1
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
2
|
Giuraniuc CV, Parkin C, Almeida MC, Fricker M, Shadmani P, Nye S, Wehmeier S, Chawla S, Bedekovic T, Lehtovirta-Morley L, Richards DM, Gow NA, Brand AC. Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans. mBio 2023; 14:e0115723. [PMID: 37750683 PMCID: PMC10653887 DOI: 10.1128/mbio.01157-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Intracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail.
Collapse
Affiliation(s)
- C. V. Giuraniuc
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - C. Parkin
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - M. C. Almeida
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - M. Fricker
- School of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - P. Shadmani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - S. Nye
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - S. Wehmeier
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Chawla
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - T. Bedekovic
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - L. Lehtovirta-Morley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - D. M. Richards
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - N. A. Gow
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - A. C. Brand
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Recent Advances in Chitin Biosynthesis Associated with the Morphology and Secondary Metabolite Synthesis of Filamentous Fungi in Submerged Fermentation. J Fungi (Basel) 2023; 9:jof9020205. [PMID: 36836319 PMCID: PMC9967639 DOI: 10.3390/jof9020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolites produced by filamentous fungi are used extensively in the food and drug industries. With the development of the morphological engineering of filamentous fungi, numerous biotechnologies have been applied to alter the morphology of fungal mycelia and enhance the yields and productivity of target metabolites during submerged fermentation. Disruption of chitin biosynthesis can modify the cell growth and mycelial morphology of filamentous fungi and regulate the biosynthesis of metabolites during submerged fermentation. In this review, we present a comprehensive coverage of the categories and structures of the enzyme chitin synthase, chitin biosynthetic pathways, and the association between chitin biosynthesis and cell growth and metabolism in filamentous fungi. Through this review, we hope to increase awareness of the metabolic engineering of filamentous fungal morphology, provide insights into the molecular mechanisms of morphological control via chitin biosynthesis, and describe strategies for the application of morphological engineering to enhance the production of target metabolites in filamentous fungi during submerged fermentation.
Collapse
|
4
|
Vacuolal and Peroxisomal Calcium Ion Transporters in Yeasts and Fungi: Key Role in the Translocation of Intermediates in the Biosynthesis of Fungal Metabolites. Genes (Basel) 2022; 13:genes13081450. [PMID: 36011361 PMCID: PMC9407949 DOI: 10.3390/genes13081450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Highlights The intracellular calcium content plays a key role in the expression of genes involved in the biosynthesis and secretion of fungal metabolites. The cytosolic calcium concentration in fungi is maintained by influx through the cell membrane and by release from store organelles. Some MSF transporters, e.g., PenV of Penicillium chrysogenum and CefP of Acremonium chrysogenum belong to the TRP calcium ion channels. A few of the numerous calcium ion transporters existing in organelles of different filamentous fungi have been characterized at the functional and subcellular localization levels. The cytosolic calcium signal seems to be transduced by the calcitonin/calcineurin cascade controlling the expression of many fungal genes.
Abstract The intracellular calcium content in fungal cells is influenced by a large number of environmental and nutritional factors. Sharp changes in the cytosolic calcium level act as signals that are decoded by the cell gene expression machinery, resulting in several physiological responses, including differentiation and secondary metabolites biosynthesis. Expression of the three penicillin biosynthetic genes is regulated by calcium ions, but there is still little information on the role of this ion in the translocation of penicillin intermediates between different subcellular compartments. Using advanced information on the transport of calcium in organelles in yeast as a model, this article reviews the recent progress on the transport of calcium in vacuoles and peroxisomes and its relation to the translocation of biosynthetic intermediates in filamentous fungi. The Penicillium chrysogenum PenV vacuole transporter and the Acremonium chrysogenum CefP peroxisomal transporter belong to the transient receptor potential (TRP) class CSC of calcium ion channels. The PenV transporter plays an important role in providing precursors for the biosynthesis of the tripeptide δ-(-α-aminoadipyl-L-cysteinyl-D-valine), the first intermediate of penicillin biosynthesis in P. chrysogenum. Similarly, CefP exerts a key function in the conversion of isopenicillin N to penicillin N in peroxisomes of A. chrysogenum. These TRP transporters are different from other TRP ion channels of Giberella zeae that belong to the Yvc1 class of yeast TRPs. Recent advances in filamentous fungi indicate that the cytosolic calcium concentration signal is connected to the calcitonin/calcineurin signal transduction cascade that controls the expression of genes involved in the subcellular translocation of intermediates during fungal metabolite biosynthesis. These advances open new possibilities to enhance the expression of important biosynthetic genes in fungi.
Collapse
|
5
|
Time-Lapse Imaging of Root Pathogenesis and Fungal Proliferation Without Physically Disrupting Roots. Methods Mol Biol 2021. [PMID: 34686984 DOI: 10.1007/978-1-0716-1795-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microscopic observation of root disease onset and progression is typically performed by harvesting different plants at multiple time points. This approach prevents the monitoring of individual encounter sites over time, often mechanically damages roots, and exposes roots to unnatural conditions during observation. Here, we describe a method developed to avoid these problems and its application to study Fusarium oxysporum-Arabidopsis thaliana interactions. This method enabled three-dimensional, time-lapse imaging of both A. thaliana and F. oxysporum as they interact via the use of confocal and multi-photon microscopy and facilitated inquiries about the genetic mechanism underpinning Fusarium wilt.
Collapse
|
6
|
Muñoz A, Bertuzzi M, Seidel C, Thomson D, Bignell EM, Read ND. Live-cell imaging of rapid calcium dynamics using fluorescent, genetically-encoded GCaMP probes with Aspergillus fumigatus. Fungal Genet Biol 2021; 151:103470. [PMID: 32979514 DOI: 10.1016/j.fgb.2020.103470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Calcium signalling plays a fundamental role in fungal intracellular signalling. Previous approaches (fluorescent dyes, bioluminescent aequorin, genetically encoded cameleon probes) with imaging rapid subcellular changes in cytosolic free calcium ([Ca2+]c) in fungal cells have produced inconsistent results. Recent data obtained with new fluorescent, genetically encoded GCaMP probes, that are very bright, have resolved this problem. Here, exposing conidia or conidial germlings to high external Ca2+, as an example of an external stressor, induced very dramatic, rapid and dynamic [Ca2+]c changes with localized [Ca2+]c transients and waves. Considerable heterogeneity in the timing of Ca2+ responses of different spores/germlings within the cell population was observed.
Collapse
Affiliation(s)
- Alberto Muñoz
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Constanze Seidel
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Darren Thomson
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK.
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
7
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|
8
|
Aequorin as a Useful Calcium-Sensing Reporter in Candida albicans. J Fungi (Basel) 2021; 7:jof7040319. [PMID: 33924126 PMCID: PMC8074299 DOI: 10.3390/jof7040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
In Candida albicans, calcium ions (Ca2+) regulate the activity of several signaling pathways, especially the calcineurin signaling pathway. Ca2+ homeostasis is also important for cell polarization, hyphal extension, and plays a role in contact sensing. It is therefore important to obtain accurate tools with which Ca2+ homeostasis can be addressed in this fungal pathogen. Aequorin from Aequorea victoria has been used in eukaryotic cells for detecting intracellular Ca2+. A codon-adapted aequorin Ca2+-sensing expression system was therefore designed for probing cytosolic Ca2+ flux in C. albicans. The availability of a novel water-soluble formulation of coelenterazine, which is required as a co-factor, made it possible to measure bioluminescence as a readout of intracellular Ca2+ levels in C. albicans. Alkaline stress resulted in an immediate influx of Ca2+ from the extracellular medium. This increase was exacerbated in a mutant lacking the vacuolar Ca2+ transporter VCX1, thus confirming its role in Ca2+ homeostasis. Using mutants in components of a principal Ca2+ channel (MID1, CCH1), the alkaline-dependent Ca2+ spike was greatly reduced, thus highlighting the crucial role of this channel complex in Ca2+ uptake and homeostasis. Exposure to the antiarrhythmic drug amiodarone, known to perturb Ca2+ trafficking, resulted in increased cytoplasmic Ca2+ within seconds that was abrogated by the chelation of Ca2+ in the external medium. Ca2+ import was also dependent on the Cch1/Mid1 Ca2+ channel in amiodarone-exposed cells. In conclusion, the aequorin Ca2+ sensing reporter developed here is an adequate tool with which Ca2+ homeostasis can be investigated in C. albicans.
Collapse
|
9
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
10
|
Kim HS, Kim JE, Hwangbo A, Akerboom J, Looger LL, Duncan R, Son H, Czymmek KJ, Kang S. Evaluation of multi-color genetically encoded Ca 2+ indicators in filamentous fungi. Fungal Genet Biol 2021; 149:103540. [PMID: 33607281 DOI: 10.1016/j.fgb.2021.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Genetically encoded Ca2+ indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca2+ signaling in fungi, ranging from documenting Ca2+ signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca2+ signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca2+ indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 and F. verticillioides elongation factor-1α gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca2+ indicator. Wild-type and three Ca2+ signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jasper Akerboom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States; Donald Danforth Plant Science Center, Saint Louis, MO 63132, United States.
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
11
|
Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat Commun 2020; 11:5158. [PMID: 33056992 PMCID: PMC7557911 DOI: 10.1038/s41467-020-18999-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellular differentiation, including lateral branching in pathogenic Aspergillus fumigatus and Aspergillus flavus, and appressorium formation in the rice blast pathogen Magnaporthe grisea. The Aspergillus branching response is specific to a subset of oxylipins and is signaled through G-protein coupled receptors. RNA-Seq profiling shows differential expression of many transcription factors in response to 5,8-diHODE. Screening of null mutants of 33 of those transcription factors identifies three transcriptional regulators that appear to mediate the Aspergillus branching response; one of the mutants is locked in a hypo-branching phenotype, while the other two mutants display a hyper-branching phenotype. Our work reveals an endogenous signal that triggers crucial developmental processes in filamentous fungi, and opens new avenues for research on the morphogenesis of filamentous fungi. Fungi produce oxygenated fatty acids, or oxylipins, of unclear function. Here, Niu et al. show that an Aspergillus oxylipin induces various developmental processes in several fungi, including lateral branching in human pathogenic Aspergillus species, and appressorium formation in the plant pathogen Magnaporthe grisea.
Collapse
|
12
|
Schäffer DE, Iyer LM, Burroughs AM, Aravind L. Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. Front Genet 2020; 11:34. [PMID: 32117448 PMCID: PMC7016017 DOI: 10.3389/fgene.2020.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 01/30/2023] Open
Abstract
The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.
Collapse
Affiliation(s)
- Daniel E Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.,Science, Mathematics, and Computer Science Magnet Program, Montgomery Blair High School, Silver Spring, MD, United States
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Takeshita N. Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. Curr Top Microbiol Immunol 2019; 425:113-129. [PMID: 31974757 DOI: 10.1007/82_2019_193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are covered by a cell wall consisting mainly of chitin and glucan. The synthesis of chitin, a β-1,4-linked homopolymer of N-acetylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are integral membrane proteins that have been classified into seven classes. ChsB, a class III chitin synthase, is known to play a key role in hyphal tip growth and has been used here as a model to understand the cell biology of cell wall biosynthesis in Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the plasma membrane for new cell wall synthesis. Super-resolution localization imaging as a powerful biophysical approach indicated dynamics of the Spitzenkörper where spatiotemporally regulated exocytosis and cell extension, whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. It is getting clear that turgor pressure and cell wall pressure are involved in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the cell wall synthesis and tip growth meet again.
Collapse
Affiliation(s)
- Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
14
|
Xie XL, Yang H, Chen LN, Wei Y, Zhang SH. ANXC7 Is a Mitochondrion-Localized Annexin Involved in Controlling Conidium Development and Oxidative Resistance in the Thermophilic Fungus Thermomyces lanuginosus. Front Microbiol 2018; 9:1770. [PMID: 30271384 PMCID: PMC6142879 DOI: 10.3389/fmicb.2018.01770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 01/23/2023] Open
Abstract
Annexins (ANXs) are widely expressed and structurally related proteins which play multiple biological roles in animals, plants, and fungi. Although ANXs have been localized to the cytosol and the cell membrane and the molecular basis of the four annexin repeats is well established, the in vivo roles of these proteins are still far from clear, particularly with regard to the filamentous fungi. Thermomyces lanuginosus, a thermophilic fungus, is widely used in the fermentation industry; however, the role of ANX in this organism is unknown. In this study, a single ANX homologue (ANXC7) was identified and characterized in T. lanuginosus. The expression pattern indicated that ANXC7 is closely associated to conidium development, and it accumulated in the mitochondria of the forming conidia. The deletion of ANXC7 (ΔANXC7) resulted in no obvious phenotype related to colony growth on solid CM medium. However, when ΔANXC7 was grown in CM liquid culture, the mycelium masses appeared to be larger and looser compared to the wild-type. Additionally, the dry weight of the mutant mycelia was significantly increased. Under conditions that compromise cell-wall integrity, ΔANXC7 was less vulnerable than the wild-type with regard to such damage. Moreover, based on a surface hydrophobicity test, the ΔANXC7 strain was clearly less hydrophobic. The growth of ΔANXC7 was inhibited when grown under selected stress conditions, particularly with regard to salt stress; however, the oxidative resistance to exogenous H2O2 in ΔANXC7 was increased, and endogenous H2O2 levels within the ΔANXC7 were lower than in the wild-type, thereby suggesting that the ANXC7 specifically controls oxidative resistance. Based on microscopic observation, 4-day-conidia were more prevalent than 5-day conidia on the conidiophore stalk of ΔANXC7, even though the ΔANXC7 demonstrated an increased production of conidia during these days, indicating precocious conidial maturation and shedding from the conidiophore stalk in this strain. Taken together, our data indicate that ANXC7 localizes to the mitochondria and is involved in controlling conidium development and oxidative resistance in T. lanuginosus.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Huan Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
16
|
Neethirajan S, Ragavan K, Weng X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Oscillatory fungal cell growth. Fungal Genet Biol 2017; 110:10-14. [PMID: 29229585 DOI: 10.1016/j.fgb.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/26/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Cells are dynamic systems, the state of which undergoes constant alteration that results in morphological changes and movement. Many dynamic cellular processes that appear continuous are driven by underlying mechanisms that oscillate with distinct periods. For example eukaryotic cells do not grow continuously, but rather by pulsed extension of the periphery. Stepwise cell extension at the hyphal tips of several filamentous fungi was discovered 20 years ago, but only a few molecular details of the mechanism have been clarified since then. A recent study has provided evidence for correlations among intracellular Ca2+ levels, actin assembly, exocytosis and cell extension in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. The coordinated oscillation of these machineries are likely to be ubiquitous among all eukaryotes. Indeed, intracellular Ca2+ levels and/or actin polymerization oscillate in mammalian and plant cells. This review summarizes the mechanisms of oscillation in several systems.
Collapse
|
18
|
Kim HS, Kim JE, Son H, Frailey D, Cirino R, Lee YW, Duncan R, Czymmek KJ, Kang S. Roles of three Fusarium graminearum membrane Ca 2+ channels in the formation of Ca 2+ signatures, growth, development, pathogenicity and mycotoxin production. Fungal Genet Biol 2017; 111:30-46. [PMID: 29175365 DOI: 10.1016/j.fgb.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Similar to animals and plants, external stimuli cause dynamic spatial and temporal changes of cytoplasmic Ca2+ in fungi. Such changes are referred as the Ca2+ signature and control cellular responses by modulating the activity or location of diverse Ca2+-binding proteins (CBPs) and also indirectly affecting proteins that interact with CBPs. To understand the mechanism underpinning Ca2+ signaling, therefore, characterization of how Ca2+ moves to and from the cytoplasm to create Ca2+ signatures under different conditions is fundamental. Three genes encoding plasma membrane Ca2+ channels in a Fusarium graminearum strain that expresses a fluorescent protein-based Ca2+ indicator in the cytoplasm were mutagenized to investigate their roles in the generation of Ca2+ signatures under different growth conditions and genetic backgrounds. The genes disrupted include CCH1 and MID1, which encode a high affinity Ca2+ uptake system, and FIG1, encoding a low affinity Ca2+ channel. Resulting mutants were also analyzed for growth, development, pathogenicity and mycotoxin production to determine how loss of each of the genes alters these traits. To investigate whether individual genes influence the function and expression of other genes, phenotypes and Ca2+ signatures of their double and triple mutants, as well as their expression patterns, were analyzed.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, Newark, DE 19711, USA
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel Frailey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert Cirino
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, Newark, DE 19711, USA
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Bower DV, Lansdale N, Navarro S, Truong TV, Bower DJ, Featherstone NC, Connell MG, Al Alam D, Frey MR, Trinh LA, Fernandez GE, Warburton D, Fraser SE, Bennett D, Jesudason EC. SERCA directs cell migration and branching across species and germ layers. Biol Open 2017; 6:1458-1471. [PMID: 28821490 PMCID: PMC5665464 DOI: 10.1242/bio.026039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022] Open
Abstract
Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland, and the Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Nick Lansdale
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Division of Child Health, Institute of Translational Medicine, University of Liverpool, Liverpool L12 2AP, UK
| | - Sonia Navarro
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thai V Truong
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Dan J Bower
- Center for Space and Habitability, University of Bern, 3012 Bern, Switzerland
| | - Neil C Featherstone
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Marilyn G Connell
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Denise Al Alam
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Le A Trinh
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daimark Bennett
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- NHS Lothian, Edinburgh, EH14 1TY, UK
| |
Collapse
|
20
|
Candeo A, Doccula FG, Valentini G, Bassi A, Costa A. Light Sheet Fluorescence Microscopy Quantifies Calcium Oscillations in Root Hairs of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:1161-1172. [PMID: 28379562 PMCID: PMC6383626 DOI: 10.1093/pcp/pcx045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs.
Collapse
Affiliation(s)
- Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Fabrizio G. Doccula
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| |
Collapse
|
21
|
Pulses of Ca 2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 2017; 114:5701-5706. [PMID: 28507141 DOI: 10.1073/pnas.1700204114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.
Collapse
|
22
|
Hernández-Ortiz P, Espeso EA. Spatiotemporal dynamics of the calcineurin target CrzA. Cell Signal 2016; 29:168-180. [PMID: 27832964 DOI: 10.1016/j.cellsig.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/26/2016] [Accepted: 11/05/2016] [Indexed: 01/23/2023]
Abstract
The response of Aspergilli to elevated concentrations of extracellular calcium and manganese, or environmental alkalinization is mediated by CrzA, a calcineurin-responsive transcription factor (TF). CrzA is the effector of a signaling pathway which includes the apical protein's calmodulin and calcineurin, and the protein kinases GskA and CkiA. Preferentially located in the cytoplasm, CrzA is the only element of the pathway modifying its localization under those stress conditions, being imported into nuclei. Remarkably, there is a direct relationship between the nature/intensity of the stimulus and the pace of nuclear import and time of nuclear permanence of CrzA. Alkalinity caused a transient nuclear accumulation of CrzA while high Ca2+ and Mn2+ concentrations generated a long-lasting accumulation. Furthermore, Ca2+ concentrations (below 5mM) that are non-toxic for a crzAΔ mutant promoted full signaling of CrzA. However, micromolar concentrations or a mutation disrupting the interaction of CrzA with the phosphatase complex calcineurin, permitted the visualization of a transient and polarized nuclear accumulation of the TF in a tip-to-base gradient. Overall, these results support a model in which nucleo-cytoplasmic dynamics and transcriptional activity of CrzA are driven by apical signals transmitted by calmodulin and calcineurin. This communication is essential to understand Ca+2-induced stress response in fungi.
Collapse
Affiliation(s)
- Patricia Hernández-Ortiz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
23
|
Noble LM, Holland LM, McLauchlan AJ, Andrianopoulos A. A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans. Genetics 2016; 204:1161-1175. [PMID: 27672092 PMCID: PMC5105849 DOI: 10.1534/genetics.116.191122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F1 progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10012
| | - Linda M Holland
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, D04, Ireland
| | - Alisha J McLauchlan
- Genetics, Genomics and Development, School of BioSciences University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Development, School of BioSciences University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Lange M, Weihmann F, Schliebner I, Horbach R, Deising HB, Wirsel SGR, Peiter E. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis. PLoS One 2016; 11:e0158561. [PMID: 27359114 PMCID: PMC4928787 DOI: 10.1371/journal.pone.0158561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/19/2016] [Indexed: 12/02/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fabian Weihmann
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivo Schliebner
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Horbach
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B. Deising
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan G. R. Wirsel
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
25
|
Abstract
Filamentous fungi are extremely polarized organisms, exhibiting continuous growth at their hyphal tips. The hyphal form is related to their pathogenicity in animals and plants, and their high secretion ability for biotechnology. Polarized growth requires a sequential supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeleton. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain the cell polarity. This review summarizes recent findings unraveling the mechanism of polarized growth with special emphasis on the role of actin and microtubule cytoskeleton and polarity marker proteins. Rapid insertions of membranes via highly active exocytosis at hyphal tips could quickly dilute the accumulated polarity marker proteins. Recent findings by a super-resolution microscopy indicate that filamentous fungal cells maintain their polarity at the tips by repeating transient assembly and disassembly of polarity sites.
Collapse
Affiliation(s)
- Norio Takeshita
- a Department of Microbiology , Institute for Applied Bioscience, Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany.,b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
26
|
Lange M, Peiter E. Cytosolic free calcium dynamics as related to hyphal and colony growth in the filamentous fungal pathogen Colletotrichum graminicola. Fungal Genet Biol 2016; 91:55-65. [PMID: 27063059 DOI: 10.1016/j.fgb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/23/2023]
Abstract
Tip growth of pollen tubes and root hairs of plants is oscillatory and orchestrated by tip-focussed variations of cytosolic free calcium ([Ca(2+)]cyt). Hyphae of filamentous fungi are also tubular tip-growing cells, and components of the Ca(2+) signalling machinery, such as Ca(2+) channels and Ca(2+) sensors, are known to be important for fungal growth. In this study, we addressed the questions if tip-focussed [Ca(2+)]cyt transients govern hyphal and whole-colony growth in the maize pathogen Colletotrichum graminicola, and whether colony-wide [Ca(2+)]cyt dynamics rely on external Ca(2+) or internal Ca(2+) stores. Ratiometric fluorescence microscopy of individual hyphae expressing the Ca(2+) reporter Yellow Cameleon 3.6 revealed that Ca(2+) spikes in hyphal tips precede the re-initiation of growth after wounding. Tip-focussed [Ca(2+)]cyt spikes were also observed in undisturbed growing hyphae. They occurred not regularly and at a higher rate in hyphae growing at a medium-glass interface than in those growing on an agar surface. Hyphal tip growth was non-pulsatile, and growth speed was not correlated with the rate of spike occurrence. A possible relationship of [Ca(2+)]cyt spike generation and growth of whole colonies was assessed by using a codon-optimized version of the luminescent Ca(2+) reporter Aequorin. Depletion of extracellular free Ca(2+) abolished [Ca(2+)]cyt spikes nearly completely, but had only a modest effect on colony growth. In a pharmacological survey, some inhibitors targeting Ca(2+) influx or release from internal stores repressed growth strongly. However, although some of those inhibitors also affected [Ca(2+)]cyt spike generation, the effects on both parameters were not correlated. Collectively, the results indicate that tip growth of C. graminicola is non-pulsatile and not mechanistically linked to tip-focused or global [Ca(2+)]cyt spikes, which are likely a response to micro-environmental parameters, such as the physical properties of the growth surface.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
| |
Collapse
|
27
|
Khalaj K, Aminollahi E, Bordbar A, Khalaj V. Fungal annexins: a mini review. SPRINGERPLUS 2015; 4:721. [PMID: 26636009 PMCID: PMC4656261 DOI: 10.1186/s40064-015-1519-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
Abstract
The large family of annexins is composed of more than a thousand members which are typically phospholipid-binding proteins. Annexins act in a number of signalling networks and membrane trafficking events which are fundamental to cell physiology. Annexins exert their functions mainly through their calcium-dependent membrane binding abilities; however, some calcium-independent interactions have been documented in the literature. Although mammalian and plant annexins have been well characterized, little is known about this family in fungi. This mini review summarizes the available data on fungal annexins.
Collapse
Affiliation(s)
- Kamand Khalaj
- Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Aminollahi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. SCIENCE ADVANCES 2015; 1:e1500947. [PMID: 26665168 PMCID: PMC4673053 DOI: 10.1126/sciadv.1500947] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/14/2015] [Indexed: 05/02/2023]
Abstract
Polar (directional) cell growth, a key cellular mechanism shared among a wide range of species, relies on targeted insertion of new material at specific locations of the plasma membrane. How these cell polarity sites are stably maintained during massive membrane insertion has remained elusive. Conventional live-cell optical microscopy fails to visualize polarity site formation in the crowded cell membrane environment because of its limited resolution. We have used advanced live-cell imaging techniques to directly observe the localization, assembly, and disassembly processes of cell polarity sites with high spatiotemporal resolution in a rapidly growing filamentous fungus, Aspergillus nidulans. We show that the membrane-associated polarity site marker TeaR is transported on microtubules along with secretory vesicles and forms a protein cluster at that point of the apical membrane where the plus end of the microtubule touches. There, a small patch of membrane is added through exocytosis, and the TeaR cluster gets quickly dispersed over the membrane. There is an incessant disassembly and reassembly of polarity sites at the growth zone, and each new polarity site locus is slightly offset from preceding ones. On the basis of our imaging results and computational modeling, we propose a transient polarity model that explains how cell polarity is stably maintained during highly active directional growth.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Natasha Savage
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yiming Li
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Anna Bergs
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
| | - Nathalie Grün
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
| | - Daria Kohler
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Rebecca Donnelly
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Nanotechnology, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| |
Collapse
|
29
|
Muñoz A, Bertuzzi M, Bettgenhaeuser J, Iakobachvili N, Bignell EM, Read ND. Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus. PLoS One 2015; 10:e0138008. [PMID: 26402916 PMCID: PMC4581630 DOI: 10.1371/journal.pone.0138008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an inhaled fungal pathogen of human lungs, the developmental growth of which is reliant upon Ca2+-mediated signalling. Ca2+ signalling has regulatory significance in all eukaryotic cells but how A. fumigatus uses intracellular Ca2+ signals to respond to stresses imposed by the mammalian lung is poorly understood. In this work, A. fumigatus strains derived from the clinical isolate CEA10, and a non-homologous recombination mutant ΔakuBKU80, were engineered to express the bioluminescent Ca2+-reporter aequorin. An aequorin-mediated method for routine Ca2+ measurements during the early stages of colony initiation was successfully developed and dynamic changes in cytosolic free calcium ([Ca2+]c) in response to extracellular stimuli were measured. The response to extracellular challenges (hypo- and hyper-osmotic shock, mechanical perturbation, high extracellular Ca2+, oxidative stress or exposure to human serum) that the fungus might be exposed to during infection, were analysed in living conidial germlings. The 'signatures' of the transient [Ca2+]c responses to extracellular stimuli were found to be dose- and age-dependent. Moreover, Ca2+-signatures associated with each physico-chemical treatment were found to be unique, suggesting the involvement of heterogeneous combinations of Ca2+-signalling components in each stress response. Concordant with the involvement of Ca2+-calmodulin complexes in these Ca2+-mediated responses, the calmodulin inhibitor trifluoperazine (TFP) induced changes in the Ca2+-signatures to all the challenges. The Ca2+-chelator BAPTA potently inhibited the initial responses to most stressors in accordance with a critical role for extracellular Ca2+ in initiating the stress responses.
Collapse
Affiliation(s)
- Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jan Bettgenhaeuser
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nino Iakobachvili
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elaine M. Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (NDR); (EMB)
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (NDR); (EMB)
| |
Collapse
|
30
|
Kim HS, Kim JE, Frailey D, Nohe A, Duncan R, Czymmek KJ, Kang S. Roles of three Fusarium oxysporum calcium ion (Ca2+) channels in generating Ca2+ signatures and controlling growth. Fungal Genet Biol 2015; 82:145-57. [DOI: 10.1016/j.fgb.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
|
31
|
|
32
|
Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Moscatiello R, Sello S, Novero M, Negro A, Bonfante P, Navazio L. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita. THE NEW PHYTOLOGIST 2014; 203:1012-1020. [PMID: 24845011 DOI: 10.1111/nph.12849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Gonçalves AP, Cordeiro JM, Monteiro J, Muñoz A, Correia-de-Sá P, Read ND, Videira A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death. J Cell Sci 2014; 127:3817-29. [PMID: 25037570 PMCID: PMC4150065 DOI: 10.1242/jcs.152058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The model organism Neurospora crassa undergoes programmed cell death when exposed to staurosporine. Here, we show that staurosporine causes defined changes in cytosolic free Ca2+ ([Ca2+]c) dynamics and a distinct Ca2+ signature that involves Ca2+ influx from the external medium and internal Ca2+ stores. We investigated the molecular basis of this Ca2+ response by using [Ca2+]c measurements combined with pharmacological and genetic approaches. Phospholipase C was identified as a pivotal player during cell death, because modulation of the phospholipase C signaling pathway and deletion of PLC-2, which we show to be involved in hyphal development, results in an inability to trigger the characteristic staurosporine-induced Ca2+ signature. Using Δcch-1, Δfig-1 and Δyvc-1 mutants and a range of inhibitors, we show that extracellular Ca2+ entry does not occur through the hitherto described high- and low-affinity Ca2+ uptake systems, but through the opening of plasma membrane channels with properties resembling the transient receptor potential (TRP) family. Partial blockage of the response to staurosporine after inhibition of a putative inositol-1,4,5-trisphosphate (IP3) receptor suggests that Ca2+ release from internal stores following IP3 formation combines with the extracellular Ca2+ influx.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J Miguel Cordeiro
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Monteiro
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Paulo Correia-de-Sá
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nick D Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
Muñoz A, Chu M, Marris PI, Sagaram US, Kaur J, Shah DM, Read ND. Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis inNeurospora crassa. Mol Microbiol 2014; 92:1357-74. [DOI: 10.1111/mmi.12634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Alberto Muñoz
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
- Manchester Fungal Infection Group; Institute of Inflammation and Repair; CTF Building; University of Manchester; Manchester M13 9NT UK
| | - Meiling Chu
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
| | - Peter I. Marris
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
| | - Uma S. Sagaram
- Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Jagdeep Kaur
- Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Dilip M. Shah
- Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Nick D. Read
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
- Manchester Fungal Infection Group; Institute of Inflammation and Repair; CTF Building; University of Manchester; Manchester M13 9NT UK
| |
Collapse
|
36
|
Abstract
Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca(2+) concentration activates many proteins, including calmodulin and the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals.
Collapse
|
37
|
Kwon MJ, Nitsche BM, Arentshorst M, Jørgensen TR, Ram AFJ, Meyer V. The transcriptomic signature of RacA activation and inactivation provides new insights into the morphogenetic network of Aspergillus niger. PLoS One 2013; 8:e68946. [PMID: 23894378 PMCID: PMC3722221 DOI: 10.1371/journal.pone.0068946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/04/2013] [Indexed: 12/23/2022] Open
Abstract
RacA is the main Rho GTPase in Aspergillus niger regulating polarity maintenance via controlling actin dynamics. Both deletion and dominant activation of RacA (Rac(G18V)) provoke an actin localization defect and thereby loss of polarized tip extension, resulting in frequent dichotomous branching in the ΔracA strain and an apolar growing phenotype for Rac(G18V). In the current study the transcriptomics and physiological consequences of these morphological changes were investigated and compared with the data of the morphogenetic network model for the dichotomous branching mutant ramosa-1. This integrated approach revealed that polar tip growth is most likely orchestrated by the concerted activities of phospholipid signaling, sphingolipid signaling, TORC2 signaling, calcium signaling and CWI signaling pathways. The transcriptomic signatures and the reconstructed network model for all three morphology mutants (ΔracA, Rac(G18V), ramosa-1) imply that these pathways become integrated to bring about different physiological adaptations including changes in sterol, zinc and amino acid metabolism and changes in ion transport and protein trafficking. Finally, the fate of exocytotic (SncA) and endocytotic (AbpA, SlaB) markers in the dichotomous branching mutant ΔracA was followed, demonstrating that hyperbranching does not per se result in increased protein secretion.
Collapse
Affiliation(s)
- Min Jin Kwon
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Benjamin M. Nitsche
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Berlin, Germany
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Thomas R. Jørgensen
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
| | - Arthur F. J. Ram
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- * E-mail: (AR); (VM)
| | - Vera Meyer
- Leiden University, Institute of Biology Leiden, Department Molecular Microbiology and Biotechnology, Leiden, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Berlin, Germany
- * E-mail: (AR); (VM)
| |
Collapse
|
38
|
Troppens DM, Chu M, Holcombe LJ, Gleeson O, O'Gara F, Read ND, Morrissey JP. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genet Biol 2013; 56:135-46. [PMID: 23624246 DOI: 10.1016/j.fgb.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature.
Collapse
|