1
|
Bian C, Ji L, Xu W, Dong S, Pan N. Research Progress on Bioactive Substances of Beets and Their Functions. Molecules 2024; 29:4756. [PMID: 39407683 PMCID: PMC11478215 DOI: 10.3390/molecules29194756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
As a globally cultivated and economic crop, beets are particularly important in the cane sugar and feed industries. Beet pigments are among the most important natural pigments, while various chemical components in beets display beneficial biological functions. Phenolic substances and betalains, as the main bioactive compounds, determine the functional characteristics of beets. This review categorizes the basic types of beets by the chemical composition of bioactive substances in their leaves, stems, and roots and emphatically summarizes the research progress made on the functions of two major substances in different types of beets: phenolic compounds and betalain pigments. This study provides useful insights for the comprehensive and effective application of beets in the health food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chun Bian
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| | - Lanyang Ji
- Heilongjiang Grain Quality Safety Monitoring and Technology Center, Harbin 150001, China;
| | - Wei Xu
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| | - Shirong Dong
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| | - Nan Pan
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| |
Collapse
|
2
|
Zöngür A. Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet). Indian J Microbiol 2024; 64:719-731. [PMID: 39010984 PMCID: PMC11246347 DOI: 10.1007/s12088-024-01269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/24/2024] [Indexed: 07/17/2024] Open
Abstract
Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3-22.3% in Staphylococcus aureus, 16.8-23.5% in Streptococcus pyogenes and 12-16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5-20.7% for Candida albicans, 3.5-7.7% for Candida auris, and 5.5-15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01269-8.
Collapse
|
3
|
Helmy SA, Morsy NFS, Elaby SM, Ghaly MAHA. Antidiabetic Effect of Combined Leaf Extracts of Portulaca oleracea L., Beta vulgaris L., and Cichorium intybus L. in Streptozotocin-Induced Diabetic Rats. J Med Food 2024; 27:339-347. [PMID: 37801671 DOI: 10.1089/jmf.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
Purslane (P), chard (CHA), and chicory (CHI) leaf extracts are individually and traditionally used in the treatment of diabetes mellitus. Polyphenols, flavonoids, the polyphenolic profile of the extracts, and their antioxidant activity were determined. This study evaluated the antidiabetic activity of combinations of these extracts in streptozotocin-induced diabetic rats. Diabetic groups were administered orally and daily for 40 days with the investigated extracts at 250 mg/kg body weight (b.w.) or metformin (100 mg/kg b.w.) as a drug. Fasting blood glucose, oral glucose tolerance, insulin, and fructosamine were assessed. The combined extracts with high levels of P or CHI exerted potent hypoglycemic activity compared with metformin in addition to the restoration of the histopathological changes in the liver and pancreas of diabetic rats to a near-normal state. Therefore, these combined extracts could be developed as natural drugs for diabetes.
Collapse
|
4
|
Olas B. The Cardioprotective Role of Nitrate-Rich Vegetables. Foods 2024; 13:691. [PMID: 38472804 DOI: 10.3390/foods13050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Nitric oxide (NO) is an inorganic radical produced by both the non-enzymatic nitrate (NO3-)-nitrite (NO2-)-NO pathway and enzymatic reactions catalyzed by nitric oxide synthase (NOS). Also, as nitrate and nitrite from dietary and other endogenous sources can be reduced back to nitric oxide in vivo, the endogenous NO level can be increased through the consumption of nitrate-rich vegetables. Ingestion of dietary NO3- has beneficial effects which have been attributed to a subsequent increase in NO: a signaling molecule that may regulate various systems, including the cardiovascular system. A diet rich in NO3- from green leafy and root vegetables has cardioprotective effects, with beetroot products being particularly good sources of NO3-. For example, various studies have demonstrated a significant increase in nitrite levels (regarded as markers of NO) in plasma after the intake of beetroot juice. The present review describes the current literature concerning the role of nitrate-rich vegetables (especially beetroot products) in the prophylaxis and treatment of cardiovascular diseases (CVDs). This review is based on studies identified in electronic databases, including PubMed, ScienceDirect, Web of Knowledge, Sci Finder, Web of Science, and SCOPUS.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Zayed AM, Metwally BS, Masoud MA, Mubarak MF, Shendy H, Abdelsatar MM, Petrounias P, Ragab AH, Hassan AA, Abdel Wahed MSM. Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems. RSC Adv 2023; 13:24887-24898. [PMID: 37614786 PMCID: PMC10442598 DOI: 10.1039/d3ra03105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Sugar beet crown (SBC) waste was employed to produce sustainable activated carbon (AC) by a thermo-chemical activation procedure using a fixed ratio of H3PO4/SBC (1 : 1 w/w ratio) at 550 °C/2 h. An activated carbon/polyamide nano-composite (AC/PA) was also prepared through the polymerization of the fabricated AC (90%) with polyamide (PA, 10%) synthetic textile waste using a proper dissolving agent at a specified w/w ratio with the employed polymer (formic acid/PA = 82/18%). Both AC and its derivative AC/PA were employed in the remediation of dyes from industrial wastewater in column systems, and their efficiencies were compared at various applied experimental conditions. The adsorption of the industrial dye waste (IDW) was a pH-, flow rate-, and bed thickness-controlled process by the regarded adsorbents. Kinetic studies confirmed the suitability of the Thomas equation over the Yoon and Nelson model in predicting the dynamic adsorption process of IDW by AC and AC/PA as was assured by the close agreement among the calculated and experimental uptake capacities of both adsorbents at the same applied flow rates, suggesting the chemisorption nature of IDW adsorption. Additionally, electrostatic attraction was the leading mechanism of IDW adsorption by AC and AC/PA composite with some advantages of the former over the latter.
Collapse
Affiliation(s)
- Ahmed M Zayed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Bahaa S Metwally
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
- Textile Technology Department, Faculty of Technology and Education, Beni-Suef University Beni-Suef 62521 Egypt
| | - Mostafa A Masoud
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Mahmoud F Mubarak
- Petroleum Application Department, Egyptian Petroleum Research Institute 1 Ahmed El-Zomor Street, El-Zohour Region, Nasr City Cairo 11765 Egypt
| | - Hussain Shendy
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Mahmoud M Abdelsatar
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Petros Petrounias
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH) 15125 Athens Greece
| | - Ahmed H Ragab
- Chemistry Department, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Abeer A Hassan
- Chemistry Department, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Mahmoud S M Abdel Wahed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| |
Collapse
|
6
|
Saber A, Abedimanesh N, Somi MH, Khosroushahi AY, Moradi S. Anticancer properties of red beetroot hydro-alcoholic extract and its main constituent; betanin on colorectal cancer cell lines. BMC Complement Med Ther 2023; 23:246. [PMID: 37464362 DOI: 10.1186/s12906-023-04077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Red beetroot (Beta vulgaris) contains Betanin as its major betacyanin, possessing wide proapoptotic effects. This study aimed to investigate the anticancer and pro-papoptotic effects of beetroot hydro-alcoholic extract (BHE) and betanin, on colorectal cancer cell lines. BHE and betanin were used to treat Caco-2 and HT-29 colorectal cancer cells. MTT assay, DAPI staining, and FACS-flow cytometry tests were used to determine the half-maximal inhibitory concentration (IC50) and apoptosis-inducing evaluations. Intended genes were assessed by real-time polymerase chain reaction (RT-PCR). The IC50 for HT-29 and Caco-2 cell lines were 92 μg/mL, 107 μg/mL for BHE, and 64 μg/mL, 90 μg/mL for betanin at 48 h, respectively. BHE and betanin significantly inhibited the growth of both cancer cell lines time and dose-dependently. DAPI staining and flow cytometry results revealed significant apoptosis symptoms in treated cancerous cell lines. The expression level of proapoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than in untreated and normal cells. In contrast, the anti-apoptotic gene (Bcl-2) was significantly downregulated. BHE and betanin effectively inhibited cancer cell proliferation and induced apoptosis via the modification of effective genes.
Collapse
Affiliation(s)
- Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., Across From Farabi Hospital, P.O. Box 6719851552, Kermanshah, Iran.
| | - Nasim Abedimanesh
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Moradi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., Across From Farabi Hospital, P.O. Box 6719851552, Kermanshah, Iran
- Student Research Committee, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Adekolurejo OO, McDermott K, Greathead HMR, Miller HM, Mackie AR, Boesch C. Effect of Red-Beetroot-Supplemented Diet on Gut Microbiota Composition and Metabolite Profile of Weaned Pigs-A Pilot Study. Animals (Basel) 2023; 13:2196. [PMID: 37443994 PMCID: PMC10339942 DOI: 10.3390/ani13132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.
Collapse
Affiliation(s)
- Opeyemi O. Adekolurejo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Katie McDermott
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Henry M. R. Greathead
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Helen M. Miller
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Alan R. Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| |
Collapse
|
8
|
Al-waeli SK, H.A. Alasadi M, Abbas RJ. Effect of adding beetroot (Beta vulgaris rubra) powder and its aqueous extract to growing geese carcasses on carcass quality and measures. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The present study investigated the influence of supplementing beetroot (Beta vulgaris rubra) powder and its aqueous extract on growing goose's carcass quality and carcass measurements. One hundred eighty one-day-old goslings chicks of Chinese white geese were randomly distributed among five treatment groups containing three replicates of 12 birds each. Five experimental diets were formulated as follows: Control diet without supplementation (T1). T2 and T3, the beetroot extract was supplemented at 15 and 30 (ml/ L) in drinking water; 15, and 30 (g/kg) beetroot powder (T4, T5) in basal diet, respectively. Results indicate that the use of beetroot significantly improved all traits of the studied goose carcass compared to the control treatment, the addition of the aqueous extract at a concentration of 15 ml/ liter of drinking water and beetroot powder at a concentration of 15 g to the feed gave the best results and significantly compared to the rest of the treatments.
Keywords: beetroot (Beta vulgaris rubra), carcass quality, carcass measurements, growing goose
Collapse
Affiliation(s)
- Saad K.J. Al-waeli
- Animal Production Department, College of Agriculture, Al-Muthanna University, Iraq
| | - Majid H.A. Alasadi
- Animal Production Department, College of Agriculture, University of Basrah, Iraq
| | - Rabia J. Abbas
- Animal Production Department, College of Agriculture, University of Basrah, Iraq
| |
Collapse
|
9
|
Pekas EJ, Anderson CP, Park SY. Moderate dose of dietary nitrate improves skeletal muscle microvascular function in patients with peripheral artery disease. Microvasc Res 2023; 146:104469. [PMID: 36563997 PMCID: PMC11097165 DOI: 10.1016/j.mvr.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease characterized by compromised lower-extremity blood flow that impairs walking ability. We showed that a moderate dose of dietary nitrate in the form of beetroot juice (BRJ, 0.11 mmol/kg) can improve macrovascular function and maximal walking distance in patients with PAD. However, its impacts on the microcirculation and autonomic nervous system have not been examined. Therefore, we investigated the impacts of this dose of dietary nitrate on skeletal muscle microvascular function and autonomic nervous system function and further related these measurements to 6-min walking distance, pain-free walking distance, and exercise recovery in patients with PAD. Patients with PAD (n = 10) ingested either BRJ or placebo in a randomized crossover design. Heart rate variability, skeletal muscle microvascular function, and 6-min walking distance were performed pre- and post-BRJ and placebo. There were significant group × time interactions (P < 0.05) for skeletal muscle microvascular function, 6-min walking distance, and exercise recovery, but no changes (P > 0.05) in heart rate variability or pain-free walking distance were noted. The BRJ group demonstrated improved skeletal muscle microvascular function (∆ 22.1 ± 7.5 %·min-1), longer 6-min walking distance (Δ 37.5 ± 9.1 m), and faster recovery post-exercise (Δ -15.3 ± 4.2 s). Furthermore, changes in skeletal muscle microvascular function were positively associated with changes in 6-min walking distance (r = 0.5) and pain-free walking distance (r = 0.6). These results suggest that a moderate dose of dietary nitrate may support microvascular function, which is related to improvements in walking distance and claudication in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Cody P Anderson
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| |
Collapse
|
10
|
Ombra MN, Nazzaro F, Fratianni F. Enriched pasta incorporating typical vegetables of mediterranean diet: in vitro evaluation of inhibitory potential on digestive enzymes and predicted glycaemic index. Int J Food Sci Nutr 2023; 74:72-81. [PMID: 36534971 DOI: 10.1080/09637486.2022.2158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Swiss chard (Beta vulgaris L.) and chicory (Cichorium intybus L.) contain biologically active compounds with proven health benefits. Durum wheat noodle-shaped pasta enriched with dried and powder leaves of chard or chicory, at two different levels of supplementation (3%, 6%) was prepared on a laboratory scale. The content of polyphenols, pigments, carotenoids, in vitro inhibition of digestive enzymes and the predicted glycaemic response of the fortified pasta were evaluated. All formulations showed in vitro enzyme inhibition of amylase, glucosidase, and lipase and a low pGI <43. The lowest predicted glycaemic index (pGI = 34 ± 1.1) was found for pasta enriched with 3% beet powder. The incorporation of Beta vulgaris and Cichorium intybus leaf powders improved the nutritional properties of the pasta and also imparted an attractive natural colour to the products.
Collapse
Affiliation(s)
- Maria Neve Ombra
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| | - Florinda Fratianni
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
11
|
1H NMR-based metabolic profile and chemometric analysis for the discrimination of Passiflora species genotypic variations. Food Res Int 2023; 164:112441. [PMID: 36738006 DOI: 10.1016/j.foodres.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
The species of the genus Passiflora (Passifloraceae family) have been used as food, cosmetic and traditional herbal. As a result, the Passiflora species are widely cultivated and has an economic, medicinal and ornamental importance. The popular designation as "passion fruit" and chemical profile of several Passiflora species remains unknown. The lack of chemical information contributes to the erroneous classification and adulteration. In recent years, special attention has been paid to the bioactivity and phytochemical profiles of several Passiflora species extracts. In this research, 1H NMR-based metabolic profiling coupled with chemometric tools was used to characterize and distinguish extracts obtained from different wild Passiflora species (P. alata, P. cincinnata, and P. setacea) and genetic varieties (P. alata var. BRS Pérola do Cerrado, P. cincinnata var. BRS Sertão Forte, and P. setacea var. BRS Pérola do Cerrado). Fourteen metabolites were identified by 1D and 2D NMR experiments, highlighting the presence of fatty acids, carbohydrates, saponins, alkaloids, and mainly C-glycosidic flavones. Principal components analysis (PCA) allowed discrimination of Passiflora extracts, which the quadranguloside, oleanolic acid-3-sophoroside, α-glucose, β-glucose, and vitexin-2-O"-rhamnoside were relevant in the differentiation of P. alata and P. alata var. BRS Pérola do Cerrado, while the flavones isovitexin and isovitexin-2-O"-xyloside were dominant in the grouping of P. setacea and P. setacea var. BRS Pérola do Cerrado, and finally P. cincinnata and P. cincinnata var. BRS Sertão Forte grouped by the influence of the fatty acids, sucrose, flavones (isoorientin and vitexin-2-O"-xyloside), and trigonelline. The varieties of P. setacea, and P. cincinnata are chemically equivalent to the original Passiflora species. However, the PCA analysis showed that the genetic variety of P. alata occupied a different position in the scores plot provoked mainly by the presence of oleanolic acid-3-sophoroside. The 1H NMR metabolic profile can be efficient for quality control evaluation, and can contribute to the investigation of new alternatives for official Passiflora herbal medicines.
Collapse
|
12
|
Libutti A, Russo D, Lela L, Ponticelli M, Milella L, Rivelli AR. Enhancement of Yield, Phytochemical Content and Biological Activity of a Leafy Vegetable ( Beta vulgaris L. var. cycla) by Using Organic Amendments as an Alternative to Chemical Fertilizer. PLANTS (BASEL, SWITZERLAND) 2023; 12:569. [PMID: 36771653 PMCID: PMC9921681 DOI: 10.3390/plants12030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study evaluates the effect of a chemical fertilizer (ammonium nitrate), a compost (vermicompost from cattle manure) and two biochars (from vine prunings and wood chips, respectively), applied to the soil alone or in mixture, on the yield, phytochemical content and biological activity of Beta vulgaris L. var. cycla (Swiss chard). The respective treatments, each replicated four times, were arranged according to a completely randomized block design. Results showed that vermicompost, both alone and in mixture with vine pruning biochar, significantly increased yield parameters (plant height and leaf area) and yield over the untreated soil and the biochars alone, similar to ammonium nitrate. Moreover, vermicompost, both alone and in mixture, respectively, with the two biochars, determined lower total N and NO3- contents than ammonium nitrate, both alone and in mixture, respectively, with the two biochars. In particular, NO3- content was within the safe thresholds fixed for leafy vegetables by the European Commission to prevent any adverse implication on human health from dietary NO3- exposure. The biochars alone resulted in very low yield and leaf total N content, likely due to a limited release of N for plant uptake, also evidenced by the undetectable NO3- leaf content, similarly shown by plants grown in untreated soil. Vermicompost, alone or in mixture, respectively, with the two biochars, increased the content of specialized metabolites, with a positive effect on antioxidant activity. The organic amendments, particularly compost, could be an alternative to chemical fertilizers to reach a trade-off between yield, nutritional and health qualities in Swiss chard, meeting the needs of farmers and consumers as well as the targets for sustainable food production.
Collapse
Affiliation(s)
- Angela Libutti
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
- Spinoff BioActiPlant s.r.l., Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Ludovica Lela
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Anna Rita Rivelli
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
14
|
Non-Dairy Fermented Beverages Produced with Functional Lactic Acid Bacteria. Microorganisms 2022; 10:microorganisms10122314. [PMID: 36557567 PMCID: PMC9781336 DOI: 10.3390/microorganisms10122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
At present, there is an increasing interest in beverages of non-dairy origin, as alternatives to those based on milk, but having similar health-promoting properties. Fermentation with specific bacteria or consortia may enhance the functionality of these products. In our study, selected lactic acid bacteria, that have been previously shown to possess functional properties (antimicrobial activity, probiotic potential), were used for the fermentation of wheat bran combined with root vegetables. Strains were investigated for their safety, while the obtained beverages were characterized in terms of microbial content, physical, chemical, nutritional, and functional properties. None of the strains harbors virulence genes, but all of them possess genes for survival at low pH, starch metabolism, and vitamin biosynthesis. Three strains (Lactiplantibacillus plantarum BR9, L. plantarum P35, and Lactobacillus acidophilus IBB801) and two substrates (5% wheat bran with 10% red beetroot/carrots) were selected based on a preliminary assessment of the beverage's sensory acceptability. These strains showed good growth and stability over time in the stored beverages. No enterobacteria were detected at the end of fermentations, while the final pH was, in most cases, below 3.5. Free phenolics, flavonoids, and DPPH scavenging effect increased during fermentation in all drinks, reaching 24h values that were much higher than in the unfermented substrates. Most of the obtained drinks were able to prevent the growth of certain pathogens, including Listeria monocytogenes ATCC 19111, Salmonella enterica ATCC 14028, Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922. The obtained beverages would combine the nutritiveness of the raw ingredients with the beneficial effect of fermentation (increasing shelf life, health-promoting effect, pleasant flavor, etc.). They would also fill a gap in the non-dairy probiotics sector, which is constantly increasing due to the increasing number of vegan people or people that cannot consume dairy products.
Collapse
|
15
|
Moraes SM, Louzada CA, Lima Filho T, Della Lucia SM. Using the hedonic thresholds methodology and affective sensory methods to develop beet‐flavored smoothie yogurt. J SENS STUD 2022. [DOI: 10.1111/joss.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvana Medeiros Moraes
- Department of Pharmacy and Nutrition, Center for Natural Science and Health Federal University of Espírito Santo, Alto Universitário Alegre Brazil
| | - Camila Affonso Louzada
- Department of Food Engineering, Center for Agrarian Sciences and Engineering Federal University of Espírito Santo, Alto Universitário Alegre Brazil
| | - Tarcísio Lima Filho
- Department of Food Engineering, Center for Agrarian Sciences and Engineering Federal University of Espírito Santo, Alto Universitário Alegre Brazil
| | - Suzana Maria Della Lucia
- Department of Food Engineering, Center for Agrarian Sciences and Engineering Federal University of Espírito Santo, Alto Universitário Alegre Brazil
| |
Collapse
|
16
|
Vitale E, Izzo LG, Amitrano C, Velikova V, Tsonev T, Simoniello P, De Micco V, Arena C. Light Quality Modulates Photosynthesis and Antioxidant Properties of B. vulgaris L. Plants from Seeds Irradiated with High-Energy Heavy Ions: Implications for Cultivation in Space. PLANTS (BASEL, SWITZERLAND) 2022; 11:1816. [PMID: 35890451 PMCID: PMC9316636 DOI: 10.3390/plants11141816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Beta vulgaris L. is a crop selected for cultivation in Space for its nutritional properties. However, exposure to ionizing radiation (IR) can alter plant photosynthetic performance and phytochemical production in the extraterrestrial environment. This study investigated if plant growth under different light quality regimes (FL-white fluorescent; RGB-red-green-blue; RB-red-blue) modifies the photosynthetic behavior and bioactive compound synthesis of plants sprouted by dry seeds irradiated with carbon or titanium high-energy ions. The study evidenced that: (i) the plant response depends on the type of heavyion; (ii) control and C-ion-irradiated plants were similar for photosynthetic pigment content and PSII photochemical efficiency, regardless of the LQ regime; (iii) under FL, net photosynthesis (AN) and water use efficiency (iWUE) declined in C- and Ti-ion plants compared to control, while the growth of irradiated plants under RGB and RB regimes offset these differences; (iv) the interaction Ti-ion× RB improved iWUE, and stimulated the production of pigments, carbohydrates, and antioxidants. The overall results highlighted that the cultivation of irradiated plants under specific LQ regimes effectively regulates photosynthesis and bioactive compound amounts in leaf edible tissues. In particular, the interaction Ti-ion × RB improved iWUE and increased pigments, carbohydrates, and antioxidant content.
Collapse
Affiliation(s)
- Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (V.V.); (T.T.)
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (V.V.); (T.T.)
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Via Acton 38, 80133 Naples, Italy;
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
- BAT Center—Center for Studies on Bioinspired Agro-Environmental Technology, 80055 Portici, Italy
| |
Collapse
|
17
|
Bahrami LS, Mohebaty M, Arabi SM, Tabesh H, Nematy M, Rezvani R. Effect of beetroot or beetroot plus vitamin C supplementation on cardiovascular function in patients with coronary artery disease: protocol for a double-blind, placebo-controlled, randomised trial. BMJ Open 2022; 12:e061394. [PMID: 35710253 PMCID: PMC9204440 DOI: 10.1136/bmjopen-2022-061394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Coronary artery disease (CAD), classified into the atherosclerosis category, is a prevalent cardiovascular disease worldwide that is associated with serious comorbidities and death. The purpose of this study was to evaluate the effect of beetroot/beetroot plus vitamin C on cardiovascular health status and function in patients with CAD. METHOD AND ANALYSIS A randomised, placebo-controlled, double-blind clinical trial to recruit 90 patients with CAD at the cardiac outpatient clinic and Imam Reza Hospital, Mashhad, Iran. Participants will be divided into three groups: (1) Those who receive 500 mg three times a day of beetroot capsules, (2) Those who receive 500 mg three times a day of beetroot plus vitamin C capsules, and (3) Those who receive placebo capsules three times a day for 4 weeks. Pulse wave velocity, Augmentation Index, heart rate, volume of oxygen (VO2) max/VO2 peak, peak heart rate, blood pressure, interleukin 6 (IL-6), high sensitivity C reactive protein, intercellular adhesion molecule, vascular cell adhesion molecule, lipid profile and anthropometry will be measured at the beginning and end of the intervention. ETHICS AND DISSEMINATION This study was approved by the Ethics Committee of Mashhad University of Medical Sciences (IR.MUMS.MEDICAL.REC.1399.717). All participants will be asked to complete the consent form at the beginning of the study. The results will be actively disseminated through peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials, IRCT20210217050393N1 (registered 16 May 2021).
Collapse
Affiliation(s)
- Leila Sadat Bahrami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mohebaty
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mostafa Arabi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamed Tabesh
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Nematy
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Rezvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Olumese FE, Oboh HA. Biochemical and histopathological evaluation of liver, kidney, and pancreas in normal Sprague Dawley rats administered aqueous extract of beetroot ( Beta vulgaris). JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:729-735. [PMID: 35334190 DOI: 10.1515/jcim-2020-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/25/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The safety and potentials of beetroot juice as a nutraceutical was assessed. METHODS Beetroot obtained was identified by a taxonomist and washed thoroughly, chopped finely into small bits, and blended. The aqueous juice obtained was freeze dried. Six groups of five animals were distributed according to sex and body weight (average 135-185.0 g). The aqueous extract of beetroot was dissolved in distilled water and administered in a range of 200-3,000 mg/kg body weight/day/for 28 days using gastric gavage. Weight of animals, and feed consumption were determined weekly. On the 28th day the animals were fasted for 12 h and euthanized. Blood was collected for biochemical assays, while the kidney, liver, and pancreas were weighed and kept in buffered formalin for histopathological evaluation. RESULTS Serum ALT was unaltered in all the groups, while the level of AST was significantly (p<0.05) reduced at 500, 2,000, and 3,000 mg/kg. ALP was significantly reduced at 200 mg and 1,000 mg when compared to control. Total protein decreased significantly at 200 mg when compared to control and 2,000, 3,000 mg respectively. There were no significant changes in K+ and Cl- in all the groups. Urea at 200 and 3000 mg were significantly reduced and increased respectively. Creatinine concentration was not altered. Histopathological examination, did not reveal any unusual findings in the organs examined. CONCLUSIONS This study revealed that beetroot juice may not be toxic to the organs evaluated in the tested doses, therefore the extract can be said to be safe for the duration of study in an animal model.
Collapse
Affiliation(s)
- Fidelis E Olumese
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| | - Henrietta A Oboh
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
19
|
Laldingliani TBC, Thangjam NM, Zomuanawma R, Bawitlung L, Pal A, Kumar A. Ethnomedicinal study of medicinal plants used by Mizo tribes in Champhai district of Mizoram, India. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:22. [PMID: 35331291 PMCID: PMC8944157 DOI: 10.1186/s13002-022-00520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicinal plants have been used countless times for curing diseases mainly in developing countries. They are easily available with little to no side effects when compared to modern medicine. This manuscript encompasses information on ethnomedicinal plants in Champhai district, located in the North East Region (NER) of India. The region lies within Indo-Burma biodiversity hotspot. This study will be the first quantitative report on the ethnomedicinal plants used by the local tribes of this region. Knowledge of medicinal plants is mostly acquired by word of mouth, and the knowledge is dying among the local youths with the prevalence of modern medicine. Hence, there is urgency in deciphering and recording such information. METHODS Information was gathered through interviews with 200 informants across 15 villages of the Champhai district. From the data obtained, we evaluate indices such as used report (UR), frequency of citation (FC), informant consensus factor (Fic), cultural values (CVs) and relative importance (RI) for all the plant species. Secondary data were obtained from scientific databases such as Pubmed, Sci Finder and Science Direct. The scientific name of the plants was matched and arranged in consultation with the working list of all plant species ( http://www.theplantlist.org ). RESULTS Totally, 93 plant species from 53 families and 85 genera were recorded. The most common families are Euphorbiaceae and Asteraceae with six and five species representatives, respectively. Leaves were the most frequently used part of a plant and were usually used in the form of decoction. Curcuma longa has the most cultural value (27.28 CVs) with the highest used report (136 FC), and the highest RI value was Phyllanthus emblica. The main illness categories as per Frequency of citation were muscle/bone problem (0.962 Fic), gastro-intestinal disease (0.956 Fic) and skin care (0.953 Fic). CONCLUSION The people of Mizoram living in the Champhai district have an immense knowledge of ethnomedicinal plants. There were no side effects recorded for consuming ethnomedicinal plants. We observed that there is a scope of scientific validation of 10 plant species for their pharmacological activity and 13 species for the phytochemical characterisation or isolation of the phytochemicals. This might pave the path for developing a scientifically validated botanical or lead to semisyntheic derivatives intended for modern medicine.
Collapse
Affiliation(s)
- T B C Laldingliani
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - Nurpen Meitei Thangjam
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - R Zomuanawma
- Department of Botany, School of Life Science, Mizoram University, Aizawl, 796004, India
| | - Laldingngheti Bawitlung
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - Anirban Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, CIMAP, Lucknow, 226015, India
| | - Awadhesh Kumar
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
20
|
Tan R, Wylie LJ, Wilkerson DP, Vanhatalo A, Jones AM. Effects of dietary nitrate on the O 2 cost of submaximal exercise: Accounting for "noise" in pulmonary gas exchange measurements. J Sports Sci 2022; 40:1149-1157. [PMID: 35301929 DOI: 10.1080/02640414.2022.2052471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dietary nitrate (NO3-) supplementation can reduce the oxygen cost of submaximal exercise, but this has not been reported consistently. We hypothesised that the number of step transitions to moderate-intensity exercise, and corresponding effects on the signal-to-noise ratio for pulmonary V˙ O2, may be important in this regard. Twelve recreationally active participants were assigned in a randomised, double-blind, crossover design to supplement for 4 days in three conditions: 1) control (CON; water); 2); PL (NO3--depleted beetroot juice); and 3) BR (NO3--rich beetroot juice). On days 3 and 4, participants completed two 6-min step transitions to moderate-intensity cycle exercise. Breath-by-breath V˙ O2 data were collected and V˙ O2 kinetic responses were determined for a single transition and when the responses to 2, 3 and 4 transitions were ensemble-averaged. Steady-state V˙ O2 was not different between PL and BR when the V˙ O2 response to one-, two- or three-step transition was compared but was significantly lower in BR compared to PL when four-step transitions was considered (PL: 1.33 ± 0.34 vs. BR: 1.31 ± 0.34 L·min-1, P < 0.05). There were no differences in pulmonary V˙ O2 responses between CON and PL (P > 0.05). Multiple step transitions may be required to detect the influence of NO3- supplementation on steady-state V˙ O2.
Collapse
Affiliation(s)
- Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Daryl P Wilkerson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| |
Collapse
|
21
|
Assessment of Potential Benefits of Functional Food Characteristics of Beetroot Energy Drink and Flavored Milk. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1971018. [PMID: 35342761 PMCID: PMC8947884 DOI: 10.1155/2022/1971018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022]
Abstract
Objective This study was designed to determine the antioxidant activity of the extracts of beetroot by using beetroot energy drink and flavored milk (products). Material & Methods. This experimental trial was conducted at Jinnah University for Women, Pakistan, under the approval of local institutional review board number JUW/DFST/RCB010/2020. All the materials such as beetroot, carrot, cucumber, and lemon were obtained commercially from which two products were formulated: beetroot energy drink (sample1) and flavored milk (sample 2). These formulated products were evaluated for quality analysis (pH and brix), phytochemical screening using the Keller-Kiliani test, Salkowski's test, Alkaline reagent test, lead acetate test, ferric chloride test, protein test, quantitative test of phenol, antioxidant activity, sensory analysis, and shelf life study. The paired t-test was applied to detect significant differences between two samples. Results The phytochemical analysis revealed that cardiac glycosides, phytosterol, flavonoids, and terpenoids were found in both energy booster drink (EBD) and flavored milk (FM) except phenolic compounds that were found only in EBD. The antioxidant capacity of beetroot juice was far greater than FM. The statistical sensorial analysis of FM and EBD reported a significant mean difference between most of the groups with p < 0.0001. Conclusion This study concludes that energy drinks having beetroot indicated higher antioxidant capacity than flavored milk. The nutraceutical products (energy booster drink and flavored milk) containing beetroot are enriched with optimum quantities of proteins and fats and low carbohydrates at a stable pH with an adequate total energy content.
Collapse
|
22
|
|
23
|
Comparison of steaming and boiling of root vegetables for enhancing carbohydrate content and sensory profile. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bhardwaj N, Sharma P, Guo L, Dagdag O, Kumar V. Molecular dynamic simulation and Quantum chemical calculation of phytochemicals present in Beta vulgaris and electrochemical behaviour of Beta vulgaris peel extract as green corrosion inhibitor for stainless steel (SS-410) in acidic medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127707] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Mineral Composition of Dietary Supplements-Analytical and Chemometric Approach. Nutrients 2021; 14:nu14010106. [PMID: 35010980 PMCID: PMC8746997 DOI: 10.3390/nu14010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is a lack of data on the actual composition and effectiveness of beetroot-based dietary supplements. The research aimed to determine the profile of 22 elements (Na, K, Ca, Mg, P, Fe, As, Se, Zn, Cu, Ag, Co, Ni, Mo, Al, Mn, Sr, Cr, Ba, Li, Pb, Cd) in beetroot and its supplements by the microwave plasma atomic emission spectrometry (MP-AES) method. The analytical procedure was optimised and validated. The composition of both groups was compared, assessing compliance with the recommended daily doses for the chosen elements, and the health risk was estimated. Furthermore, chemometric analysis was applied. Beetroots constituted a significant source of elements, especially K, Na, Mg, Ca, P, in contrast to supplements which contained their negligible amounts except from iron-enriched products which provided notable amounts of Fe (38.3–88% of the Recommended Dietary Allowance for an adult male from 19 to 75 years old). Some products were significantly contaminated with toxic elements (As, Cd). Factor and cluster analyses were helpful in the differentiation of beetroot and its supplements in view of their type (vegetable, supplement, iron-enriched supplement), origin, type of cultivation (conventional, organic), and form (capsule, tablet) based on their mineral composition. The obtained results indicate the need for more stringent control of supplements, as they may pose a significant health risk to consumers.
Collapse
|
26
|
Barber MS, Barrett R, Bradley RD, Walker E. A naturopathic treatment approach for mild and moderate COVID-19: A retrospective chart review. Complement Ther Med 2021; 63:102788. [PMID: 34748955 PMCID: PMC8570825 DOI: 10.1016/j.ctim.2021.102788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19) pandemic has led to significant morbidity and mortality. Although COVID-19 vaccination is available, therapeutic options are still needed. The goal of the present manuscript is to report on a treatment strategy used in a naturopathic medical practice for mild and moderate COVID-19. DESIGN A retrospective chart review was conducted of 30 consecutive patients diagnosed with mild and moderate COVID-19 who were provided multi-nutrient, herbal, and probiotic treatment in a rural, out-patient, naturopathic primary care setting. MAIN OUTCOMES MEASURES The primary outcome was treatment safety; secondary outcomes included changes in symptoms, progression to severe COVID-19, incidence of long COVID, and recovery time. RESULTS No side effects or adverse events were reported from treatment and all patients experienced resolution of symptoms presumed to be associated with COVID-19 infection. One patient who had been ill for 28 days prior to presentation was hospitalized. Five patients had an illness duration of more than one month. Time to treatment was correlated with duration of illness post-treatment (r = 0.63, p < 0.001) and more symptoms at presentation was correlated with a longer duration of illness (r = 0.52, p < 0.01). CONCLUSIONS In this retrospective chart review, a multi-nutrient, herbal, and probiotic therapeutic approach for mild and moderate COVID-19 appeared to be well-tolerated. Delay in seeking treatment after symptom onset, as well as more symptoms at presentation, were correlated with a longer duration of illness. This treatment strategy may have clinical benefit, warranting prospective clinical trials with confirmed COVID-19 cases.
Collapse
Affiliation(s)
- Melissa S Barber
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, United States.
| | - Richard Barrett
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, United States.
| | - Ryan D Bradley
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, United States.
| | - Erin Walker
- Canby Clinic, 452 NW 1st Ave, Canby, OR, United States.
| |
Collapse
|
27
|
Abd-El-Fattah ME, Dessouki AA, Abdelnaeim NS, Emam BM. Protective effect of Beta vulgaris roots supplementation on anemic phenylhydrazine-intoxicated rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65731-65742. [PMID: 34322802 DOI: 10.1007/s11356-021-15302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Anemia is a public health problem that affects many people worldwide. Beetroot (Beta vulgaris) is a plant supposed to have many healthy features. The present study was done to evaluate the anti-anemic effect of beetroot supplement on anemia induced by phenylhydrazine in albino rats. Fifty rats were randomly divided into five equal groups. The control group was kept normal rats. In the second group, anemia was induced in rats by intraperitoneal injection of phenylhydrazine at 60 mg/kg in 3 divided doses daily, for 3 consecutive days. The last three groups received phenylhydrazine as the anemic group. Then, the third group received beetroot extract in dose 200 mg/kg for 24 days. The fourth group received beetroot powder in dose 1000 mg/kg for 24 days. The last group received iron (III) hydroxide polymaltose complex in dose 5mg/kg for 24 days. Our results showed that hemolytic anemia induced by phenylhydrazine in rats caused alteration in the blood picture, iron indices, serum biochemical parameters, antioxidant biomarkers, and histopathological picture. However, the supplementation with beetroot ameliorated these alterations, especially beetroot powder which showed powerful health effects compared to beetroot extract and iron preparation.
Collapse
Affiliation(s)
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Bassant M Emam
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
28
|
Kamli MR, Malik MA, Lone SA, Sabir JSM, Mattar EH, Ahmad A. Beta vulgaris Assisted Fabrication of Novel Ag-Cu Bimetallic Nanoparticles for Growth Inhibition and Virulence in Candida albicans. Pharmaceutics 2021; 13:1957. [PMID: 34834372 PMCID: PMC8621205 DOI: 10.3390/pharmaceutics13111957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
Beta vulgaris extract contains water-soluble red pigment betanin and is used as a food colorant. In this study, the biogenic Ag-Cu bimetallic nanoparticles were synthesized and characterized by different spectroscopic and microscopic techniques, including UV-Visible, FTIR, TEM. SEM-EDX, XRD, and TGA. Further, Ag-Cu bimetallic nanoparticles capped with Beta vulgaris biomolecules were evaluated for their antifungal activity against Candida albicans via targeting its major virulence factors, including adherence, yeast to hyphae transition, extracellular enzyme secretion, biofilm formation, and the expression of genes related to these pathogenic traits by using standard methods. C. albicans is an opportunistic human fungal pathogen that causes significant morbidity and mortality, mainly in immunocompromised patients. The current antifungal therapy is limited with various shortcomings such as host toxicity and developing multidrug resistance. Therefore, the development of novel antifungal agents is urgently required. Furthermore, NPs were screened for cell viability and cytotoxicity effect. Antifungal susceptibility testing showed potent antifungal activity of the Ag-Cu bimetallic NPs with a significant inhibitory effect on adherence, yeast to hyphae transition, extracellular enzymes secretion, and formation of biofilms in C. albicans at sub-inhibitory and inhibitory concentrations. The RT-qPCR results at an MIC value of the NPs exhibited a varying degree of downregulation in expression levels of virulence genes. Results also revealed the dose-dependent effect of NPs on cellular viability (up to 100%) using MUSE cell analyzer. Moreover, the low cytotoxicity effect of bimetallic NPs has been observed using haemolytic assay. The overall results indicated that the newly synthesized Ag-Cu bimetallic NPs capped with Beta vulgaris are proven to possess a potent anticandidal activity, by affecting the vital pathogenic factors of C. albicans.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shabir Ahmad Lone
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.L.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.L.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
29
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Akan S, Tuna Gunes N, Erkan M. Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selen Akan
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Nurdan Tuna Gunes
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Mustafa Erkan
- Faculty of Agriculture Department of Horticulture Akdeniz University Antalya Turkey
| |
Collapse
|
31
|
Al-Harbi LN, Pandurangan SB, Al-Dossari AM, Shamlan G, Salamatullah AM, Alshatwi AA, Alotiby AA. Beta vulgaris rubra L. (Beetroot) Peel Methanol Extract Reduces Oxidative Stress and Stimulates Cell Proliferation via Increasing VEGF Expression in H 2O 2 Induced Oxidative Stressed Human Umbilical Vein Endothelial Cells. Genes (Basel) 2021; 12:genes12091380. [PMID: 34573361 PMCID: PMC8466581 DOI: 10.3390/genes12091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel’s bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography–mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3β, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κβ (F-κβ), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1β (IL-1β)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1β)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.
Collapse
Affiliation(s)
- Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
- Correspondence:
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Alhanouf Mohammed Al-Dossari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Amna Abdullah Alotiby
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24237, Saudi Arabia;
| |
Collapse
|
32
|
Optimization of Betalain Pigments Extraction Using Beetroot by-Products as a Valuable Source. INVENTIONS 2021. [DOI: 10.3390/inventions6030050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
(1) Background: This study is designed to extract the bioactive compounds from beetroot peel for future use in the food industry. (2) Methods: Spectrophotometry techniques analyzed the effect of conventional solvent extraction on betalains and polyphenolic compounds from beetroot peels. Several treatments by varying for factors (ethanol and citric acid concentration, temperature, and time) were applied to the beetroot peel samples. A Central Composite Design (CCD) has been used to investigate the effect of the extraction parameters on the extraction steps and optimize the betalains and total polyphenols extraction from beetroot. A quadratic model was suggested for all the parameters analyzed and used. (3) Results: The maximum and minimum variables investigated in the experimental plan in the coded form are citric acid concentration (0.10–1.5%), ethanol concentration (10–50%), operating temperature (20–60 °C), and extraction time (15–50 min). The experimental design revealed variation in betalain content ranging from 0.29 to 1.44 mg/g DW, and the yield of polyphenolic varied from 1.64 to 2.74 mg/g DW. The optimized conditions for the maximum recovery of betalains and phenols were citric acid concentration 1.5%, ethanol concentration 50%, temperature 52.52 °C, and extraction time 49.9 min. (4) Conclusions: Overall, it can be noted that the extraction process can be improved by adjusting operating variables in order to maximize the model responses.
Collapse
|
33
|
Pekas EJ, Wooden TK, Yadav SK, Park SY. Body mass-normalized moderate dose of dietary nitrate intake improves endothelial function and walking capacity in patients with peripheral artery disease. Am J Physiol Regul Integr Comp Physiol 2021; 321:R162-R173. [PMID: 34161745 DOI: 10.1152/ajpregu.00121.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is characterized by the accumulation of atherosclerotic plaques in the lower extremity conduit arteries, which impairs blood flow and walking capacity. Dietary nitrate has been used to reduce blood pressure (BP) and improve walking capacity in PAD. However, a standardized dose for PAD has not been determined. Therefore, we sought to determine the effects of a body mass-normalized moderate dose of nitrate (0.11 mmol nitrate/kg) as beetroot juice on serum nitrate/nitrite, vascular function, walking capacity, and tissue oxygen utilization capacity in patients with PAD. A total of 11 patients with PAD received either nitrate supplement or placebo in a randomized crossover design. Total serum nitrate/nitrite, resting BP, brachial and popliteal artery endothelial function (flow-mediated dilation, FMD), arterial stiffness (pulse-wave velocity, PWV), augmentation index (AIx), maximal walking distance and time, claudication onset time, and skeletal muscle oxygen utilization were measured pre- and postnitrate and placebo intake. There were significant group × time interactions (P < 0.05) for serum nitrate/nitrite, FMD, BP, walking distance and time, and skeletal muscle oxygen utilization. The nitrate group showed significantly increased serum nitrate/nitrite (Δ1.32 μM), increased brachial and popliteal FMD (Δ1.3% and Δ1.7%, respectively), reduced peripheral and central systolic BP (Δ-4.7 mmHg and Δ-8.2 mmHg, respectively), increased maximal walking distance (Δ92.7 m) and time (Δ56.3 s), and reduced deoxygenated hemoglobin during walking. There were no changes in PWV, AIx, or claudication (P > 0.05). These results indicate that a body-mass normalized moderate dose of nitrate may be effective and safe for reducing BP, improving endothelial function, and improving walking capacity in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Santosh K Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
34
|
Mancini MCS, Ponte LGS, Silva CHR, Fagundes I, Pavan ICB, Romeiro SA, da Silva LGS, Morelli AP, Rostagno MA, Simabuco FM, Bezerra RMN. Beetroot and leaf extracts present protective effects against prostate cancer cells, inhibiting cell proliferation, migration, and growth signaling pathways. Phytother Res 2021; 35:5241-5258. [PMID: 34132433 DOI: 10.1002/ptr.7197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Beet (Beta vulgaris L.) has high nutritional value, containing bioactive compounds such as betalains and flavonoids. Scientific evidence points to the use of these natural compounds in the treatment of several types of cancer, such as prostate cancer, one of the main causes of morbidity and mortality in men. Here, we compared beet roots and leaves extracts, and their main compounds, apigenin, and betanin, respectively, in DU-145 and PC-3 prostate cancer cell lines. Both cells presented the proliferation decreased for beetroot and beet leaves extracts. The apigenin treatment also reduced the proliferation of both cell lines. Regarding cell migration, beet leaves extract was able to decrease the scratch area in both cell lines, whereas apigenin affected only PC-3 cells' migration. In colony formation assay, both extracts were effective in reducing the number of colonies formed. Besides, the beet leaves extracts and apigenin presented strong inhibition of growth-related signaling pathways in both cell lines, and the beetroot extract and betanin presented effects only in DU-145 cells. Furthermore, the extracts and isolated compounds were able to reduce the levels of apoptotic and cell cycle proteins. This study reveals that beet extracts have important anti-cancer effects against prostate cancer cells.
Collapse
Affiliation(s)
- Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil.,Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Stefhani Andrioli Romeiro
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maurício Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
35
|
Bahrami LS, Arabi SM, Feizy Z, Rezvani R. The effect of beetroot inorganic nitrate supplementation on cardiovascular risk factors: A systematic review and meta-regression of randomized controlled trials. Nitric Oxide 2021; 115:8-22. [PMID: 34119659 DOI: 10.1016/j.niox.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Inorganic nitrate is one of the most effective compounds in beetroot for improving cardiovascular function due to its conversion to nitric oxide in the body. This review and meta-analysis aimed to investigate the role of beetroot inorganic nitrate supplementation on adults' cardiovascular risk factors. METHODS We conducted a systematic literature review of articles published without time limitation until November 2020 in PubMed, Embase, ISI Web of Science, Scopus, Cochrane Library, and gray literature databases. We included the original randomized clinical trials (RCTs) in which the effect of beetroot inorganic nitrate supplementation on endothelial function, arterial stiffness, and blood pressure was studied. RESULTS 43 studies were included for qualitative synthesis, out of which 27 were eligible for meta-analysis. Beetroot inorganic nitrate supplementation significantly decreased Arterial Stiffness (Pulse Wave Velocity (-0.27 m/s, p = 0.04)) and increased Endothelial function (Flow Mediated Dilation: 0.62%, p = 0.002) but did not change other parameters (p > 0.05). CONCLUSION Beetroot inorganic nitrate supplementation might have a beneficial effect on cardiovascular risk factors. Further high-quality investigations will be needed to provide sufficient evidence.
Collapse
Affiliation(s)
- Leila Sadat Bahrami
- Metabolic Syndrome Research Center, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyed Mostafa Arabi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX79414, USA.
| | - Reza Rezvani
- Metabolic Syndrome Research Center, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Aliahmadi M, Amiri F, Bahrami LS, Hosseini AF, Abiri B, Vafa M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J Diabetes Metab Disord 2021; 20:673-682. [PMID: 34222085 PMCID: PMC8212206 DOI: 10.1007/s40200-021-00798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. METHODS In a quasi-experimental study, 44 type 2 diabetes patients (57 ± 4.5 years) consumed raw red beetroot (100 g, daily), for 8 weeks. Metabolic markers including body weight, glucose and lipid profile parameters, inflammatory and oxidative stress markers, paraoxonase-1 activity, hepatic enzymes, blood pressure and cognitive function were measured at the beginning and end of 8 weeks. RESULTS Raw red beetroot consumption resulted in a significant decrease in fasting blood sugar (FBS) levels (-13.53 mg/dL), glycosylated hemoglobin (HbA1c)(-0.34%), apolipoproteinB100 (ApoB100) (-8.25 mg/dl), aspartate aminotransferase (AST) (-1.75 U/L), alanine aminotransferase (ALT) (-3.7 U/L), homocysteine (-7.88 μmol/l), systolic (-0.73 mmHg) and diastolic blood pressure (-0.34 mmHg), anda significant increase in total antioxidant capacity (TAC) (105 μmol/L) and cognitive function tests (all P values <0.05). Other variables did not change significantly after the intervention. CONCLUSIONS Raw red beetroot consumption for 8 weeks in T2DM patients has beneficial impacts on cognitive function, glucose metabolism and other metabolic markers.
Collapse
Affiliation(s)
- Mitra Aliahmadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Bahrami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Agha Fatemeh Hosseini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Sepúlveda L, Contreras E, Cerro D, Quintulén L. Technical feasibility of natural antioxidant recovery from the mixture of the inedible fractions of vegetables produced in a wholesale market. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1915878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Luisa Sepúlveda
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Elsa Contreras
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Daniela Cerro
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Leonardo Quintulén
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
38
|
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules 2021; 26:2520. [PMID: 33925891 PMCID: PMC8123435 DOI: 10.3390/molecules26092520] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| |
Collapse
|
39
|
Othman A, Amen Y, Shimizu K. A novel acylated flavonol tetraglycoside and rare oleanane saponins with a unique acetal-linked dicarboxylic acid substituent from the xero-halophyte Bassia indica. Fitoterapia 2021; 152:104907. [PMID: 33892125 DOI: 10.1016/j.fitote.2021.104907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
In recent years, the scientific interest and particularly the economic significance of halophytic plants has been highly demanding due to the medicinal and nutraceutical potential of its bioactive compounds. A xero-halophyte Bassia indica is deemed to be a very cheap source of natural entities without chemical or biological investigation. In this context, a new acylated flavonol tetraglycoside, kaempferol-3-O-β-d-glucopyranosyl-(1→6)-O-[β-D-galactopyranosyl-(1→3)-2-O-trans-feruloyl-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (14), together with rare occurring flavonol triglycoside, isorhamnetin-3-O-β-d-glucopyranosyl-(1→6)-O-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (15), were isolated from the aqueous methanol extract of the aerial parts of B. indica. The study also reported an optimal separation and characterization of a new seco-glycosidic oleanane saponin with 2'R,3'S stereocenters, identified as (2'R,3'S)-3-O-[2'-hydroxy-3'-(2"-O-glycolyl)-oxo-propionic acid-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranosyl-olean-12-en-3β-ol-28-oic acid (17), in addition to its derivative, 3-O-[2'-(2"-O-glycolyl)-glyoxylyl-β-D-glucuronopyranosyl]-28-O-β-d-glucopyranosyl-olean-12-en-3β-ol-28-oic acid (16). The structures of all isolated compounds were elucidated based on 1D, 2D NMR, and HR-MS analysis, as well as comparing with similar derivatives published in the literature. Furthermore, thirteen known compounds were isolated and identified as β-sitosterol (1), vanillic acid (2), o-hydroxybenzoic acid (3), р-hydroxybenzoic acid (4), 6,7-dihydroxycoumarin (5), methyl caffeate (6), caffeic acid (7), quercetin (8), uracil (9), thymidine (10), tachioside (11), isorhamnetin-3-O-β-D-glucopyranoside (12), kaempferol-3-O-rutinoside (13). The anticholinesterase activity of all isolated compounds was evaluated.
Collapse
Affiliation(s)
- Ahmed Othman
- Department of Agro-environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Yhiya Amen
- Department of Agro-environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
40
|
Mroczek A, Klimczak U, Kowalczyk M. Determination of Saponins in Leaves of Four Swiss Chard ( Beta vulgaris L.) Cultivars by UHPLC-CAD/QTOF-MS/MS. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Hassen MT, Mohamed HK, Montaser MM, El-Sharnouby ME, Awad N, Ebiya RA. Molecular, Immunomodulatory, and Histopathological Role of Mesenchymal Stem Cells and Beetroot Extract on Cisplatin Induced Testicular Damage in Albino Rats. Animals (Basel) 2021; 11:ani11041142. [PMID: 33923635 PMCID: PMC8074130 DOI: 10.3390/ani11041142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The chemotherapeutic agent Cisplatin (Cis) has testicular damage as a side effect. Therefore, efforts are being done by scientists to get over this effect. The current experiment was done to utilize bone marrow-derived stem cells (BM-MSCs) and beetroot extract (BRE) in reducing the Cis testicular damage in rats. In the current study, Cis reduced the sperm count, plasma testosterone level, the testicular activity of alkaline phosphatase beside a marked inhabitation of succinate dehydrogenase activity. Also, it significantly increased malondialdehyde and along with a marked decrease in testis reduced glutathione content and total antioxidant capacity. At the same time, Cis administration resulted in a marked elevation in interleukine-6 and the iNOS and caspase-3 genes, however it decreased the expression of steroidogenic acute regulatory protein (StAR). Stem cell therapy (BM-MSCs) was accompanied with the use of herbal therapy (BRE) resulted in great improvement of all previous parameters. These results were confirmed by histopathological and immunohistochemical examination. In conclusion the current study recommends the use of beetroot as natural food in combination with stem cell therapy for the patient suffering from the testicular side effect of cisplatin chemotherapy. Abstract Cisplatin (Cis) a drug commonly used as a chemotherapeutic agent to treat various types of cancer, inducing testicular damage. The present study aimed to investigate the inhibitory potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and beetroot extract (BRE) in albino rats after testicular toxicity induced by cisplatin. Thirty adult male albino rats were grouped into: the control group, Cis group receiving a single dose of 7 mg/kg i.p. (intraperitoneal) to induce testicular toxicity, Cis plus BM-MSCs injected Cis followed by 2 × 106 of BM-MSCs; Cis plus BRE group receiving Cis followed by 300 mg/kg body weight/day of BRE, and Cis plus BM-MSCs and BRE group. In the current study, Cis reduced sperm count, serum testosterone level, and testicular activity of alkaline phosphatase (AKP), besides a marked inhibition of succinate dehydrogenase (SDH) activity. In addition, it significantly increased malondialdehyde (MDA) and along with a marked decrease in testis reduced glutathione content and total antioxidant capacity (TAC). At the same time, Cis administration resulted in a marked elevation in interleukine-6 and the iNOS and caspase-3 genes; however, it decreased the expression of steroidogenic acute regulatory protein (StAR). Combined treatment with BM-MSCs and BRE resulted in great improvement of all previous parameters. These results were also confirmed by histopathological and immunohistochemical examination. In conclusion, both MSCs and BRE were found to have potent potentials to inhibit testicular damage induced by cisplatin.
Collapse
Affiliation(s)
- Marwa T. Hassen
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt; (M.T.H.); (H.K.M.); (R.A.E.)
| | - Hanaa K. Mohamed
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt; (M.T.H.); (H.K.M.); (R.A.E.)
| | - Metwally M. Montaser
- Science and Technology Department, University College of Ranyah, Taif University, Ranyah 21975, Saudi Arabia
- Correspondence:
| | | | - Nabil Awad
- Department of Genetics, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt;
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
| | - Rasha A. Ebiya
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt; (M.T.H.); (H.K.M.); (R.A.E.)
| |
Collapse
|
42
|
Pavlović N, Mladenović J, Stevović V, Bošković-Rakočević L, Moravčević Đ, Poštić D, Zdravković J. Effect of processing on vitamin C content, total phenols and antioxidative activity of organically grown red beetroot ('Beta vulgaris' ssp. 'Rubra'). FOOD AND FEED RESEARCH 2021. [DOI: 10.5937/ffr48-31354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The demand for organic food is rising since consumers want food from reliable, highest quality sources originating from the environment, undisturbed by cultivation and processing. It is necessary to determine to what extent there is a scientific basis for the claims that organic food is of high quality. In this study, beetroot from an organic production system originating from 6 certified organic food producers from different geographic locations was examined. The organic beetroot samples were processed by pasteurization at 70 ºC and 90 ºC into beet juice or by drying at 55 ºC. The following samples were tested and compared: fresh beetroot, pasteurized beet juice and dried beetroot slices. The concentration of vitamin C, level of total phenol compounds (TPC) and antioxidative activity (TAA) in beetroot were influenced by the geographic origin and the applied processing method. The highest degradation for all analysed parameters was found in the samples treated by drying or pasteurisation at 90 ºC. The lowest losses of studied phytochemical components were observed during juice pasteurisation at 70 ºC. The correlation coefficient between TPC and TAA was high and significant (r2 = 0.966).
Collapse
|
43
|
Abdo E, El-Sohaimy S, Shaltout O, Abdalla A, Zeitoun A. Nutritional Evaluation of Beetroots ( Beta vulgaris L.) and Its Potential Application in a Functional Beverage. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1752. [PMID: 33322047 PMCID: PMC7764643 DOI: 10.3390/plants9121752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Beetroot is a good source of minerals, fibers, and bioactive components. The present research work was conducted to evaluate the nutritional quality of beetroots (juice, peels, leaves and pomace) enhancing the extracted bioactive components, and developing a functional probiotic beverage. Chemical composition and minerals content of beetroot parts were estimated. The bioactive components were extracted by instant extraction method (IEM) and overnight extraction method (at -20°C) (OEM) to determine total phenolics, flavonoids, and DPPH inhibition ratio. The extracted beetroot juice was mixed with milk for valorization of the beverage nutritional value and fermented with LA-5 and ABT-5 cultures to create a novel functional beverage. Chemical composition, minerals content, and bioactive components of beverages were estimated. The leaves exhibited the highest calcium content (1200 mg/100g). Juice showed the highest amount of all minerals except for calcium and magnesium. Overnight extraction method (OEM) increased the antioxidant activity in peels and stems. Natural juice exhibited the highest activity compared to extracts. Fermentation of beet-milk beverage with LA-5 and ABT-5 cultures enhanced the beverage taste, flavor, and antioxidant capacity. Beetroot wastes and juice comprise a valuable nutritional source. Fermentation improved the nutritional value of beetroot and the acceptability of the product.
Collapse
Affiliation(s)
- Eman Abdo
- Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; (E.A.); (O.S.); (A.A.); (A.Z.)
| | - Sobhy El-Sohaimy
- Department of Technology and Organization of Public Catering, Institute of Sport Tourism and Service, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab 21934, Alexandria, Egypt
| | - Omayma Shaltout
- Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; (E.A.); (O.S.); (A.A.); (A.Z.)
| | - Ahmed Abdalla
- Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; (E.A.); (O.S.); (A.A.); (A.Z.)
| | - Ahmed Zeitoun
- Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; (E.A.); (O.S.); (A.A.); (A.Z.)
| |
Collapse
|
44
|
Bárta J, Bártová V, Šindelková T, Jarošová M, Linhartová Z, Mráz J, Bedrníček J, Smetana P, Samková E, Laknerová I. Effect of Boiling on Colour, Contents of Betalains and Total Phenolics and on Antioxidant Activity of Colourful Powder Derived from Six Different Beetroot (Beta vulgaris L. var. conditiva) Cultivars. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/128613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
45
|
Aguirre-Calvo TR, Molino S, Perullini M, Rufián-Henares J, Santagapita PR. Effects of in vitro digestion-fermentation over global antioxidant response and short chain fatty acid production of beet waste extracts in Ca(ii)-alginate beads. Food Funct 2020; 11:10645-10654. [PMID: 33216078 DOI: 10.1039/d0fo02347g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present work was to analyze the effect of in vitro gastrointestinal digestion-fermentation on antioxidant capacity, total phenols and production of short chain fatty acids (SCFAs) from biocompounds derived from beet waste (leaf and stem) encapsulated in different formulations of Ca(ii)-alginate beads. The encapsulated systems presented higher antioxidant capacity in different phases (digested and fermented) than the extracts without encapsulation, making Ca(ii)-alginate beads a suitable delivery vehicle. Levels of total phenolic compounds and antioxidant capacity of the fermented fraction were up to ten times higher than those of the digested fraction, boosted by the contribution of bioactive compounds from the by-product of beet as well as by sugars and biopolymers. Among the formulations used, those that had excipients (sugars and/or biopolymers) presented a better overall antioxidant response than the beads with just alginate. Guar gum and sucrose lead to a promising enhancement of Ca(ii)-alginate beads not only for preservation and protection but also in terms of stability under in vitro digestion-fermentation and production of SCFAs.
Collapse
Affiliation(s)
- Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
46
|
Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Currently, the food industry is looking for alternatives to synthetic additives in processed food products, so research investigating new sources of compounds with high biological activity is worthwhile and becoming more common. There are many different types of vegetables that contain bioactive compounds, and additional features of some vegetables include uses as natural colorants and antioxidants. In this sense, and due to the special composition of beetroot, the use of this vegetable allows for the extraction of a large number of compounds with special interest to the meat industry. This includes colorants (betalains), antioxidants (betalains and phenolic compounds), and preservatives (nitrates), which can be applied for the reformulation of meat products, thus limiting the number and quantity of synthetic additives added to these foods and, at the same time, increase their shelf-life. Despite all these benefits, the application of beetroot or its products (extracts, juice, powder, etc.) in the meat industry is very limited, and the body of available research on beetroot as an ingredient is scarce. Therefore, in this review, the main biologically active compounds present in beetroot, the implications and benefits that their consumption has for human health, as well as studies investigating the use beetroot in the reformulation of meat and meat products are presented in a comprehensible manner.
Collapse
|
47
|
Characterization of Beet Root Extract ( Beta vulgaris) Encapsulated with Maltodextrin and Inulin. Molecules 2020; 25:molecules25235498. [PMID: 33255296 PMCID: PMC7727679 DOI: 10.3390/molecules25235498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
Betalains are powerful antioxidants contained in beets. These are divided into betacyanins (red-violet) and betaxanthins (yellow-orange), and they can be used as natural colorants in the food industry. The effects of freeze-drying pure beet juice (B) and the encapsulation of beet juice with a dextrose equivalent (DE) 10 maltodextrin (M) and agave inulin (I) as carrier agents were evaluated. The powders showed significant differences (p < 0.05) in all the variables analyzed: water absorption index (WAI), water solubility index (WSI), glass transition temperature (Tg), total betalains (TB), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA, via 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and total protein concentration (TPC). The highest values of antioxidant activity were found in the non-encapsulated beet powder, followed by the powder encapsulated with maltodextrin and, to a lesser extent, the powder encapsulated with inulin. The glass transition temperature was 61.63 °C for M and 27.59 °C for I. However, for B it was less than 18.34 °C, which makes handling difficult. Encapsulation of beet extract with maltodextrin and inulin by lyophilization turned out to be an efficient method to increase solubility and diminish hygroscopicity.
Collapse
|
48
|
Yasaminshirazi K, Hartung J, Fleck M, Graeff-Hoenninger S. Bioactive Compounds and Total Sugar Contents of Different Open-Pollinated Beetroot Genotypes Grown Organically. Molecules 2020; 25:molecules25214884. [PMID: 33105827 PMCID: PMC7660082 DOI: 10.3390/molecules25214884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
The growing interest of consumers in healthy organic products has increased the attention to the organic production of beetroot. In this regard, six field experiments were conducted in 2017 and 2018 in three different locations under the specific conditions of organic agriculture, and fifteen beetroot genotypes, including one F1 hybrid as a commercial control and one breeding line, were compared regarding the content of the total dry matter, total soluble sugar, nitrate, betalain, and total phenolic compounds in order to investigate the genetic potential of new and existing open-pollinated genotypes of beetroot regarding the content of their bioactive compounds. The results of this study indicated a significant impact of genotype (p < 0.05) on all measured compounds. Furthermore, results revealed a significant influence of the interactions of location × year (p < 0.05) on the beetroot composition, and, thus, the role of environmental conditions for the formation of tested compounds. The total dry matter content (TDMC) of beetroots varied between 14.12% and 17.50%. The genotype ‘Nochowski’, which possessed the highest total soluble sugar content with 14.67 °Bx (Brix), was among the genotypes with the lowest nitrate content. On the contrary, the cylindrical-shaped genotype ‘Carillon RZ’ (Rijk Zwaan), indicated the lowest sugar content and the highest nitrate concentration. The amount of total phenolic compounds ranged between 352.46 ± 28.24 mg GAE 100 g−1 DW (milligrams of gallic acid equivalents per 100 g of dry weight) and 489.06 ± 28.24 mg GAE 100 g−1 DW for the red-colored genotypes which is correlated with the high antioxidant capacity of the investigated genotypes. Due to the specifics of the required content of bioactive compounds for various products, the selection of suitable genotypes should be aligned with the intended final utilization.
Collapse
Affiliation(s)
- Khadijeh Yasaminshirazi
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany;
- Correspondence: ; Tel.: +49-711-459-24186
| | - Jens Hartung
- Department of Biostatistics, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany;
| | - Michael Fleck
- Kultursaat e.V., Kronstraβe 24, 61209 Echzell, Germany;
| | - Simone Graeff-Hoenninger
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany;
| |
Collapse
|
49
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
50
|
Olasehinde TA, Oyeleye SI, Ibeji CU, Oboh G. Beetroot supplemented diet exhibit anti-amnesic effect via modulation of cholinesterases, purinergic enzymes, monoamine oxidase and attenuation of redox imbalance in the brain of scopolamine treated male rats. Nutr Neurosci 2020; 25:1011-1025. [DOI: 10.1080/1028415x.2020.1831260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria
- Department of Biochemistry and Microbiology, University of Fort Hare Alice South Africa
| | - Sunday I. Oyeleye
- Department of Biomedical Technology, Federal University of Technology, Akure
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure
| |
Collapse
|