northwest. Also, we used 17 reference strains that were taken from the NCBI database for the phylogeny analysis. Our study is based on an integrated approach using micro and macro phenotypic characters and multiple DNA analysis (internal transcribed spacer (ITS): ITS1-4 region; translation elongation factor 1: tef1 gene). Our study reports, for the first time, three species of Trichoderma in Algeria, namely: T. atrobrunneum (south), T. longibrachiatum (south), and T. afroharzianum (northwest). It is noteworthy that T. atrobrunneum is a species previously described in European Mediterranean countries, and its presence in the soil of southern Algeria indicates that the diversity of the geographic environments and different climates of Algeria offers the possibility for the survival of diverse Trichoderma species. Knowledge on the diversity of these fungi may contribute to their future exploitation in biotechnological applications and to the biological control of plant diseases.
Collapse
Affiliation(s)
- Sadika Haouhach
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
- Department of Biotechnology, University of Science and Technology of Oran Mohamed Boudiaf, 31000 Oran, Algeria
| | - Noureddine Karkachi
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
| | - Bouchra Oguiba
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
| | - Abouamama Sidaoui
- Department of Biology, University Center of Tamanrasset, 11000 Tamanrasset, Algeria;
| | - Isabel Chamorro
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (I.C.); (E.M.)
| | - Mebrouk Kihal
- Applied Microbiology Lab, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria; (N.K.); (B.O.); (M.K.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (I.C.); (E.M.)
| |
Collapse
|
13
|
MIST: a Multilocus Identification System for Trichoderma. Appl Environ Microbiol 2020; 86:AEM.01532-20. [PMID: 32680870 DOI: 10.1128/aem.01532-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Due to the rapid expansion in microbial taxonomy, precise identification of common industrially and agriculturally relevant fungi such as Trichoderma species is challenging. In this study, we introduce the online multilocus identification system (MIST) for automated detection of 349 Trichoderma species based on a set of three DNA barcodes. MIST is based on the reference databases of validated sequences of three commonly used phylogenetic markers collected from public databases. The databases consist of 414 complete sequences of the nuclear rRNA internal transcribed spacers (ITS) 1 and 2, 583 sequence fragments of the gene encoding translation elongation factor 1-alpha (tef1), and 534 sequence fragments of the gene encoding RNA polymerase subunit 2 (rpb2). Through MIST, information from different DNA barcodes can be combined and the identification of Trichoderma species can be achieved based on the integrated parametric sequence similarity search (blastn) performed in the manner of a decision tree classifier. In the verification process, MIST provided correct identification for 44 Trichoderma species based on DNA barcodes consisting of tef1 and rpb2 markers. Thus, MIST can be used to obtain an automated species identification as well as to retrieve sequences required for manual identification by means of phylogenetic analysis.IMPORTANCE The genus Trichoderma is important to humankind, with a wide range of applications in industry, agriculture, and bioremediation. Thus, quick and accurate identification of Trichoderma species is paramount, since it is usually the first step in Trichoderma-based research. However, it frequently becomes a limitation, especially for researchers who lack taxonomic knowledge of fungi. Moreover, as the number of Trichoderma-based studies has increased, a growing number of unidentified sequences have been stored in public databases, which has made the species identification more ambiguous. In this study, we provide an easy-to-use tool, MIST, for automated species identification, a list of Trichoderma species, and corresponding sequences of reference DNA barcodes. Therefore, this study will facilitate the research on the biodiversity and applications of the genus Trichoderma.
Collapse
|
14
|
Carreras M, Espeso EA, Gutierrez-Docio A, Moreno-Fernandez S, Prodanov M, Hernando MD, Melgarejo P, Larena I. Exploring the Extracellular Macromolecular Composition of Crude Extracts of Penicillium rubens Strain 212 for Elucidation Its Mode of Action as a Biocontrol Agent. J Fungi (Basel) 2020; 6:E131. [PMID: 32785198 PMCID: PMC7559091 DOI: 10.3390/jof6030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Penicillium rubens strain 212 (PO212) acts as an inducer of systemic resistance in tomato plants. The effect of crude extracellular extracts of PO212 on the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici has been evaluated. Evidence of the involvement of soluble, thermo-labile, and proteinase-inactivated macromolecules present in PO212 crude extracts in the control of Fusarium vascular disease in tomato plants was found. Proteomic techniques and the availability of the access to the PO212 genome database have allowed the identification of glycosyl hydrolases, oxidases, and peptidases in these extracellular extracts. Furthermore, a bioassay-guided fractionation of PO212 crude extracellular extracts using an integrated membrane/solid phase extraction process was set up. This method enabled the separation of a PO212 crude extracellular extract of seven days of growth into four fractions of different molecular sizes and polarities: high molecular mass protein fraction >5 kDa, middle molecular mass protein fraction 5-1 kDa, low molecular mass metabolite fraction, and nutrients from culture medium (mainly glucose and minerals). The high and middle molecular mass protein fractions retained disease control activity in a way similar to that of the control extracts. Proteomic techniques have allowed the identification of nine putatively secreted proteins in the high molecular mass protein fraction matching those identified in the total crude extracts. Therefore, these enzymes are considered to be potentially responsible of the crude extracellular extract-induced resistance in tomato plants against F. oxysporum f. sp. lycopersici. Further studies are required to establish which of the identified proteins participate in the PO212's action mode as a biocontrol agent.
Collapse
Affiliation(s)
- Maria Carreras
- Departamento de Protección Vegetal, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain; (M.C.); (P.M.)
| | - Eduardo A. Espeso
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Alba Gutierrez-Docio
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (A.G.-D.); (S.M.-F.); (M.P.)
| | - Silvia Moreno-Fernandez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (A.G.-D.); (S.M.-F.); (M.P.)
| | - Marin Prodanov
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (A.G.-D.); (S.M.-F.); (M.P.)
| | - Maria Dolores Hernando
- Departamento de Medio Ambiente y Agronomía, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain;
| | - Paloma Melgarejo
- Departamento de Protección Vegetal, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain; (M.C.); (P.M.)
| | - Inmaculada Larena
- Departamento de Protección Vegetal, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain; (M.C.); (P.M.)
| |
Collapse
|
15
|
Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 2020; 10:362. [PMID: 32821644 PMCID: PMC7392985 DOI: 10.1007/s13205-020-02301-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Trichoderma spp., a cosmopolitan fungal genus, has remarkable economic value in industry and agriculture. The resources of Trichoderma spp. in the grassland and forest ecosystems of northern Xinjiang were explored in this study. A total of 634 soil samples was collected, and 312 strains assigned to 23 species of Trichoderma spp. were identified. T. harzianum was the dominant species with 28.2% from all isolates. The principal components analysis indicated that ecosystem was the most dominant impact factor among longitude, latitude, altitude and ecosystems for the species diversities of Trichoderma spp. with the decreasing trend from the north to the south of northern Xinjiang (e.g., from Altay, followed by Yili, Changji, Bayingolin and finally Urumqi). Overall, Trichoderma spp. were more frequently encountered in forest ecosystems (coniferous forest and coniferous and broadleaf mixed forest) than in grassland ecosystems (desert steppe and temperate steppe). Frequency of Trichoderma spp. was significantly decreased along with increased altitude and only a few strains were isolated from altitudes above 3000 m. The results provided essential information on Trichoderma occurrence and distribution, which should benefit the application of Trichoderma in agriculture.
Collapse
|
16
|
Hatvani L, Homa M, Chenthamara K, Cai F, Kocsubé S, Atanasova L, Mlinaric-Missoni E, Manikandan P, Revathi R, Dóczi I, Bogáts G, Narendran V, Büchner R, Vágvölgyi C, Druzhinina IS, Kredics L. Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma: a successful, common phylotype of Trichoderma longibrachiatum in the frontline. FEMS Microbiol Lett 2020; 366:5670621. [PMID: 31816013 DOI: 10.1093/femsle/fnz246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023] Open
Abstract
Trichoderma species are abundant in different agricultural habitats, but some representatives of this genus, mainly clade Longibrachiatum members are also emerging as causative agents of various human diseases with even fatal outcome. Strains of these species frequently show resistance to commonly used azole antifungals. Based on previous data it is hypothesized that Trichoderma isolates identified in human infections derive from environmental-including agricultural-origins. We examined Trichoderma longibrachiatum Rifai and Trichoderma bissettii Sandoval-Denis & Guarro strains recovered from four novel cases of human mycoses, along with isolates from previous case reports and different agricultural habitats, using multilocus phylogenetic analysis, BIOLOG Phenotype Microarrays and Etest. Strains attributed to T. bissettii were more abundant in both clinical and agricultural specimens compared to T. longibrachiatum. The majority of the isolates of both taxa could tolerate >256, >32 and >32 μg/ml fluconazole, itraconazole and posaconazole, respectively. None of the obtained results revealed characteristic differences between strains of clinical and agricultural origin, nor between the two taxa, supporting that agricultural environments may be significant sources of infections caused by these emerging human fungal pathogens. Furthermore, based on our findings we propose the re-classification of T. bissettii as T. longibrachiatum f. sp. bissettii.
Collapse
Affiliation(s)
- Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, Közép fasor 52., Szeged, 6726, Hungary
| | - Mónika Homa
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Közép fasor 52., Szeged, 6726, Hungary
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), Gumpendorferstrasse 1a/E166-5., TU Wien, Vienna, 1060, Austria
| | - Feng Cai
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), Gumpendorferstrasse 1a/E166-5., TU Wien, Vienna, 1060, Austria.,Fungal Genomics Group, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Weigang No. 1., Nanjing, 210095, China
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Lea Atanasova
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18., Vienna, 1190, Austria
| | - Emilija Mlinaric-Missoni
- Croatian National Institute of Public Health, Rockefellerova 2., Zagreb, 10000, Croatia (retired)
| | - Palanisamy Manikandan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Academic City, Majmaah, 11952, Saudi Arabia.,Greenlink Analytical and Research Laboratory India Private Ltd, Tex Park Road, Coimbatore, Tamil Nadu, 641 014, India
| | - Rajaraman Revathi
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Avinashi Road, Coimbatore, Tamil Nadu, 641 014, India
| | - Ilona Dóczi
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - Gábor Bogáts
- Second Department of Internal Medicine and Cardiology Center, Faculty of Medicine, University of Szeged, Semmelweis u. 8., Szeged, 6725, Hungary
| | - Venkatapathy Narendran
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Avinashi Road, Coimbatore, Tamil Nadu, 641 014, India
| | - Rita Büchner
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Irina S Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), Gumpendorferstrasse 1a/E166-5., TU Wien, Vienna, 1060, Austria.,Fungal Genomics Group, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Weigang No. 1., Nanjing, 210095, China
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| |
Collapse
|
17
|
Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. Braz J Microbiol 2020; 51:989-997. [PMID: 32333271 DOI: 10.1007/s42770-020-00270-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 04/07/2020] [Indexed: 01/28/2023] Open
Abstract
Fungi in the genus Trichoderma are notorious producers of secondary metabolites with diverse applications, such as antibacterial, antifungal, and plant growth-promoting properties. Peptaibols are linear peptides produced by such fungi, with more than 440 compounds described to date, including tricholongins, longibrachins, trichobrachins, and trichovirins. Peptaibols are synthesized by non-ribosomal peptide synthetases and they have several biological activities. Our research group isolated four peptaibols (6DP2, 6DP3, 6DP4, and 6DP5) with antifungal activity against the plant pathogen Colletotrichum gloeosporioides and the proteasome (a cancer chemotherapy target) from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. The ethyl acetate extract of this endophyte showed activity of 6.01% and 75% against C. gloeosporioides and the proteasome, respectively. The isolated compounds were identified by MS/MS and compared to literature data, suggesting the presence of trilongins BI, BII, BIII, and BIV, which are peptaibols containing 20 amino acid residues. The minimum inhibitory concentration against C. gloeosporioides was 40 μM for trilongin BI, 320 μM for trilongin BII, 160 μM for trilongin BIII, and 310 μM for trilongin BIV. BI-BIV trilongins inhibited proteasome ChTL activity, with IC50 values of 6.5 ± 2.7; 4.7 ± 1.8; 6.3 ± 2.2; and 2.7 ± 0.5 μM, respectively. The compounds were tested ex vivo against the intracellular amastigotes of Leishmania (L.) infantum but showed no selectivity. It is the first report of trilongins BI-BIV with antifungal activity against C. gloeosporioides and the proteasome target.
Collapse
|
18
|
Inglis PW, Mello SCM, Martins I, Silva JBT, Macêdo K, Sifuentes DN, Valadares-Inglis MC. Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS One 2020; 15:e0228485. [PMID: 32130211 PMCID: PMC7055844 DOI: 10.1371/journal.pone.0228485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
Fifty four Trichoderma strains were isolated from soil samples collected from garlic and onion crops in eight different sites in Brazil and were identified using phylogenetic analysis based on combined ITS region, tef1-α, cal, act and rpb2 sequences. The genetic variability of the recovered Trichoderma species was analysed by AFLP and their phenotypic variability determined using MALDI-TOF. The strain clusters from both typing techniques coincided with the taxonomic determinations made from phylogenetic analysis. The phylogenetic analysis showed the occurrence of Trichoderma asperellum, Trichoderma asperelloides, Trichoderma afroharzianum, Trichoderma hamatum, Trichoderma lentiforme, Trichoderma koningiopsis, Trichoderma longibrachiatum and Trichoderma erinaceum, in the soil samples. We also identified and describe two new Trichoderma species, both in the harzianum clade of section Pachybasium, which we have named Trichoderma azevedoi sp. nov. and Trichoderma peberdyi sp. nov. The examined strains of both T. azevedoi (three strains) and T. peberdyi (12 strains) display significant genotypic and phenotypic variability, but form monophyletic clades with strong bootstrap and posterior probability support and are morphologically distinct from their respective most closely related species.
Collapse
Affiliation(s)
- Peter W. Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | - Irene Martins
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | - Kamilla Macêdo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | | |
Collapse
|
19
|
Jaroszuk-Ściseł J, Tyśkiewicz R, Nowak A, Ozimek E, Majewska M, Hanaka A, Tyśkiewicz K, Pawlik A, Janusz G. Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia. Int J Mol Sci 2019; 20:E4923. [PMID: 31590281 PMCID: PMC6801869 DOI: 10.3390/ijms20194923] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Both hormonal balance and plant growth may be shaped by microorganisms synthesizing phytohormones, regulating its synthesis in the plant and inducing plant resistance by releasing elicitors from cell walls (CW) by degrading enzymes (CWDE). It was shown that the Trichoderma DEMTkZ3A0 strain, isolated from a healthy rye rhizosphere, colonized the rhizoplane of wheat seedlings and root border cells (RBC) and caused approximately 40% increase of stem weight. The strain inhibited (in over 90%) the growth of polyphagous Fusarium spp. (F. culmorum, F. oxysporum, F. graminearum) phytopathogens through a mechanism of mycoparasitism. Chitinolytic and glucanolytic activity, strongly stimulated by CW of F. culmorum in the DEMTkZ3A0 liquid culture, is most likely responsible for the lysis of hyphae and macroconidia of phytopathogenic Fusarium spp. as well as the release of plant resistance elicitors. In DEMTkZ3A0 inoculated plants, an increase in the activity of the six tested plant resistance markers and a decrease in the concentration of indoleacetic acid (IAA) auxin were noted. IAA and gibberellic acid (GA) but also the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) enzyme regulating ethylene production by plant were synthesized by DEMTkZ3A0 in the liquid culture. IAA synthesis was dependent on tryptophan and negatively correlated with temperature, whereas GA synthesis was positively correlated with the biomass and temperature.
Collapse
Affiliation(s)
- Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Renata Tyśkiewicz
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
- Military Institute of Hygiene and Epidemiology, Lubelska St. 2, 24-100 Puławy, Poland.
| | - Artur Nowak
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Ewa Ozimek
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Małgorzata Majewska
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Agnieszka Hanaka
- Department of Plant Physiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Katarzyna Tyśkiewicz
- ŁUKASIEWICZ Research Network-New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110 Puławy, Poland.
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| |
Collapse
|
20
|
Marik T, Tyagi C, Balázs D, Urbán P, Szepesi Á, Bakacsy L, Endre G, Rakk D, Szekeres A, Andersson MA, Salonen H, Druzhinina IS, Vágvölgyi C, Kredics L. Structural Diversity and Bioactivities of Peptaibol Compounds From the Longibrachiatum Clade of the Filamentous Fungal Genus Trichoderma. Front Microbiol 2019; 10:1434. [PMID: 31293557 PMCID: PMC6606783 DOI: 10.3389/fmicb.2019.01434] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 01/18/2023] Open
Abstract
This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma, which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade (T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T. parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis, and T. orientale) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T. reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml-1 deterred the growth of A. thaliana. However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1, which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Urbán
- Department of General and Environmental Microbiology, Faculty of Sciences, and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bakacsy
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Endre
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Heidi Salonen
- Department of Civil Engineering, Aalto University, Espoo, Finland
| | - Irina S. Druzhinina
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World J Microbiol Biotechnol 2018; 34:98. [PMID: 29922855 DOI: 10.1007/s11274-018-2482-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
A Trichoderma orientale strain LSBA1 was isolated from the Mediterranean marine sponge Cymbaxinella damicornis. The crude extract of T. orientale mycelium showed inhibitory activity against growth of Gram-positive and Gram-negative bacteria as well as clinical isolates of Candida albicans. Purification of the anti-Candida component was performed using a combination of open silica gel-60 column and reverse phase high performance liquid chromatography. The active compound called hyporientalin A has been identified as a peptaibol analogue of longibrachin-A-II using mass spectrometry. It exhibited fungicidal activity against clinical isolates of C. albicans with minimal inhibitory concentrations (MICs) ranging from 2.49 to 19.66 µM, comparable to that of the antifungal agent amphotericin B. Our data support the use of hyporientalin A as a promising new and efficient antifungal drug in the treatment of candidiasis while controlling toxicity.
Collapse
|
22
|
du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K. The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 2018; 110:559-583. [PMID: 29902390 DOI: 10.1080/00275514.2018.1463059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fourteen Trichoderma (Hypocreales) species were identified during a survey of the genus in South Africa. These include T. afroharzianum, T. asperelloides, T. asperellum, T. atrobrunneum, T. atroviride, T. camerunense, T. gamsii, T. hamatum, T. koningii, T. koningiopsis, T. saturnisporum, T. spirale, T. virens, and T. viride. Ten of these species were not known to occur in South Africa prior to this investigation. Five additional species were novel and are described here as T. beinartii, T. caeruleimontis, T. chetii, T. restrictum, and T. undulatum. These novel Trichoderma species display morphological traits that are typical of the genus. Based on molecular identification using calmodulin, endochitinase, nuc rDNA internal transcribed spacers (ITS1-5.8S-ITS2), RNA polymerase II subunit B, and translation elongation factor 1-α gene sequence data, T. beinartii, T. caeruleimontis, and T. chetii were found to belong to the Longibrachiatum clade, whereas T. restrictum is a member of the Hamatum clade. Trichoderma undulatum occupies a distinct lineage distantly related to other Trichoderma species. Strains of T. beinartii and T. chetii were isolated previously in Hawaii and Israel; however, T. caeruleimontis, T. restrictum, and T. undulatum are so far known only from South Africa.
Collapse
Affiliation(s)
- Ihan L du Plessis
- a Department of Microbiology , University of Stellenbosch , Private Bag X1, Matieland, 7602 , South Africa
| | - Irina S Druzhinina
- b Microbiology Group, Research Area Biochemical Technology , Institute of Chemical and Biological Engineering , Technische Universität Wien, Gumpendorferstrasse 1a, A1060 , Vienna , Austria
| | - Lea Atanasova
- c Institute of Microbiology , University of Innsbruck , Technikerstraße 25, A-6020 , Innsbruck , Austria
| | - Oded Yarden
- d Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment , The Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Karin Jacobs
- a Department of Microbiology , University of Stellenbosch , Private Bag X1, Matieland, 7602 , South Africa
| |
Collapse
|
23
|
Marra R, Nicoletti R, Pagano E, DellaGreca M, Salvatore MM, Borrelli F, Lombardi N, Vinale F, Woo SL, Andolfi A. Inhibitory effect of trichodermanone C, a sorbicillinoid produced by Trichoderma citrinoviride associated to the green alga Cladophora sp., on nitrite production in LPS-stimulated macrophages. Nat Prod Res 2018; 33:3389-3397. [DOI: 10.1080/14786419.2018.1479702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, Caserta, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Nadia Lombardi
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Debbi A, Boureghda H, Monte E, Hermosa R. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp. Front Microbiol 2018; 9:282. [PMID: 29515557 PMCID: PMC5826367 DOI: 10.3389/fmicb.2018.00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/07/2018] [Indexed: 11/28/2022] Open
Abstract
Fifty fungal isolates were sampled from diseased tomato plants as result of a survey conducted in seven tomato crop areas in Algeria from 2012 to 2015. Morphological criteria and PCR-based identification, using the primers PF02 and PF03, assigned 29 out of 50 isolates to Fusarium oxysporum (Fo). The banding patterns amplified for genes SIX1, SIX3 and SIX4 served to identify races 2 and 3 of Fo f. sp. lycopersici (FOL), and Fo f. sp. radicis lycopersici (FORL) among the Algerian isolates. All FOL isolates showed pathogenicity on the susceptible tomato cv. "Super Marmande," while nine of out 10 Algerian FORL isolates were pathogenic on tomato cv. "Rio Grande." Inter simple sequence repeat (ISSR) fingerprints showed high genetic diversity among Algerian Fo isolates. Seventeen Algerian Trichoderma isolates were also obtained and assigned to the species T. asperellum (12 isolates), T. harzianum (four isolates) and T. ghanense (one isolate) based on ITS and tef1α gene sequences. Different in vitro tests identified the antagonistic potential of native Trichoderma isolates against FORL and FOL. Greenhouse biocontrol assays performed on "SM" tomato plants with T. ghanense T8 and T. asperellum T9 and T17, and three Fo isolates showed that isolate T8 performed well against FORL and FOL. This finding was based on an incidence reduction of crown and root rot and Fusarium wilt diseases by 53.1 and 48.3%, respectively.
Collapse
Affiliation(s)
- Ali Debbi
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, National Superior School of Agronomy, Algiers, Algeria
- Laboratory of Mycology, Center of Biotechnology Research, Constantine, Algeria
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Houda Boureghda
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, National Superior School of Agronomy, Algiers, Algeria
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
25
|
Omics Analyses of Trichoderma reesei CBS999.97 and QM6a Indicate the Relevance of Female Fertility to Carbohydrate-Active Enzyme and Transporter Levels. Appl Environ Microbiol 2017; 83:AEM.01578-17. [PMID: 28916559 PMCID: PMC5666144 DOI: 10.1128/aem.01578-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/31/2017] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.
Collapse
|
26
|
Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1315-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Dawkins KL, Furse JM, Wild CH, Hughes JM. A novel genus and cryptic species harboured within the monotypic freshwater crayfish genus Tenuibranchiurus Riek, 1951 (Decapoda: Parastacidae). PeerJ 2017; 5:e3310. [PMID: 28560095 PMCID: PMC5445942 DOI: 10.7717/peerj.3310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/13/2017] [Indexed: 11/20/2022] Open
Abstract
Identifying species groups is an important yet difficult task, with there being no single accepted definition as to what constitutes a species, nor a set of criteria by which they should be delineated. Employing the General Lineage Concept somewhat circumvents these issues, as this concept allows multiple concordant lines of evidence to be used as support for species delimitation, where a species is defined as any independently evolving lineage. Genetically diverse groups have previously been identified within the monotypic parastacid genus Tenuibranchiurus Riek, 1951, but no further investigation of this diversity has previously been undertaken. Analysis of two mitochondrial DNA gene regions has previously identified two highly divergent groups within this taxon, representing populations from Queensland (Qld) and New South Wales (NSW), respectively. Additional testing within this study of both mitochondrial and nuclear DNA through species discovery analyses identified genetically diverse groups within these regions, which were further supported by lineage validation methods. The degree of genetic differentiation between Qld and NSW populations supports the recognition of two genera; with Qld retaining the original genus name Tenuibranchiurus, and NSW designated as Gen. nov. until a formal description is completed. Concordance between the species discovery and lineage validation methods supports the presence of six species within Tenuibranchiurus and two within Gen. nov. The recognition of additional species removes the monotypy of the genus, and the methods used can improve species identification within groups of organisms with taxonomic problems and cryptic diversity.
Collapse
Affiliation(s)
- Kathryn L Dawkins
- Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - James M Furse
- Environmental Futures Research Institute, Griffith University, Gold Coast, Queensland, Australia.,Miyazaki International College, Miyazaki, Japan
| | - Clyde H Wild
- Environmental Futures Research Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Jane M Hughes
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
28
|
Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X, Chen L, Su S, Chu JSC, Chen N, Xiong X. Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Fact 2017; 16:63. [PMID: 28420406 PMCID: PMC5395790 DOI: 10.1186/s12934-017-0680-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/09/2017] [Indexed: 11/13/2022] Open
Abstract
Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. Results We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. Conclusions This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0680-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Cheng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China. .,National Center for Citrus Improvement, Hunan Agricultural University, Changsha, 410128, China.
| | - Bo Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yahui Hong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xinxin Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengying Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jeffrey S C Chu
- Wuhan Frasergen Bioinformatics Co. Ltd, 666 Gaoxin Road, East Lake High-tech Zone, Wuahn, 430075, China.
| | - Nansheng Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 5S6, Canada.
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
29
|
Siddiquee S. Molecular Characteristics of Trichoderma Strains. Fungal Biol 2017. [DOI: 10.1007/978-3-319-64946-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Druzhinina IS, Kubicek EM, Kubicek CP. Several steps of lateral gene transfer followed by events of 'birth-and-death' evolution shaped a fungal sorbicillinoid biosynthetic gene cluster. BMC Evol Biol 2016; 16:269. [PMID: 28010735 PMCID: PMC5182515 DOI: 10.1186/s12862-016-0834-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
Background Sorbicillinoids are a family of complex cyclic polyketides produced by only a small number of distantly related ascomycete fungi such as Trichoderma (Sordariomycetes) and Penicillium (Eurotiomycetes). In T. reesei, they are synthesized by a gene cluster consisting of eight genes including two polyketide synthases (PKS). To reconstruct the evolutionary origin of this gene cluster, we examined the occurrence of these eight genes in ascomycetes. Results A cluster comprising at least six of them was only found in Hypocreales (Acremonium chrysogenum, Ustilaginoidea virens, Trichoderma species from section Longibrachiatum) and in Penicillium rubens (Eurotiales). In addition, Colletotrichum graminicola contained the two pks (sor1 and sor2), but not the other sor genes. A. chrysogenum was the evolutionary eldest species in which sor1, sor2, sor3, sor4 and sor6 were present. Sor5 was gained by lateral gene transfer (LGT) from P. rubens. In the younger Hypocreales (U. virens, Trichoderma spp.), the cluster evolved by vertical transfer, but sor2 was lost and regained by LGT from C. graminicola. SorB (=sor2) and sorD (=sor4) were symplesiomorphic in P. rubens, whereas sorA, sorC and sorF were obtained by LGT from A. chrysogenum, and sorE by LGT from Pestalotiopsis fici (Xylariales). The sorbicillinoid gene cluster in Trichoderma section Longibrachiatum is under strong purifying selection. The T. reesei sor genes are expressed during fast vegetative growth, during antagonism of other fungi and regulated by the secondary metabolism regulator LAE1. Conclusions Our findings pinpoint the evolution of the fungal sorbicillinoid biosynthesis gene cluster. The core cluster arose in early Hypocreales, and was complemented by LGT. During further speciation in the Hypocreales, it became subject to birth and death evolution in selected lineages. In P. rubrens (Eurotiales), two cluster genes were symplesiomorphic, and the whole cluster formed by LGT from at least two different fungal donors. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0834-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Eva M Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Wien, Austria
| | - Christian P Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria. .,, Present address: Steinschötelgasse 7, 1100, Wien, Austria.
| |
Collapse
|
31
|
Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang CL, Lin FC. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species. PLoS One 2016; 11:e0160613. [PMID: 27482910 PMCID: PMC4970770 DOI: 10.1371/journal.pone.0160613] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 02/05/2023] Open
Abstract
We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the application of Trichoderma biocontrol strains.
Collapse
Affiliation(s)
- Yuan Jiang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Liang Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Juan Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Xiao Feng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chu-Long Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (CLZ); (FCL)
| | - Fu-Cheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (CLZ); (FCL)
| |
Collapse
|
32
|
Andreolli M, Lampis S, Brignoli P, Vallini G. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9134-9143. [PMID: 26832871 DOI: 10.1007/s11356-016-6167-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.
Collapse
Affiliation(s)
- Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | | | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
33
|
Montoya QV, Meirelles LA, Chaverri P, Rodrigues A. Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie Van Leeuwenhoek 2016; 109:633-51. [PMID: 26885975 DOI: 10.1007/s10482-016-0666-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.
Collapse
Affiliation(s)
- Quimi Vidaurre Montoya
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil
| | - Lucas Andrade Meirelles
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, 2112 Plant Sciences Building, College Park, MD, 20742, USA.,Escuela de Biología, Universidad de Costa Rica, Apartado 11501-2060, San Pedro, San José, Costa Rica
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil.
| |
Collapse
|
34
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
35
|
Saroj DB, Dengeti SN, Aher S, Gupta AK. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei. World J Microbiol Biotechnol 2015; 31:995-9. [PMID: 25752236 DOI: 10.1007/s11274-015-1839-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
Abstract
Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.
Collapse
Affiliation(s)
- Dina B Saroj
- Advanced Enzyme Technologies Ltd., 5th Floor, A WING, Sun Magnetica, LIC Service Road, Louiswadi, Thane (W), 400 604, Maharashtra, India,
| | | | | | | |
Collapse
|
36
|
Abstract
The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species.
Collapse
Affiliation(s)
- W.M. Jaklitsch
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Wien, Austria
- Department for Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Life Sciences, Hasenauerstraße 38, A-1190 Wien, Austria
- Correspondence: W.M. Jaklitsch.
| | - H. Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Wien, Austria
- Department for Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Life Sciences, Hasenauerstraße 38, A-1190 Wien, Austria
| |
Collapse
|
37
|
Park MS, Oh SY, Cho HJ, Fong JJ, Cheon WJ, Lim YW. Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake). Antonie van Leeuwenhoek 2014; 106:593-603. [DOI: 10.1007/s10482-014-0230-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/02/2014] [Indexed: 10/24/2022]
|
38
|
Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biol 2014; 118:559-78. [DOI: 10.1016/j.funbio.2013.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022]
|
39
|
Yabuki T, Miyazaki K, Okuda T. Japanese species of the Longibrachiatum Clade of Trichoderma. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 2014; 52:2112-25. [PMID: 24719448 DOI: 10.1128/jcm.00429-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of 73 isolates of the emerging fungus Trichoderma isolated from human and animal clinical specimens were characterized morphologically and molecularly using a multilocus sequence analysis that included the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA and fragments of the translation elongation factor 1 alpha (Tef1), endochitinase CHI18-5 (Chi18-5), and actin 1 (Act1) genes. The most frequent species was Trichoderma longibrachiatum (26%), followed by Trichoderma citrinoviride (18%), the Hypocrea lixii/Trichoderma harzianum species complex (15%), the newly described species Trichoderma bissettii (12%), and Trichoderma orientale (11%). The most common anatomical sites of isolation in human clinical specimens were the respiratory tract (40%), followed by deep tissue (30%) and superficial tissues (26%), while all the animal-associated isolates were obtained from superficial tissue samples. Susceptibilities of the isolates to eight antifungal drugs in vitro showed mostly high MICs, except for voriconazole and the echinocandins.
Collapse
|
41
|
Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 2014; 80:1864-73. [PMID: 24413597 PMCID: PMC3957631 DOI: 10.1128/aem.03375-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023] Open
Abstract
Trichoderma parareesei and Trichoderma reesei (teleomorph Hypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerly T. reesei) has been identified as T. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers in in vitro assays. A Trichoderma microarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138 Trichoderma probe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated. T. parareesei T6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense against Botrytis cinerea and growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-related LOX1 and EIN2 genes and the salt tolerance SOS1 gene at 24 h and that of the salicylic acid (SA)-related PR-1 gene at 48 h after T6 inoculation. Our study demonstrates that the T. parareesei T6-tomato interaction is beneficial to both partners.
Collapse
Affiliation(s)
- M Belén Rubio
- Spanish-Portuguese Centre for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Xie BB, Qin QL, Shi M, Chen LL, Shu YL, Luo Y, Wang XW, Rong JC, Gong ZT, Li D, Sun CY, Liu GM, Dong XW, Pang XH, Huang F, Liu W, Chen XL, Zhou BC, Zhang YZ, Song XY. Comparative genomics provide insights into evolution of trichoderma nutrition style. Genome Biol Evol 2014; 6:379-90. [PMID: 24482532 PMCID: PMC3942035 DOI: 10.1093/gbe/evu018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma.
Collapse
Affiliation(s)
- Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Lei-Lei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yan-Li Shu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yan Luo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiao-Wei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Jin-Cheng Rong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Zhi-Ting Gong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Dan Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Cai-Yun Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Gui-Ming Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Wei Dong
- Technology Center, Shandong Tobacco Industry Corporation, Jinan, China
| | - Xiu-Hua Pang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Feng Huang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| |
Collapse
|
43
|
Novel Endophytic Trichoderma spp. Isolated from Healthy Coffea arabica Roots are Capable of Controlling Coffee Tracheomycosis. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5040750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Disentangling the Trichoderma viridescens complex. Persoonia - Molecular Phylogeny and Evolution of Fungi 2013; 31:112-46. [PMID: 24761039 PMCID: PMC3904046 DOI: 10.3767/003158513x672234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/26/2013] [Indexed: 11/25/2022]
Abstract
Trichoderma viridescens is recognised as a species complex. Multigene analyses based on the translation elongation factor 1-alpha encoding gene (tef1), a part of the rpb2 gene, encoding the second largest RNA polymerase subunit and the larger subunit of ATP citrate lyase (acl1) reveals 13 phylogenetic species with little or no phenotypic differentiation. This is the first use of acl1 in Trichoderma phylogenetics. The typification of T. viridescens s.str. is clarified and Hypocrea viridescens is replaced by the new name T. paraviridescens. Besides these two species, eleven are phylogenetically recognised and T. olivascens, T. viridarium, T. virilente, T. trixiae, T. viridialbum, T. appalachiense, T. neosinense, T. composticola, T. nothescens and T. sempervirentis are formally described and illustrated. Several species produce yellow diffusing pigment on cornmeal dextrose agar, particularly after storage at 15 °C, while T. olivascens is characterised by the formation of an olivaceous pigment. The results are compared with earlier publications on this group of species.
Collapse
|
45
|
Fan X, Zhou Y, Xiao Y, Bian Y. Cloning and characterization of two allelic glyceraldehyde-3-phosphate dehydrogenase genes in Auricularia auricula-judae. World J Microbiol Biotechnol 2013; 30:181-9. [PMID: 23877748 DOI: 10.1007/s11274-013-1436-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
Two allelic variants of the gpd gene, Gpd(a) and Gpd(b), were isolated based on a putative glyceraldehyde-3-phosphate dehydrogenase encoding sequence from the transcriptome of Auricularia auricula-judae strain Au916. The two alleles were found to have a 73 bp length discrepancy and 39 SNP variations. Both of the genomic DNA sequences of two alleles were interrupted by five introns, and encoded a same 340 aa protein. Intron positions analysis showed that the first intron was absent, but the last unique intron was gained in A. auricula-judae. Allele-specific expression analysis showed that the Gpd(a) and Gpd(b) were expressed with no significant difference in dikaryotic mycelia of A. auricula-judae. To the best of our knowledge, this is the first report about the detection of two allelic gpd genes in A. auricula-judae, as well as the application of allele-specific primers in gene expression analysis for this edible fungus.
Collapse
Affiliation(s)
- Xiuzhi Fan
- Institute of Applied Mycology, Huazhong Agricultural University, No. 1 Shizishan Rd., Wuhan, 430070, Hubei, China
| | | | | | | |
Collapse
|
46
|
Abstract
Unitary nomenclature demands the use of a single name for pleomorphic fungi determined according to priority. For this reason combinations in Trichoderma are here provided for 46 species for which such a combination is lacking. Although many more such species are known, only those are included here that are dealt with in more recent papers and where some DNA data are available in GenBank, even if erroneous; for other species it is strongly recommended to consult databases like Index Fungorum or MycoBank. Information on types is provided for most species, and representative cultures, GenBank accessions for tef1 and rpb2, and important references are given for all species.
Collapse
|
47
|
Bubner P, Plank H, Nidetzky B. Visualizing cellulase activity. Biotechnol Bioeng 2013; 110:1529-49. [DOI: 10.1002/bit.24884] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/08/2013] [Accepted: 02/22/2013] [Indexed: 11/08/2022]
|
48
|
|
49
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
50
|
Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B. Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 2012; 287:43215-22. [PMID: 23118223 PMCID: PMC3527909 DOI: 10.1074/jbc.m112.419952] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellulose is the most abundant biopolymer and a major reservoir of fixed carbon on earth. Comprehension of the elusive mechanism of its enzymatic degradation represents a fundamental problem at the interface of biology, biotechnology, and materials science. The interdependence of cellulose disintegration and hydrolysis and the synergistic interplay among cellulases is yet poorly understood. Here we report evidence from in situ atomic force microscopy (AFM) that delineates degradation of a polymorphic cellulose substrate as a dynamic cycle of alternating exposure and removal of crystalline fibers. Direct observation shows that chain-end-cleaving cellobiohydrolases (CBH I, CBH II) and an internally chain-cleaving endoglucanase (EG), the major components of cellulase systems, take on distinct roles: EG and CBH II make the cellulose surface accessible for CBH I by removing amorphous-unordered substrate areas, thus exposing otherwise embedded crystalline-ordered nanofibrils of the cellulose. Subsequently, these fibrils are degraded efficiently by CBH I, thereby uncovering new amorphous areas. Without prior action of EG and CBH II, CBH I was poorly active on the cellulosic substrate. This leads to the conclusion that synergism among cellulases is morphology-dependent and governed by the cooperativity between enzymes degrading amorphous regions and those targeting primarily crystalline regions. The surface-disrupting activity of cellulases therefore strongly depends on mesoscopic structural features of the substrate: size and packing of crystalline fibers are key determinants of the overall efficiency of cellulose degradation.
Collapse
Affiliation(s)
- Thomas Ganner
- Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|