1
|
Matha AR, Xie X, Maier RJ, Lin X. Nickel tolerance is channeled through C-4 methyl sterol oxidase Erg25 in the sterol biosynthesis pathway. PLoS Genet 2024; 20:e1011413. [PMID: 39283915 PMCID: PMC11426505 DOI: 10.1371/journal.pgen.1011413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Nickel (Ni) is an abundant element on Earth and it can be toxic to all forms of life. Unlike our knowledge of other metals, little is known about the biochemical response to Ni overload. Previous studies in mammals have shown that Ni induces various physiological changes including redox stress, hypoxic responses, as well as cancer progression pathways. However, the primary cellular targets of nickel toxicity are unknown. Here, we used the environmental fungus Cryptococcus neoformans as a model organism to elucidate the cellular response to exogenous Ni. We discovered that Ni causes alterations in ergosterol (the fungal equivalent of mammalian cholesterol) and lipid biosynthesis, and that the Sterol Regulatory Element-Binding transcription factor Sre1 is required for Ni tolerance. Interestingly, overexpression of the C-4 methyl sterol oxidase gene ERG25, but not other genes in the ergosterol biosynthesis pathway tested, increases Ni tolerance in both the wild type and the sre1Δ mutant. Overexpression of ERG25 with mutations in the predicted binding pocket to a metal cation cofactor sensitizes Cryptococcus to nickel and abolishes its ability to rescue the Ni-induced growth defect of sre1Δ. As overexpression of a known nickel-binding protein Ure7 or Erg3 with a metal binding pocket similar to Erg25 does not impact on nickel tolerance, Erg25 does not appear to simply act as a nickel sink. Furthermore, nickel induces more profound and specific transcriptome changes in ergosterol biosynthetic genes compared to hypoxia. We conclude that Ni targets the sterol biosynthesis pathway primarily through Erg25 in fungi. Similar to the observation in C. neoformans, Ni exposure reduces sterols in human A549 lung epithelial cells, indicating that nickel toxicity on sterol biosynthesis is conserved.
Collapse
Affiliation(s)
- Amber R. Matha
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Gaylord EA, Choy HL, Chen G, Briner SL, Doering TL. Sac1 links phosphoinositide turnover to cryptococcal virulence. mBio 2024; 15:e0149624. [PMID: 38953635 PMCID: PMC11323556 DOI: 10.1128/mbio.01496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cryptococcus neoformans is an environmentally acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells. C. neoformans may be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found that sac1 mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence.IMPORTANCECryptococcus neoformans is a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction between C. neoformans and host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene, SAC1, in these processes. Overall, this study contributes to our understanding of how C. neoformans interacts with and protects itself from host cells.
Collapse
Affiliation(s)
- Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guohua Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sydney L. Briner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Shi R, Lin X. Illuminating the Cryptococcus neoformans species complex: unveiling intracellular structures with fluorescent-protein-based markers. Genetics 2024; 227:iyae059. [PMID: 38752295 PMCID: PMC11228865 DOI: 10.1093/genetics/iyae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/06/2024] [Indexed: 07/09/2024] Open
Abstract
Cryptococcus neoformans is a fungal pathogen of the top critical priority recognized by the World Health Organization. This clinically important fungus also serves as a eukaryotic model organism. A variety of resources have been generated to facilitate investigation of the C. neoformans species complex, including congenic pairs, well-annotated genomes, genetic editing tools, and gene deletion sets. Here, we generated a set of strains with all major organelles fluorescently marked. We tested short organelle-specific targeting sequences and successfully labeled the following organelles by fusing the targeting sequences with a fluorescence protein: the plasma membrane, the nucleus, the peroxisome, and the mitochondrion. We used native cryptococcal Golgi and late endosomal proteins fused with a fluorescent protein to label these two organelles. These fluorescence markers were verified via colocalization using organelle-specific dyes. All the constructs for the fluorescent protein tags were integrated in an intergenic safe haven region. These organelle-marked strains were examined for growth and various phenotypes. We demonstrated that these tagged strains could be employed to track cryptococcal interaction with the host in phagocytosis assays. These strains also allowed us to discover remarkable differences in the dynamics of proteins targeted to different organelles during sexual reproduction. Additionally, we revealed that "dormant" spores transcribed and synthesized their own proteins and trafficked the proteins to the appropriate subcellular compartments, demonstrating that spores are metabolically active. We anticipate that these newly generated fluorescent markers will greatly facilitate further investigation of cryptococcal biology and pathogenesis.
Collapse
Affiliation(s)
- Ran Shi
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Dang TTV, Maufrais C, Colin J, Moyrand F, Mouyna I, Coppée JY, Onyishi CU, Lipecka J, Guerrera IC, May RC, Janbon G. Alternative TSS use is widespread in Cryptococcus fungi in response to environmental cues and regulated genome-wide by the transcription factor Tur1. PLoS Biol 2024; 22:e3002724. [PMID: 39052688 PMCID: PMC11302930 DOI: 10.1371/journal.pbio.3002724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Corinne Maufrais
- Université Paris Cité, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Jessie Colin
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Frédérique Moyrand
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Isabelle Mouyna
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Jean-Yves Coppée
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Chinaemerem U. Onyishi
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna Lipecka
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Ida Chiara Guerrera
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guilhem Janbon
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| |
Collapse
|
5
|
Zhang ZH, Sun LL, Fu BQ, Deng J, Jia CL, Miao MX, Yang F, Cao YB, Yan TH. Aneuploidy underlies brefeldin A-induced antifungal drug resistance in Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1397724. [PMID: 38966251 PMCID: PMC11222406 DOI: 10.3389/fcimb.2024.1397724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Cryptococcus neoformans is at the top of the list of "most wanted" human pathogens. Only three classes of antifungal drugs are available for the treatment of cryptococcosis. Studies on antifungal resistance mechanisms are limited to the investigation of how a particular antifungal drug induces resistance to a particular drug, and the impact of stresses other than antifungals on the development of antifungal resistance and even cross-resistance is largely unexplored. The endoplasmic reticulum (ER) is a ubiquitous subcellular organelle of eukaryotic cells. Brefeldin A (BFA) is a widely used chemical inducer of ER stress. Here, we found that both weak and strong selection by BFA caused aneuploidy formation in C. neoformans, mainly disomy of chromosome 1, chromosome 3, and chromosome 7. Disomy of chromosome 1 conferred cross-resistance to two classes of antifungal drugs: fluconazole and 5-flucytosine, as well as hypersensitivity to amphotericin B. However, drug resistance was unstable, due to the intrinsic instability of aneuploidy. We found overexpression of AFR1 on Chr1 and GEA2 on Chr3 phenocopied BFA resistance conferred by chromosome disomy. Overexpression of AFR1 also caused resistance to fluconazole and hypersensitivity to amphotericin B. Furthermore, a strain with a deletion of AFR1 failed to form chromosome 1 disomy upon BFA treatment. Transcriptome analysis indicated that chromosome 1 disomy simultaneously upregulated AFR1, ERG11, and other efflux and ERG genes. Thus, we posit that BFA has the potential to drive the rapid development of drug resistance and even cross-resistance in C. neoformans, with genome plasticity as the accomplice.
Collapse
Affiliation(s)
- Zhi-hui Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu-liu Sun
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bu-qing Fu
- Laboratory Department, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Yang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Gaylord EA, Choy HL, Chen G, Briner SL, Doering TL. Sac1 links phosphoinositide turnover to cryptococcal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576303. [PMID: 38293062 PMCID: PMC10827209 DOI: 10.1101/2024.01.18.576303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cryptococcus neoformans is an environmentally-acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells. C. neoformans may be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found that sac1 mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence. IMPORTANCE Cryptococcus neoformans is a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction between C. neoformans and host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene, SAC1 , in these processes. Overall, this study contributes to our understanding of how C. neoformans interacts with and protects itself from host cells.
Collapse
|
7
|
Hester MM, Carlson D, Lodge JK, Levitz SM, Specht CA. Immune evasion by Cryptococcus gattii in vaccinated mice coinfected with C. neoformans. Front Immunol 2024; 15:1356651. [PMID: 38469300 PMCID: PMC10925662 DOI: 10.3389/fimmu.2024.1356651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Cryptococcus neoformans and C. gattii, the etiologic agents of cryptococcosis, cause over 100,000 deaths worldwide every year, yet no cryptococcal vaccine has progressed to clinical trials. In preclinical studies, mice vaccinated with an attenuated strain of C. neoformans deleted of three cryptococcal chitin deacetylases (Cn-cda1Δ2Δ3Δ) were protected against a lethal challenge with C. neoformans strain KN99. While Cn-cda1Δ2Δ3Δ extended the survival of mice infected with C. gattii strain R265 compared to unvaccinated groups, we were unable to demonstrate fungal clearance as robust as that seen following KN99 challenge. In stark contrast to vaccinated mice challenged with KN99, we also found that R265-challenged mice failed to induce the production of protection-associated cytokines and chemokines in the lungs. To investigate deficiencies in the vaccine response to R265 infection, we developed a KN99-R265 coinfection model. In unvaccinated mice, the strains behaved in a manner which mirrored single infections, wherein only KN99 disseminated to the brain and spleen. We expanded the coinfection model to Cn-cda1Δ2Δ3Δ-vaccinated mice. Fungal burden, cytokine production, and immune cell infiltration in the lungs of vaccinated, coinfected mice were indicative of immune evasion by C. gattii R265 as the presence of R265 neither compromised the immunophenotype established in response to KN99 nor inhibited clearance of KN99. Collectively, these data indicate that R265 does not dampen a protective vaccine response, but rather suggest that R265 remains largely undetected by the immune system.
Collapse
Affiliation(s)
- Maureen M. Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Diana Carlson
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jennifer K. Lodge
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Stuart M. Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Charles A. Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Ke W, Xie Y, Chen Y, Ding H, Ye L, Qiu H, Li H, Zhang L, Chen L, Tian X, Shen Z, Song Z, Fan X, Zong JF, Guo Z, Ma X, Xiao M, Liao G, Liu CH, Yin WB, Dong Z, Yang F, Jiang YY, Perlin DS, Chen Y, Fu YV, Wang L. Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host Microbe 2024; 32:276-289.e7. [PMID: 38215741 DOI: 10.1016/j.chom.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leixin Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoning Qiu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zili Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Fa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cui Hua Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuan-Ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Yihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu V Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Matha AR, Xie X, Lin X. Ergosterol Is Critical for Sporogenesis in Cryptococcus neoformans. J Fungi (Basel) 2024; 10:106. [PMID: 38392778 PMCID: PMC10890046 DOI: 10.3390/jof10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Microbes, both bacteria and fungi, produce spores to survive stressful conditions. Spores produced by the environmental fungal pathogen Cryptococcus neoformans serve as both surviving and infectious propagules. Because of their importance in disease transmission and pathogenesis, factors necessary for cryptococcal spore germination are being actively investigated. However, little is known about nutrients critical for sporogenesis in this pathogen. Here, we found that ergosterol, the main sterol in fungal membranes, is enriched in spores relative to yeasts and hyphae. In C. neoformans, the ergosterol biosynthesis pathway (EBP) is upregulated by the transcription factor Sre1 in response to conditions that demand elevated ergosterol biosynthesis. Although the deletion of SRE1 enhances the production of mating hyphae, the sre1Δ strain is deficient at producing spores even when crossed with a wild-type partner. We found that the defect of the sre1Δ strain is specific to sporogenesis, not meiosis or basidium maturation preceding sporulation. Consistent with the idea that sporulation demands heightened ergosterol biosynthesis, EBP mutants are also defective in sporulation. We discovered that the overexpression of some EBP genes can largely rescue the sporulation defect of the sre1Δ strain. Collectively, we demonstrate that ergosterol is a critical component in cryptococcal preparation for sporulation.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Campuzano A, Hung CY, Wormley FL. Detection and Quantification of Cryptococcus Uptake by Phagocytic Cells Using Imaging Flow Cytometry. Methods Mol Biol 2024; 2775:195-209. [PMID: 38758319 DOI: 10.1007/978-1-0716-3722-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, β-glucans, and chitins that are the major components of the fungal cell wall. However, the key receptors/ligand interactions required for cryptococcal recognition and eventual fungal clearance have yet to be elucidated. Here we present an imaging flow cytometer (IFC) method that offers a novel quantitative cellular imaging and population statistics tool to accurately measure phagocytosis of fungal cells. It has the capacity to measure two distinct steps of phagocytosis: association/attachment and internalization in a high-throughput and quantitative manner that is difficult to achieve with other technologies. Results from these IFC studies allow for the potential to identify PRRs required for recognition, uptake, and subsequent activation of cytokine production, as well as other effector cell responses required for fungal clearance.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
12
|
Liu Q, Meng G, Wang M, Li X, Liu M, Wang F, Yang Y, Dong C. Safe-Harbor-Targeted CRISPR/Cas9 System and Cmhyd1 Overexpression Enhances Disease Resistance in Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15249-15260. [PMID: 37807760 DOI: 10.1021/acs.jafc.3c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fungal disease of mushroomCordyceps militaris (CM) caused byCalcarisporium cordycipiticola (CC) is destructive to fruiting body cultivation, resulting in significant economic loss and potential food safety risks. CRISPR/Cas9 genome editing has proven to be a powerful tool for crop improvement but seldom succeeded in mushrooms. Here, the first genomic safe-harbor site, CmSH1 locus, was identified in the CM genome. A safe-harbor-targeted CRISPR/Cas9 system based on an autonomously replicating plasmid was designed to facilitate alien gene integration at the CmSH1 locus. Cmhyd1, one of the hydrophobin genes, was confirmed as a defensive factor against CC infection, and Cmhyd1 overexpression by this system showed enhancement of disease resistance with negligible effect on the agronomic traits of CM. No off-target events and residues of plasmid sequence were tested by PCR and genome resequencing. This study provided the first safe harbor site for genetic manipulations, a safe harbor-targeted CRISPR/Cas9 system, and the first disease-resistant gene-editing breeding system in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei Province, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Hilbert ZA, Bednarek JM, Schwiesow MJW, Chung KY, Moreau CT, Brown JCS, Elde NC. Distinct pathways of adaptive evolution in Cryptococcus neoformans reveal a mutation in adenylyl cyclase with trade-offs for pathogenicity. Curr Biol 2023; 33:4136-4149.e9. [PMID: 37708888 PMCID: PMC10592076 DOI: 10.1016/j.cub.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.
Collapse
Affiliation(s)
- Zoë A Hilbert
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Joseph M Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mara J W Schwiesow
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Pham T, Li Y, Watford W, Lin X. Vaccination with a ZNF2oe Strain of Cryptococcus Provides Long-Lasting Protection against Cryptococcosis and Is Effective in Immunocompromised Hosts. Infect Immun 2023:e0019823. [PMID: 37338404 DOI: 10.1128/iai.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Systemic cryptococcosis is fatal without treatment. Even with the current antifungal therapies, this disease kills 180,000 of 225,000 infected people annually. Exposure to the causative environmental fungus Cryptococcus neoformans is universal. Either reactivation of a latent infection or an acute infection after high exposure to cryptococcal cells can result in cryptococcosis. Currently, there is no vaccine to prevent cryptococcosis. Previously, we discovered that Znf2, a transcription factor that directs Cryptococcus yeast-to-hypha transition, profoundly affects cryptococcal interaction with the host. Overexpression of ZNF2 drives filamentous growth, attenuates cryptococcal virulence, and elicits protective host immune responses. Importantly, immunization with cryptococcal cells overexpressing ZNF2, in either live or heat-inactivated form, offers significant protection to the host from a subsequent challenge by the otherwise lethal clinical isolate H99. In this study, we found that the heat-inactivated ZNF2oe vaccine offered long-lasting protection with no relapse upon challenge with the wild-type H99. Vaccination with heat-inactivated ZNF2oe cells provides partial protection in hosts with preexisting asymptomatic cryptococcal infection. Importantly, once animals have been vaccinated with heat-inactivated or live short-lived ZNF2oe cells, they are protected against cryptococcosis even when their CD4+ T cells are depleted at the time of fungal challenge. Remarkably, vaccination with live, short-lived ZNF2oe cells in CD4-depleted hosts still provides strong protection to these hosts with preexisting immunodeficiency at the time of vaccination. This work raises hope for developing effective vaccines with long-lasting protection for individuals who are immunocompromised or could become immunocompromised later in life.
Collapse
Affiliation(s)
- Tuyetnhu Pham
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Yeqi Li
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Liu R, Chen X, Zhao F, Jiang Y, Lu Z, Ji H, Feng Y, Li J, Zhang H, Zheng J, Zhang J, Zhao Y. The COMPASS Complex Regulates Fungal Development and Virulence through Histone Crosstalk in the Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2023; 9:672. [PMID: 37367608 DOI: 10.3390/jof9060672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen Cryptococcus neoformans remain unknown. Here we identified the core subunits of the COMPASS complex in C. neoformans and C. deneoformans and confirmed their conserved roles in H3K4 methylation. Through AlphaFold modeling, we found that Set1, Bre2, Swd1, and Swd3 form the catalytic core of the COMPASS complex and regulate the cryptococcal yeast-to-hypha transition, thermal tolerance, and virulence. The COMPASS complex-mediated histone H3K4 methylation requires H2B mono-ubiquitination by Rad6/Bre1 and the Paf1 complex in order to activate the expression of genes specific for the yeast-to-hypha transition in C. deneoformans. Taken together, our findings demonstrate that putative COMPASS subunits function as a unified complex, contributing to cryptococcal development and virulence.
Collapse
Affiliation(s)
- Ruoyan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixuan Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenguo Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Heng Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Upadhya R, Lam WC, Hole CR, Vasselli JG, Lodge JK. Cell wall composition in Cryptococcus neoformans is media dependent and alters host response, inducing protective immunity. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1183291. [PMID: 37538303 PMCID: PMC10399910 DOI: 10.3389/ffunb.2023.1183291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Introduction Cryptococcus neoformans is a basidiomycete fungus that can cause meningoencephalitis, especially in immunocompromised patients. Cryptococcus grows in many different media, although little attention has been paid to the role of growth conditions on the cryptococcal cell wall or on virulence. Objective The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response. Methods Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, C. neoformans was grown in either YPD or YNB, which were either left unbuffered or buffered to pH 7 with MOPS. These cells were then labeled with cell wall-specific fluorescent probes to determine the amounts of various cell wall components. In addition, these cells were employed in animal virulence studies using the murine inhalation model of infection. Results We observed that the growth of wild-type C. neoformans KN99 significantly changes the pH of unbuffered media during growth. It raises the pH to 8.0 when grown in unbuffered YPD but lowers the pH to 2.0 when grown in unbuffered YNB (YNB-U). Importantly, the composition of the cell wall was substantially impacted by growth in different media. Cells grown in YNB-U exhibited a 90% reduction in chitosan, the deacetylated form of chitin, compared with cells grown in YPD. The decrease in pH and chitosan in the YNB-U-grown cells was associated with a significant increase in some pathogen-associated molecular patterns on the surface of cells compared with cells grown in YPD or YNB, pH 7. This altered cell wall architecture resulted in a significant reduction in virulence when tested using a murine model of infection. Furthermore, when heat-killed cells were used as the inoculum, KN99 cells grown in YNB-U caused an aberrant hyper-inflammatory response in the lungs, resulting in rapid animal death. In contrast, heat-killed KN99 cells grown in YNB, pH 7, caused little to no inflammatory response in the host lung, but, when used as a vaccine, they conferred a robust protective response against a subsequent challenge infection with the virulent KN99 cells. Conclusion These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of the C. neoformans cell wall, as well as their impact on fungal virulence and the host response.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Woei C. Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Camaron R. Hole
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph G. Vasselli
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
17
|
Chadwick BJ, Ross BE, Lin X. Molecular Dissection of Crz1 and Its Dynamic Subcellular Localization in Cryptococcus neoformans. J Fungi (Basel) 2023; 9:jof9020252. [PMID: 36836365 PMCID: PMC9963361 DOI: 10.3390/jof9020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Across lower eukaryotes, the transcription factor Crz1 is dephosphorylated by calcineurin, which facilitates Crz1 translocation to the nucleus to regulate gene expression. In the fungal pathogen Cryptococcus neoformans, calcineurin-Crz1 signaling maintains calcium homeostasis, thermotolerance, cell wall integrity, and morphogenesis. How Crz1 distinguishes different stressors and differentially regulates cellular responses is poorly understood. Through monitoring Crz1 subcellular localization over time, we found that Crz1 transiently localizes to granules after exposure to high temperature or calcium. These granules also host the phosphatase calcineurin and Pub1, a ribonucleoprotein stress granule marker, suggesting a role of stress granules in modulating calcineurin-Crz1 signaling. Additionally, we constructed and analyzed an array of Crz1 truncation mutants. We identified the intrinsically disordered regions in Crz1 contribute to proper stress granule localization, nuclear localization, and function. Our results provide the groundwork for further determination of the mechanisms behind the complex regulation of Crz1.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
18
|
Nielson JA, Davis JM. Roles for Microglia in Cryptococcal Brain Dissemination in the Zebrafish Larva. Microbiol Spectr 2023; 11:e0431522. [PMID: 36719205 PMCID: PMC10100726 DOI: 10.1128/spectrum.04315-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptococcal infection begins in the lungs, but yeast cells subsequently access the bloodstream, from which they can reach the central nervous system (CNS). The resulting meningoencephalitis is the most common presentation and is very difficult to treat. How this fungus interacts with the blood-brain barrier (BBB) and establishes growth in the brain parenchyma remains a central question in fungal pathogenesis. We and others have developed the zebrafish larva as a model host for cryptococcosis and demonstrated that hematogenous CNS infection is replicated in this model. Here, we have used this model to examine the details of BBB crossing and the events immediately before and after. We have observed multiple mechanisms of BBB crossing and found that microglia, the resident phagocytes of the brain, likely have multiple roles. First, microglia either actively transfer yeast cells across the BBB or take up a significant proportion of them immediately after crossing. Second, microglia are capable of clearing individual cryptococcal cells at a developmental stage before adaptive immune cells have emerged. Third, microglia serve to maintain endothelial integrity, preventing other, phagocyte-independent forms of crossing. These proposed microglial functions during infection in the zebrafish larva generate new hypotheses concerning the establishment and control of cryptococcal meningoencephalitis. IMPORTANCE Cryptococcal meningitis is a fungal infection of the brain and a major cause of death in people with uncontrolled HIV. Infection begins in the lungs but can enter the bloodstream and disseminate to the brain. A structure called the blood-brain barrier must be crossed for the fungus to enter and cause meningitis. Learning how Cryptococcus crosses the blood-brain barrier will be crucial to understanding and possibly preventing brain infection. Using the zebrafish larva as a model host, we show that microglia, the resident phagocytes of the brain, potentially play multiple previously unappreciated roles in cryptococcal infection of the brain. These roles include reinforcing the integrity of the blood-brain barrier, clearing cryptococcal cells after they have crossed, and possibly participating directly in crossing via a previously unknown mechanism.
Collapse
Affiliation(s)
- Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - J. Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| |
Collapse
|
19
|
de Castro RJA, Rêgo MTAM, Brandão FS, Pérez ALA, De Marco JL, Poças-Fonseca MJ, Nichols C, Alspaugh JA, Felipe MSS, Alanio A, Bocca AL, Fernandes L. Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiol Spectr 2022; 10:e0150422. [PMID: 36005449 PMCID: PMC9603711 DOI: 10.1128/spectrum.01504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
| | - Marco Túlio Aidar Mariano Rêgo
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Fabiana S. Brandão
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Ana Laura Alfonso Pérez
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Janice Lisboa De Marco
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Marcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Connie Nichols
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Maria Sueli S. Felipe
- Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Brasília, Federal District, Brazil
| | - Alexandre Alanio
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
- Laboratoire de Mycologie et Parasitologie, AP-HP, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Brasília, Federal District, Brazil
| |
Collapse
|
20
|
Santiago-Burgos EJ, Stuckey PV, Santiago-Tirado FH. Real-time visualization of phagosomal pH manipulation by Cryptococcus neoformans in an immune signal-dependent way. Front Cell Infect Microbiol 2022; 12:967486. [PMID: 36211949 PMCID: PMC9538179 DOI: 10.3389/fcimb.2022.967486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding of how intracellular pathogens survive in their host cells is important to improve management of their diseases. This has been fruitful for intracellular bacteria, but it is an understudied area in fungal pathogens. Here we start elucidating and characterizing the strategies used by one of the commonest fungal pathogens, Cryptococcus neoformans, to survive intracellularly. The ability of the fungus to survive inside host cells is one of the main drivers of disease progression, yet it is unclear whether C. neoformans resides in a fully acidified, partially acidic, or neutral phagosome. Using a dye that only fluoresce under acidic conditions to stain C. neoformans, a hypha-defective Candida albicans mutant, and the nonpathogenic Saccharomyces cerevisiae, we characterized the fungal behaviors in infected macrophages by live microscopy. The main behavior in the C. albicans mutant strain and S. cerevisiae-phagosomes was rapid acidification after internalization, which remained for the duration of the imaging. In contrast, a significant number of C. neoformans-phagosomes exhibited alternative behaviors distinct from the normal phagosomal maturation: some phagosomes acidified with subsequent loss of acidification, and other phagosomes never acidified. Moreover, the frequency of these behaviors was affected by the immune status of the host cell. We applied the same technique to a flow cytometry analysis and found that a substantial percentage of C. neoformans-phagosomes showed impaired acidification, whereas almost 100% of the S. cerevisiae-phagosomes acidify. Lastly, using a membrane-damage reporter, we show phagosome permeabilization correlates with acidification alterations, but it is not the only strategy that C. neoformans uses to manipulate phagosomal acidification. The different behaviors described here provide an explanation to the confounding literature regarding cryptococcal-phagosome acidification and the methods can be applied to study other intracellular fungal pathogens.
Collapse
Affiliation(s)
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: Felipe H. Santiago-Tirado,
| |
Collapse
|
21
|
Exploring a novel genomic safe-haven site in the human pathogenic mould Aspergillus fumigatus. Fungal Genet Biol 2022; 161:103702. [PMID: 35569804 DOI: 10.1016/j.fgb.2022.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022]
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen and allergen of humans causing high morbidity and mortality worldwide. The factors that govern pathogenicity of this organism are multi-factorial and are poorly understood. Molecular tools to dissect the mechanisms of pathogenicity in A. fumigatus have improved significantly over the last 20 years however many procedures have not been standardised for A. fumigatus. Here, we present a new genomic safe-haven locus at the site of an inactivated transposon, named SH-aft4, which can be used to insert DNA sequences in the genome of this fungus without impacting its phenotype. We show that we are able to effectively express a transgene construct from the SH-aft4 and that natural regulation of promoter function is conserved at this site. Furthermore, the SH-aft4 locus is highly conserved in the genome of a wide range of clinical and environmental isolates including the isolates commonly used by many laboratories CEA10, Af293 and ATCC46645, allowing a wide range of isolates to be manipulated. Our results show that the aft4 locus can serve as a site for integration of a wide range of genetic constructs to aid functional genomics studies of this important human fungal pathogen.
Collapse
|
22
|
Pócsi I, Szigeti ZM, Emri T, Boczonádi I, Vereb G, Szöllősi J. Use of red, far-red, and near-infrared light in imaging of yeasts and filamentous fungi. Appl Microbiol Biotechnol 2022; 106:3895-3912. [PMID: 35599256 PMCID: PMC9200671 DOI: 10.1007/s00253-022-11967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Abstract While phototoxicity can be a useful therapeutic modality not only for eliminating malignant cells but also in treating fungal infections, mycologists aiming to observe morphological changes or molecular events in fungi, especially when long observation periods or high light fluxes are warranted, encounter problems owed to altered regulatory pathways or even cell death caused by various photosensing mechanisms. Consequently, the ever expanding repertoire of visible fluorescent protein toolboxes and high-resolution microscopy methods designed to investigate fungi in vitro and in vivo need to comply with an additional requirement: to decrease the unwanted side effects of illumination. In addition to optimizing exposure, an obvious solution is red-shifted illumination, which, however, does not come without compromises. This review summarizes the interactions of fungi with light and the various molecular biology and technology approaches developed for exploring their functions on the molecular, cellular, and in vivo microscopic levels, and outlines the progress towards reducing phototoxicity through applying far-red and near-infrared light. Key points • Fungal biological processes alter upon illumination, also under the microscope • Red shifted fluorescent protein toolboxes decrease interference by illumination • Innovations like two-photon, lightsheet, and near IR microscopy reduce phototoxicity
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Zsuzsa M Szigeti
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| |
Collapse
|
23
|
Ke W, Xie Y, Hu Y, Ding H, Fan X, Huang J, Tian X, Zhang B, Xu Y, Liu X, Yang Y, Wang L. A forkhead transcription factor contributes to the regulatory differences of pathogenicity in closely related fungal pathogens. MLIFE 2022; 1:79-91. [PMID: 38818325 PMCID: PMC10989923 DOI: 10.1002/mlf2.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 06/01/2024]
Abstract
Cryptococcus neoformans and its sister species Cryptococcus deuterogattii are important human fungal pathogens. Despite their phylogenetically close relationship, these two Cryptococcus pathogens are greatly different in their clinical characteristics. However, the determinants underlying the regulatory differences of their pathogenicity remain largely unknown. Here, we show that the forkhead transcription factor Hcm1 promotes infection in C. neoformans but not in C. deuterogattii. Monitoring in vitro and in vivo fitness outcomes of multiple clinical isolates from the two pathogens indicates that Hcm1 mediates pathogenicity in C. neoformans through its key involvement in oxidative stress defense. By comparison, Hcm1 is not critical for antioxidation in C. deuterogattii. Furthermore, we identified SRX1, which encodes the antioxidant sulfiredoxin, as a conserved target of Hcm1 in two Cryptococcus pathogens. Like HCM1, SRX1 had a greater role in antioxidation in C. neoformans than in C. deuterogattii. Significantly, overexpression of SRX1 can largely rescue the defective pathogenicity caused by the absence of Hcm1 in C. neoformans. Conversely, Srx1 is dispensable for virulence in C. deuterogattii. Overall, our findings demonstrate that the difference in the contribution of the antioxidant sulfiredoxin to oxidative stress defense underlies the Hcm1-mediated regulatory differences of pathogenicity in two closely related pathogens.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yue Hu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jingjing Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Graduate School, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Baokun Zhang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Yang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Abstract
Systemic cryptococcosis is fatal without treatment. Globally, this disease kills 180,000 of the 225,000 infected people each year, even with the use of antifungal therapies. Currently, there is no vaccine to prevent cryptococcosis. Previously, we discovered that Znf2, a morphogenesis regulator that directs Cryptococcus yeast-to-hyphal transition, profoundly affects cryptococcal interaction with the host-overexpression of ZNF2 drives filamentous growth, attenuates cryptococcal virulence, and elicits protective host immune responses. Importantly, immunization with cryptococcal cells overexpressing ZNF2, either in live or heat-inactivated form, offers significant protection to the host from a subsequent challenge by the otherwise lethal wild-type H99 strain. We hypothesize that cellular components enriched in ZNF2oe cells are immunoprotective. Here, we discovered that serum from protected animals vaccinated with inactivated ZNF2oe cells recognizes cryptococcal antigens that reside within the capsule. Consistently, capsule is required for immunoprotection offered by ZNF2oe cells. Interestingly, the serum from protective animals recognizes antigens in both wild-type yeast cells and ZNF2oe cells, with higher abundance in the latter. Consequently, even the heat-inactivated wild-type cells become immunoprotective with an increased vaccination dose. We also found that disruption of a chromatin remodeling factor Brf1, which is important for initiation of filamentation by Znf2, reduces the antigen level in ZNF2oe cells. Deletion of BRF1 drastically reduces the protective effect of ZNF2oe cells in both live and heat-killed forms even though the ZNF2oebrf1Δ strain itself is avirulent. Collectively, our findings underscore the importance of identifying the subset of cryptococcal surface factors that are beneficial in host protection. IMPORTANCE Cryptococcosis claims close to 200,000 lives annually. There is no vaccine clinically available for this fungal disease. Many avirulent mutant strains do not provide protection against cryptococcosis. We previously discovered that hyphal ZNF2oe strains elicit protective host immune responses both in the live and heat-inactivated forms. Here we seek to understand the mechanism underlying the host protection provided by ZNF2oe cells. We discovered increased accumulation of antigens located within the caspusle of ZNF2oe cells and consequently the requirement of the capsule for ZNF2oe strain-elicited host protection. Furthermore, genetically blocking the ability of ZNF2oe cells to grow in the hyphal form significantly reduces antigen accumulation and impairs the ability of ZNF2oe strain to provide host protection. Our findings highlight the importance of identifying the Znf2-regulated capsular surface factors that are fundamental in host protection.
Collapse
|
25
|
Identification and Characterization of an Intergenic “Safe Haven” Region in Human Fungal Pathogen Cryptococcus gattii. J Fungi (Basel) 2022; 8:jof8020178. [PMID: 35205930 PMCID: PMC8874978 DOI: 10.3390/jof8020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptococcus gattii is a primary fungal pathogen, which causes pulmonary and brain infections in healthy as well as immunocompromised individuals. Genetic manipulations in this pathogen are widely employed to study its biology and pathogenesis, and require integration of foreign DNA into the genome. Thus, identification of gene free regions where integrated foreign DNA can be expressed without influencing, or being influenced by, nearby genes would be extremely valuable. To achieve this goal, we examined publicly available genomes and transcriptomes of C. gattii, and identified two intergenic regions in the reference strain R265 as potential “safe haven” regions, named as CgSH1 and CgSH2. We found that insertion of a fluorescent reporter gene and a selection marker at these two intergenic regions did not affect the expression of their neighboring genes and were also expressed efficiently, as expected. Furthermore, DNA integration at CgSH1 or CgSH2 had no apparent effect on the growth of C. gattii, its response to various stresses, or phagocytosis by macrophages. Thus, the identified safe haven regions in C. gattii provide an effective tool for researchers to reduce variation and increase reproducibility in genetic experiments.
Collapse
|
26
|
Huang MY, Joshi MB, Boucher MJ, Lee S, Loza LC, Gaylord EA, Doering TL, Madhani HD. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging. Genetics 2022; 220:iyab180. [PMID: 34791226 PMCID: PMC8733451 DOI: 10.1093/genetics/iyab180] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus neoformans, the most common cause of fungal meningitis, is a basidiomycete haploid budding yeast with a complete sexual cycle. Genome modification by homologous recombination is feasible using biolistic transformation and long homology arms, but the method is arduous and unreliable. Recently, multiple groups have reported the use of CRISPR-Cas9 as an alternative to biolistics, but long homology arms are still necessary, limiting the utility of this method. Since the S. pyogenes Cas9 derivatives used in prior studies were not optimized for expression in C. neoformans, we designed, synthesized, and tested a fully C. neoformans-optimized (Cno) Cas9. We found that a Cas9 harboring only common C. neoformans codons and a consensus C. neoformans intron together with a TEF1 promoter and terminator and a nuclear localization signal (Cno CAS9 or "CnoCAS9") reliably enabled genome editing in the widely used KN99α C. neoformans strain. Furthermore, editing was accomplished using donors harboring short (50 bp) homology arms attached to marker DNAs produced with synthetic oligonucleotides and PCR amplification. We also demonstrated that prior stable integration of CnoCAS9 further enhances both transformation and homologous recombination efficiency; importantly, this manipulation does not impact virulence in animals. We also implemented a universal tagging module harboring a codon-optimized fluorescent protein (mNeonGreen) and a tandem Calmodulin Binding Peptide-2X FLAG Tag that allows for both localization and purification studies of proteins for which the corresponding genes are modified by short homology-directed recombination. These tools enable short-homology genome engineering in C. neoformans.
Collapse
Affiliation(s)
- Manning Y Huang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael J Boucher
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sujin Lee
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Liza C Loza
- Department of Molecular Microbiology, Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth A Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
Hu P, Ding H, Shen L, He GJ, Liu H, Tian X, Tao C, Bai X, Liang J, Jin C, Xu X, Yang E, Wang L. A unique cell wall synthetic response evoked by glucosamine determines pathogenicity-associated fungal cellular differentiation. PLoS Genet 2021; 17:e1009817. [PMID: 34624015 PMCID: PMC8500725 DOI: 10.1371/journal.pgen.1009817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens. Many human fungal pathogens can undergo dimorphic transition between yeast and hyphal forms in response to different external stimuli, and this morphological transition is generally and critically linked with their infections. In Cryptococcus neoformans, a model pathogenic fungus, the yeast-to-hypha transition can be elicited by mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. Here, we show that GlcN specifically evokes a unique hyperactive cell wall synthetic response, which determines GlcN-induced filamentation (GIF) as a key commitment event. The Mpk1-directed cell wall signaling pathway as a core and conserved cascade connects the cell wall synthetic response and GIF activation in different Cryptococcus pathogens. Overall, the findings reveal a previously unrecognized function of GlcN in stimulating cell wall signaling and biosynthetic machinery, which enables a unique dimorphism commitment mechanism underlying the signal specificity of the mating-independent yeast-to-hypha transition in Cryptococcus pathogens.
Collapse
Affiliation(s)
- Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang-Jun He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huimin Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China (USTC), Hefei, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Changyu Tao
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangzheng Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingnan Liang
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinping Xu
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ence Yang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
CNS-infecting pathogens Escherichia coli and Cryptococcus neoformans exploit the host Pdlim2 for intracellular traversal and exocytosis in the blood-brain barrier. Infect Immun 2021; 89:e0012821. [PMID: 34228504 DOI: 10.1128/iai.00128-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial penetration of the blood-brain barrier, a prerequisite for development of the central nervous system (CNS) infection, involves microbial invasion, intracellular traversal and exocytosis. Microbial invasion of the blood-brain barrier has been investigated, but the molecular basis for microbial traversal and exit from the blood-brain barrier remains unknown. We performed transcriptome analysis of the human brain microvascular endothelial cell (HBMEC) infected with Escherichia coli and Cryptococcus neoformans, representative bacterial and fungal pathogens common in CNS infection. Among the upregulated targets in response to E. coli and C. neoformans infection, PDLIM2 was knocked down by shRNA in HBMEC for further investigation. We demonstrated that Pdlim2 specifically regulated the microbial traversal and exit from HBMEC by assessing microbial invasion, transcytosis, intracellular multiplication and egression. Additionally, the defective exocytosis of internalized E. coli from the PDLIM2 shRNA knockdown cell was restored by treatment with a calcium ionophore (ionomycin). Moreover, we performed the proximity-dependent biotin labeling with the biotin ligase BioID2 and identified 210 potential Pdlim2-interactors. Among the nine enriched Pdlim2-interactors in response to both E. coli and C. neoformans infection, we selected MPRIP and showed that HBMEC with knockdown of MPRIP mimicked the phenotype of PDLIM2 knockdown cell. These results suggest that the CNS-infecting microbes hijack Pdlim2 and Mprip for intracellular traversal and exocytosis in the blood-brain barrier.
Collapse
|
29
|
Shlezinger N, Fites JS, Klein BS, Hohl TM. Fungal Bioreporters to Monitor Outcomes of Aspergillus: Host-Cell Interactions. Methods Mol Biol 2021; 2260:121-132. [PMID: 33405034 PMCID: PMC9088164 DOI: 10.1007/978-1-0716-1182-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorescence-based techniques enable researchers to monitor physiologic processes, specifically fungal cell viability and death, during cellular encounters with the mammalian immune system with single event resolution. By incorporating two independent fluorescent probes in fungal organisms either prior to, or ensuing experimental infection in mice or in cultured leukocytes, it is possible to distinguish and quantify live and killed fungal cells to interrogate genetic, pharmacologic, and cellular determinants that shape host-fungal cell outcomes. This chapter reviews the techniques and applications of fluorescent fungal reporters of viability, with emphasis on the filamentous mold Aspergillus fumigatus.
Collapse
Affiliation(s)
- Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jeffrey Scott Fites
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Fites JS, Shlezinger N, Hohl TM, Klein BS. Fungal Bioreporters to Monitor Outcomes of Blastomyces: Host-Cell Interactions. Methods Mol Biol 2021; 2260:111-119. [PMID: 33405033 PMCID: PMC10269547 DOI: 10.1007/978-1-0716-1182-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescence-based techniques enable researchers to monitor physiologic processes, specifically fungal cell viability and death, during cellular encounters with the mammalian immune system with single event resolution. By incorporating two independent fluorescent probes in fungal organisms either prior to, or ensuing experimental infection in mice or in cultured leukocytes, it is possible to distinguish and quantify live and killed fungal cells to interrogate genetic, pharmacologic, and cellular determinants that shape host-fungal cell outcomes. This chapter reviews the techniques and applications of fluorescent fungal reporters of viability, with emphasis on the North American endemic dimorphic fungus, Blastomyces dermatitidis.
Collapse
Affiliation(s)
- Jeffrey Scott Fites
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
31
|
Fan Y, Lin X. An intergenic "safe haven" region in Cryptococcus neoformans serotype D genomes. Fungal Genet Biol 2020; 144:103464. [PMID: 32947034 PMCID: PMC7726056 DOI: 10.1016/j.fgb.2020.103464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and serves as a model organism for studies of eukaryotic microbiology and microbial pathogenesis. C. neoformans species complex is classified into serotype A, serotype D, and AD hybrids, which are currently considered different subspecies. Different serotype strains display varied phenotypes, virulence, and gene regulation. Genetic investigation of important pathways is often performed in both serotype A and D reference strains in order to identify diversification or conservation of the interrogated signaling network. Many genetic tools have been developed for C. neoformans serotype A reference strain H99, including the gene free "safe haven" (SH) regions for DNA integration identified based on genomic features. However, no such a genomic safe haven region has been identified in serotype D strains. Here, capitalizing on the available genomic, transcriptomic, and chromatin data, we identified an intergenic region named as SH3 for the serotype D reference strains JEC21 and XL280. We also designed a sgRNA and a vector facilitating any alien gene integration into SH3 through a CRISPR-Cas9 system. We found that gene inserted in this region complemented the corresponding gene deletion mutant. Fluorescent reporter gene inserted in SH3 can also be expressed efficiently. Insertion in SH3 itself did not alter the expression of adjacent genes and did not affect the growth or mating of C. neoformans. Thus, SH3 provides a resource for genetic manipulations in serotype D strains and will facilitate comparative analyses of gene functions in this species complex. In addition, the incorporation of the multi-omic data in our selection of the safe haven region could help similar studies in other organisms.
Collapse
Affiliation(s)
- Yumeng Fan
- Department of Microbiology, University of Georgia, Athens 30602, GA, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens 30602, GA, USA.
| |
Collapse
|
32
|
Goh JPZ, Ianiri G, Heitman J, Dawson TL. Expression of a Malassezia Codon Optimized mCherry Fluorescent Protein in a Bicistronic Vector. Front Cell Infect Microbiol 2020; 10:367. [PMID: 32793513 PMCID: PMC7387403 DOI: 10.3389/fcimb.2020.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
The use of fluorescent proteins allows a multitude of approaches from live imaging and fixed cells to labeling of whole organisms, making it a foundation of diverse experiments. Tagging a protein of interest or specific cell type allows visualization and studies of cell localization, cellular dynamics, physiology, and structural characteristics. In specific instances fluorescent fusion proteins may not be properly functional as a result of structural changes that hinder protein function, or when overexpressed may be cytotoxic and disrupt normal biological processes. In our study, we describe application of a bicistronic vector incorporating a Picornavirus 2A peptide sequence between a NAT antibiotic selection marker and mCherry. This allows expression of multiple genes from a single open reading frame and production of discrete protein products through a cleavage event within the 2A peptide. We demonstrate integration of this bicistronic vector into a model Malassezia species, the haploid strain M. furfur CBS 14141, with both active selection, high fluorescence, and proven proteolytic cleavage. Potential applications of this technology can include protein functional studies, Malassezia cellular localization, and co-expression of genes required for targeted mutagenesis.
Collapse
Affiliation(s)
- Joleen P. Z. Goh
- Skin Research Institute of Singapore, Agency of Science, Technology and Research, Singapore, Singapore
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, United States
| | - Thomas L. Dawson
- Skin Research Institute of Singapore, Agency of Science, Technology and Research, Singapore, Singapore
- Department of Drug Discovery, School of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
Pham T, Xie X, Lin X. An intergenic “safe haven” region in Aspergillus fumigatus. Med Mycol 2020; 58:1178-1186. [DOI: 10.1093/mmy/myaa009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022] Open
Abstract
Abstract
Aspergillus fumigatus is the most common opportunistic human fungal pathogen responsible for invasive aspergillosis. Gene manipulation is critical for the investigation of A. fumigatus biology and pathogenesis at the molecular level, and it often requires integration of the introduced DNA into the fungal genome. Here we have searched and identified two potential “safe haven” regions, SH1 and SH2, based on A. fumigatus genome annotation and transcriptome data. When a DNA fragment carrying a fluorescent protein gene mNeonGreen (mNG) and a drug selection marker was inserted into SH1 or SH2, the expression of mNeonGreen was easily detected, indicating that SH1 and SH2 are not surpressive genetic regions. We found that insertion of this DNA fragment into SH1 did not cause any significant changes in the expression of neighboring genes. Insertion of this DNA into either SH1 or SH2 did not significantly alter any of the phenotypes that we analyzed comparing to the wild type control. By comparison, transformants with random ectopic integration of the same DNA fragment showed a wider range of variation in mNeonGreen expression and in virulence in an insect infection model. Having identified predetermined “safe-haven” regions in A. fumigatus could therefore help reduce experimental variations and increase reproducibility, as it has been for the C. neoformans field.
Collapse
Affiliation(s)
- Tuyetnhu Pham
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
34
|
Spencer GWK, Chua SMH, Erpf PE, Wizrah MSI, Dyba TG, Condon ND, Fraser JA. Broadening the spectrum of fluorescent protein tools for use in the encapsulated human fungal pathogen Cryptococcus neoformans. Fungal Genet Biol 2020; 138:103365. [PMID: 32145317 DOI: 10.1016/j.fgb.2020.103365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022]
Abstract
Green fluorescent protein (GFP) and its counterparts are modern molecular biology research tools indispensable in many experimental systems. Within fungi, researchers studying Saccharomyces cerevisiae and other model ascomycetes have access to a wide variety of fluorescent proteins. Unfortunately, many of these tools have not crossed the phylum divide into the Basidiomycota, where only GFP S65T, Venus, Ds-Red, and mCherry are currently available. To address this, we searched the literature for potential candidates to be expressed in the human fungal pathogen Cryptococcus neoformans and identified a suite of eight more modern fluorescent proteins that span the visible spectrum. A single copy of each fluorophore was heterologously expressed in Safe Haven 1 and their fluorescence intensities compared in this encapsulated yeast. mTurquoise2, mTFP1, Clover, mNeonGreen, mRuby3, and Citrine were highly visible under the microscope, whereas Superfolder GFP and mMaroon1 were not. Expressed fluorophores did not impact growth or virulence as demonstrated by an in vitro spotting assay and murine inhalation model, respectively.
Collapse
Affiliation(s)
- Garrick W K Spencer
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sheena M H Chua
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paige E Erpf
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maha S I Wizrah
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Taylor G Dyba
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
Lin J, Fan Y, Lin X. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system. Fungal Genet Biol 2020; 138:103364. [PMID: 32142753 DOI: 10.1016/j.fgb.2020.103364] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
The basidiomycete Cryptococcus neoformans is not only a clinically important pathogen, but also a model organism for studying microbial pathogenesis and eukaryotic biology. One key factor behind its rise as a model organism is its genetic amenability. The widely used methods for transforming the C. neoformans species complex are Agrobacterium-mediated transformation (AMT) for random insertional mutagenesis and biolistic transformation for targeted mutagenesis. Electroporation was introduced to C. neoformans in early 1990s. Although electroporation is economic and yields a large number of transformants, introduced DNA rarely integrates into cryptococcal genome, which limits its use. Biolistic transformation, although costly and inefficient, has been the only method used in targeted mutagenesis in the past two decades. Several modifications, including the use of a donor DNA with split markers, a drug-resistant selection marker, and a recipient strain deficient in non-homologous end joining (NHEJ), have since modestly increased the frequency of genome integration and the rate of homologous replacement of the DNA introduced by electroporation. However, electroporation was not the method of choice for transformation until the recent adoption of CRISPR-Cas9 systems. We have developed a Transient CRISPR-Cas9 coupled with Electroporation System (TRACE), which dramatically facilitates targeted mutagenesis in the Cryptococcus species complex. TRACE combines the high transformation efficiency of electroporation with the high rates of DNA integration due to the transiently expressed CRISPR-Cas9. Here, we briefly discussed the history of electroporation for Cryptococcus transformation and provided detailed procedures for electroporation and the cassettes construction of the TRACE system for various genetic manipulations.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
36
|
Ianiri G, Fang YF, Dahlmann TA, Clancey SA, Janbon G, Kück U, Heitman J. Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in Cryptococcus neoformans. Genetics 2020; 214:635-649. [PMID: 31882399 PMCID: PMC7054023 DOI: 10.1534/genetics.119.302740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/21/2019] [Indexed: 12/31/2022] Open
Abstract
The MAT locus of Cryptococcus neoformans has a bipolar organization characterized by an unusually large structure, spanning over 100 kb. MAT genes have been characterized by functional genetics as being involved in sexual reproduction and virulence. However, classical gene replacement failed to achieve mutants for five MAT genes (RPL22, RPO41, MYO2, PRT1, and RPL39), indicating that they are likely essential. In the present study, targeted gene replacement was performed in a diploid strain for both the α and a alleles of the ribosomal genes RPL22 and RPL39 Mendelian analysis of the progeny confirmed that both RPL22 and RPL39 are essential for viability. Ectopic integration of the RPL22 allele of opposite MAT identity in the heterozygous RPL22a/rpl22αΔ or RPL22α/rpl22aΔ mutant strains failed to complement their essential phenotype. Evidence suggests that this is due to differential expression of the RPL22 genes, and an RNAi-dependent mechanism that contributes to control RPL22a expression. Furthermore, via CRISPR/Cas9 technology, the RPL22 alleles were exchanged in haploid MATα and MATa strains of C. neoformans These RPL22 exchange strains displayed morphological and genetic defects during bilateral mating. These results contribute to elucidating functions of C. neoformans essential mating type genes that may constitute a type of imprinting system to promote inheritance of nuclei of both mating types.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yufeng Francis Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 75015 Paris, France
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
37
|
Zhao Y, Wang Y, Upadhyay S, Xue C, Lin X. Activation of Meiotic Genes Mediates Ploidy Reduction during Cryptococcal Infection. Curr Biol 2020; 30:1387-1396.e5. [PMID: 32109388 DOI: 10.1016/j.cub.2020.01.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a global human fungal pathogen that causes fatal meningoencephalitis in mostly immunocompromised individuals. During pulmonary infection, cryptococcal cells form large polyploid cells that exhibit increased resistance to host immune attack and are proposed to contribute to the latency of cryptococcal infection. These polyploid titan cells can generate haploid and aneuploid progeny that may result in systemic infection. What triggers cryptococcal polyploidization and how ploidy reduction is achieved remain open questions. Here, we discovered that Cryptococcus cells polyploidize in response to genotoxic stresses that cause DNA double-strand breaks. Intriguingly, meiosis-specific genes are activated in C. neoformans and contribute to ploidy reduction, both in vitro and during infection in mice. Cryptococcal cells that activated their meiotic genes in mice were resistant to specific genotoxic stress compared to sister cells recovered from the same host tissue but without activation of meiotic genes. Our findings support the idea that meiotic genes, in addition to their conventional roles in classic sexual reproduction, contribute to adaptation of eukaryotic cells that undergo dramatic genome changes in response to genotoxic stress. The discovery has additional implications for evolution of sexual reproduction and the paradox of the presence of meiotic machinery in asexual species. Finally, our findings in this eukaryotic microbe mirror the revolutionary discoveries of the polyploidization and meiosis-like ploidy reduction process in cancer cells, suggesting that the reversible ploidy change itself could provide a general mechanism for rejuvenation to promote individual survival in response to stress.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yina Wang
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Srijana Upadhyay
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Chaoyang Xue
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Seoane PI, Taylor-Smith LM, Stirling D, Bell LCK, Noursadeghi M, Bailey D, May RC. Viral infection triggers interferon-induced expulsion of live Cryptococcus neoformans by macrophages. PLoS Pathog 2020; 16:e1008240. [PMID: 32106253 PMCID: PMC7046190 DOI: 10.1371/journal.ppat.1008240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic human pathogen, which causes serious disease in immunocompromised hosts. Infection with this pathogen is particularly relevant in HIV+ patients, where it leads to around 200,000 deaths per annum. A key feature of cryptococcal pathogenesis is the ability of the fungus to survive and replicate within the phagosome of macrophages, as well as its ability to be expelled from host cells via a novel non-lytic mechanism known as vomocytosis. Here we show that cryptococcal vomocytosis from macrophages is strongly enhanced by viral coinfection, without altering phagocytosis or intracellular proliferation of the fungus. This effect occurs with distinct, unrelated human viral pathogens and is recapitulated when macrophages are stimulated with the anti-viral cytokines interferon alpha or beta (IFNα or IFNβ). Importantly, the effect is abrogated when type-I interferon signalling is blocked, thus underscoring the importance of type-I interferons in this phenomenon. Lastly, our data help resolve previous, contradictory animal studies on the impact of type I interferons on cryptococcal pathogenesis and suggest that secondary viral stimuli may alter patterns of cryptococcal dissemination in the host.
Collapse
Affiliation(s)
- Paula I. Seoane
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Leanne M. Taylor-Smith
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Stirling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Lucy C. K. Bell
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Robin C. May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Maybruck BT, Lam WC, Specht CA, Ilagan MXG, Donlin MJ, Lodge JK. The Aminoalkylindole BML-190 Negatively Regulates Chitosan Synthesis via the Cyclic AMP/Protein Kinase A1 Pathway in Cryptococcus neoformans. mBio 2019; 10:e02264-19. [PMID: 31848271 PMCID: PMC6918072 DOI: 10.1128/mbio.02264-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immunocompromising conditions. Current antifungals are suboptimal to treat this disease; therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall and is required for survival in the mammalian host and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis. To identify these compounds, we developed a robust and novel cell-based flow cytometry screening method to identify small-molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans We used flow cytometry-based counterscreens and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits. One of the confirmed hits that reduced chitosan content was the aminoalkylindole BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein-coupled receptor Gpr4 and, via the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis and could lead to potential novel therapeutics against C. neoformansIMPORTANCECryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungi from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of the cryptococcal cell wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans Two of these compounds were confirmed using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan biosynthesis in C. neoformans and validates that this screening approach could be used to find potential antifungal agents.
Collapse
Affiliation(s)
- Brian T Maybruck
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ma Xenia G Ilagan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maureen J Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Abstract
Cryptococcus gattii R265 is a hypervirulent fungal strain responsible for the recent outbreak of cryptococcosis in Vancouver Island of British Columbia in Canada. It differs significantly from Cryptococcus neoformans in its natural environment, its preferred site in the mammalian host, and its pathogenesis. Our previous studies of C. neoformans have shown that the presence of chitosan, the deacetylated form of chitin, in the cell wall attenuates inflammatory responses in the host, while its absence induces robust immune responses, which in turn facilitate clearance of the fungus and induces a protective response. The results of the present investigation reveal that the cell wall of C. gattii R265 contains a two- to threefold larger amount of chitosan than that of C. neoformans The genes responsible for the biosynthesis of chitosan are highly conserved in the R265 genome; the roles of the three chitin deacetylases (CDAs) have, however, been modified. To deduce their roles, single and double CDA deletion strains and a triple CDA deletion strain were constructed in a R265 background and were subjected to mammalian infection studies. Unlike C. neoformans where Cda1 has a discernible role in fungal pathogenesis, in strain R265, Cda3 is critical for virulence. Deletion of either CDA3 alone or in combination with another CDA (cda1Δ3Δ or cda2Δ3Δ) or both (cda1Δ2Δ3Δ) rendered the fungus avirulent and cleared from the infected host. Moreover, the cda1Δ2Δ3Δ strain of R265 induced a protective response to a subsequent infection with R265. These studies begin to illuminate the regulation of chitosan biosynthesis of C. gattii and its subsequent effect on fungal virulence.IMPORTANCE The fungal cell wall is an essential organelle whose components provide the first line of defense against host-induced antifungal activity. Chitosan is one of the carbohydrate polymers in the cell wall that significantly affects the outcome of host-pathogen interaction. Chitosan-deficient strains are avirulent, implicating chitosan as a critical virulence factor. C. gattii R265 is an important fungal pathogen of concern due to its ability to cause infections in individuals with no apparent immune dysfunction and an increasing geographical distribution. Characterization of the fungal cell wall and understanding the contribution of individual molecules of the cell wall matrix to fungal pathogenesis offer new therapeutic avenues for intervention. In this report, we show that the C. gattii R265 strain has evolved alternate regulation of chitosan biosynthesis under both laboratory growth conditions and during mammalian infection compared to that of C. neoformans.
Collapse
|
41
|
Host Carbon Dioxide Concentration Is an Independent Stress for Cryptococcus neoformans That Affects Virulence and Antifungal Susceptibility. mBio 2019; 10:mBio.01410-19. [PMID: 31266878 PMCID: PMC6606813 DOI: 10.1128/mbio.01410-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability of Cryptococcus neoformans to cause disease in humans varies significantly among strains with highly related genotypes. In general, environmental isolates of pathogenic species such as Cryptococcus neoformans var. grubii have reduced virulence relative to clinical isolates, despite having no differences in the expression of the canonical virulence traits (high-temperature growth, melanization, and capsule formation). In this observation, we report that environmental isolates of C. neoformans tolerate host CO2 concentrations poorly compared to clinical isolates and that CO2 tolerance correlates well with the ability of the isolates to cause disease in mammals. Initial experiments also suggest that CO2 tolerance is particularly important for dissemination of C. neoformans from the lung to the brain. Furthermore, CO2 concentrations affect the susceptibility of both clinical and environmental C. neoformans isolates to the azole class of antifungal drugs, suggesting that antifungal testing in the presence of CO2 may improve the correlation between in vitro azole activity and patient outcome.IMPORTANCE A number of studies comparing either patient outcomes or model system virulence across large collections of Cryptococcus isolates have found significant heterogeneity in virulence even among strains with highly related genotypes. Because this heterogeneity cannot be explained by variations in the three well-characterized virulence traits (growth at host body temperature, melanization, and polysaccharide capsule formation), it has been widely proposed that additional C. neoformans virulence traits must exist. The natural niche of C. neoformans is in the environment, where the carbon dioxide concentration is very low (∼0.04%); in contrast, mammalian host tissue carbon dioxide concentrations are 125-fold higher (5%). We have found that the ability to grow in the presence of 5% carbon dioxide distinguishes low-virulence strains from high-virulence strains, even those with a similar genotype. Our findings suggest that carbon dioxide tolerance is a previously unrecognized virulence trait for C. neoformans.
Collapse
|
42
|
Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis. mBio 2018; 9:mBio.02087-18. [PMID: 30459196 PMCID: PMC6247093 DOI: 10.1128/mbio.02087-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cryptococcus neoformans is unique among fungal pathogens that cause disease in a mammalian host, as it secretes a polysaccharide capsule that hinders recognition by the host to facilitate its survival and proliferation. Even though it causes serious infections in immunocompromised hosts, reports of infection in hosts that are immunocompetent are on the rise. The cell wall of a fungal pathogen, its synthesis, composition, and pathways of remodelling are attractive therapeutic targets for the development of fungicides. Chitosan, a polysaccharide in the cell wall of C. neoformans is one such target, as it is critical for pathogenesis and absent in the host. The results we present shed light on the importance of one of the chitin deacetylases that synthesize chitosan during infection and further implicates chitosan as being a critical factor for the pathogenesis of C. neoformans. Chitin is an essential component of the cell wall of Cryptococcus neoformans conferring structural rigidity and integrity under diverse environmental conditions. Chitin deacetylase genes encode the enyzmes (chitin deacetylases [Cdas]) that deacetylate chitin, converting it to chitosan. The functional role of chitosan in the fungal cell wall is not well defined, but it is an important virulence determinant of C. neoformans. Mutant strains deficient in chitosan are completely avirulent in a mouse pulmonary infection model. C. neoformans carries genes that encode three Cdas (Cda1, Cda2, and Cda3) that appear to be functionally redundant in cells grown under vegetative conditions. Here we report that C. neoformans Cda1 is the principal Cda responsible for fungal pathogenesis. Point mutations were introduced in the active site of Cda1 to generate strains in which the enzyme activity of Cda1 was abolished without perturbing either its stability or localization. When used to infect CBA/J mice, Cda1 mutant strains produced less chitosan and were attenuated for virulence. We further demonstrate that C. neoformans Cda genes are transcribed differently during a murine infection from what has been measured in vitro.
Collapse
|
43
|
Fan Y, Lin X. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Cryptococcus neoformans Species Complex. Genetics 2018; 208:1357-1372. [PMID: 29444806 PMCID: PMC5887135 DOI: 10.1534/genetics.117.300656] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that claims hundreds of thousands of lives annually. Targeted genetic manipulation through biolistic transformation in C. neoformans drove the investigation of this clinically important pathogen at the molecular level. Although costly and inefficient, biolistic transformation remains the major method for editing the Cryptococcus genome as foreign DNAs introduced by other methods such as electroporation are predominantly not integrated into the genome. Although the majority of DNAs introduced by biolistic transformation are stably inherited, the transformation efficiency and the homologous integration rate (∼1-10%) are low. Here, we developed a Transient CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 coupled with Electroporation (TRACE) system for targeted genetic manipulations in the C. neoformans species complex. This method took advantages of efficient genome integration due to double-strand breaks created at specific sites by the transient CRISPR-Cas9 system and the high transformation efficiency of electroporation. We demonstrated that TRACE can efficiently generate precise single-gene deletion mutants using the ADE2 locus as an example. This system can also effectively delete multiple genes in a single transformation, as evident by the successful generation of quadruple mfα1Δ2Δ3Δ4Δ mutants. In addition to generating gene deletion mutants, we complemented the ade2Δ mutant by integrating a wild-type ADE2 allele at the "safe haven" region (SH2) via homologous recombination using TRACE. Interestingly, introduced DNAs can be inserted at a designated genetic site without any homologous sequences, opening up numerous other applications. We expect that TRACE, an efficient, versatile, and cost-effective gene editing approach, will greatly accelerate research in this field.
Collapse
Affiliation(s)
- Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|