1
|
Luo LL, Chen JL, Du CX, Huang LJ, Yuan CM, Yang J, Hu ZX, Hao XJ, Gu W. Three Novel Quinoline Alkaloids From Tetradium glabrifolium and Their Antibacterial Activities. Chem Biodivers 2025:e202402980. [PMID: 39762155 DOI: 10.1002/cbdv.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Three novel quinoline alkaloids, tetradiunitiside A (1), tetradiunitiside B (2), and glycohaplopine-6-O-α-l-rhamnopyranoside (3), along with eight known ones (4-11), were isolated from the fruits of Tetradium glabrifolium. Their structures were inferred by IR, 1D NMR and 2D NMR, and HR-ESI-MS spectra. All the isolated compounds were evaluated for their antibacterial activities. Compounds 1-11 had potential antibacterial activities against Bacillus gasoformans, Bacillus subtilis, Pseudomonas solanacearum, and Pseudomonas aeruginosa, with minimum inhibitory concentration (MIC) values ranging from 100 to 3.125 µg/mL. Among them, compound 6 showed the most significant antibacterial activity against four strains of bacteria. These findings elucidated the pharmacological substance basis for the antibacterial activity of T. glabrifolium to some extent.
Collapse
Affiliation(s)
- Li-Li Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jun-Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Cai-Xia Du
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
2
|
Li Y, Guan W, Wang Y, Chen Z, Jiang P, Sun Y, Hao Z, Chen Q, Zhang L, Yang B, Liu Y. Strategy of mass defect filter combined with characteristic fragment analysis for the chemical profiling of Dictamnus dasycarpus Turcz. From multiple regions. Microchem J 2025; 208:112287. [DOI: 10.1016/j.microc.2024.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Ye S, Liu Y, Wang SY, Guo MY, Wu JT, Hao ZC, Pan J, Guan W, Kuang HX, Yang BY. Two new alkaloids isolated from Dictamnus dasycarpus Turcz. Nat Prod Res 2024:1-8. [PMID: 38232058 DOI: 10.1080/14786419.2024.2305207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Two new quinoline alkaloids (1-2) together with twenty-two known alkaloids (3-24) were isolated and identified from Dictamnus dasycarpus Turcz. Compounds 6-7, 9, 11, 15-16, 19 and 24 were isolated from D. dasycarpus for the first time. The structures of all compounds were characterised by spectroscopic methods (1D, 2D NMR and HRESIMS). The anti-proliferative activity was mediated by the arrest of three human cancer cell lines (SW982, HepG2 and A549) of all the compounds that were evaluated by CCK-8 assay.
Collapse
Affiliation(s)
- Sun Ye
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Ming-Yuan Guo
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Jia-Tong Wu
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, People's Republic of China
| |
Collapse
|
5
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
6
|
Song J, Zhang B, Li M, Zhang J. The current scenario of naturally occurring indole alkaloids with anticancer potential. Fitoterapia 2023; 165:105430. [PMID: 36634875 DOI: 10.1016/j.fitote.2023.105430] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Naturally occurring indole alkaloids are ubiquitously present in nature and possess extensive biological properties and structural diversity. Mechanistically, naturally occurring indole alkaloids have the potential to inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. Accordingly, naturally occurring indole alkaloids exhibit promising activity against both drug-sensitive and drug-resistant cancers including multidrug-resistant forms. Therefore, naturally occurring indole alkaloids constitute an important source of anticancer drug leads and candidates. The goal of this review is to highlight the current scenario of naturally occurring indole alkaloids with anticancer potential, covering articles published from 2018 to present. The names, sources, and antiproliferative activity are discussed to continuously open up a map for the remarkable exploration of more effective candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Ming Li
- Department of Oncology and Hematology, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Jinbiao Zhang
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China.
| |
Collapse
|
7
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
8
|
Liu Z, Gao H, Zhao Z, Huang M, Wang S, Zhan J. Status of research on natural protein tyrosine phosphatase 1B inhibitors as potential antidiabetic agents: Update. Biomed Pharmacother 2023; 157:113990. [PMID: 36459712 DOI: 10.1016/j.biopha.2022.113990] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a crucial therapeutic target for multiple human diseases comprising type 2 diabetes (T2DM) and obesity because it is a seminal part of a negative regulator in both insulin and leptin signaling pathways. PTP1B inhibitors increase insulin receptor sensitivity and have the ability to cure insulin resistance-related diseases. However, the few PTP1B inhibitors that entered the clinic (Ertiprotafib, ISIS-113715, Trodusquemine, and JTT-551) were discontinued due to side effects or low selectivity. Molecules with broad chemical diversity extracted from natural products have been reported to be potent PTP1B inhibitors with few side effects. This article summarizes the recent PTP1B inhibitors extracted from natural products, clarifying the current research progress, and providing new options for designing new and effective PTP1B inhibitors.
Collapse
Affiliation(s)
- Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | - Ziyu Zhao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Mengrui Huang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Shengnan Wang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
9
|
Xia H, Dai Y, Zhao C, Zhang H, Shi Y, Lou H. Chromatographic and mass spectrometric technologies for chemical analysis of Euodiae fructus: A review. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:5-29. [PMID: 36442477 DOI: 10.1002/pca.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.
Collapse
Affiliation(s)
- Hongmin Xia
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Chengxin Zhao
- The People's Republic of China Taian Customs, Taian, China
| | - Huimin Zhang
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Educational of Minister, College of Life Science, Dalian Nationalities University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongxiang Lou
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
10
|
Li N, Liu X, Zhang M, Zhang Z, Zhang B, Wang X, Wang J, Tu P, Jiang Y, Shi SP. Characterization of a coumarin C-/ O-prenyltransferase and a quinolone C-prenyltransferase from Murraya exotica. Org Biomol Chem 2022; 20:5535-5542. [PMID: 35788620 DOI: 10.1039/d2ob01054b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prenyltransferases (PTs) play important roles in the biosynthesis and structural diversification of natural products. In the present study, two new PTs were characterized from a medicinal plant Murraya exotica. MePT1 unprecedentedly catalyses the formation of two C-geranylated products 8/6-C-geranylumbelliferone together with a trace product 7-O-geranylumbelliferone from umbelliferone. MePT2 regio-specifically catalyses the formation of C-3 dimethylallylated products from quinolone alkaloids. This is the first report that a plant PT catalyses the simultaneous formation of C- and O-prenylated products, and a plant PT specifically utilizes quinolone alkaloids as prenyl acceptors. The results not only provide important insight into the functional diversity of plant PTs and the biosynthesis of the prenylated coumarins, quinolone and carbazole alkaloids in Murraya plants, but also pave the way for the overproduction of the prenylated coumarins and alkaloids using metabolic engineering approaches.
Collapse
Affiliation(s)
- Na Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Mingliang Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zekun Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Beibei Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
11
|
Xu R, Yang X, Tao Y, Luo W, Xiong Y, He L, Zhou F, He Y. Analysis of the Molecular Mechanism of Evodia rutaecarpa Fruit in the Treatment of Nasopharyngeal Carcinoma Using Network Pharmacology and Molecular Docking. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6277139. [PMID: 35463684 PMCID: PMC9020960 DOI: 10.1155/2022/6277139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/08/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC), a neoplasm of the head and neck, has high incidence and mortality rates in East and Southeast Asia. Evodia rutaecarpa is a tree native to Korea and China, and its fruit (hereafter referred to as Evodia) exhibits remarkable antitumour properties. However, little is known about its mechanism of action in NPC. In this study, we employed network pharmacology to identify targets of active Evodia compounds in nasopharyngeal carcinoma and generate an interaction network. Methods The active ingredients of Evodia and targets in NPC were obtained from multiple databases, and an interaction network was constructed via the Cytoscape and STRING databases. The key biological processes and signalling pathways were predicted using Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses. Molecular docking technology was used to identify the affinity and activity of target genes, and The Cancer Genome Atlas and Human Protein Atlas databases were used to analyse differential expression. Cell Counting Kit-8 (CCK-8) and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) dual-fluorescence staining were used for experimental verification. Results Active Evodia compounds included quercetin, isorhamnetin, and evodiamine, and important NPC targets included MAPK14, AKT1, RELA, MAPK1, JUN, and p53, which were enriched in lipid and atherosclerosis signalling pathways. Additionally, we verified the high affinity and activity of the active compounds through molecular docking, and the target proteins were verified using immunohistochemistry and differential expression analyses. Furthermore, CCK-8 assays and Annexin V-FITC/PI dual-fluorescence staining showed that isorhamnetin inhibited the proliferation of NPC cells and induced apoptosis. Conclusion Our results identified the molecular mechanisms of Evodia and demonstrated its ability to alter the proliferation and apoptosis of NPC cells through multiple targets and pathways, thereby providing evidence for the clinical application of Evodia.
Collapse
Affiliation(s)
- Runshi Xu
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
| | - Ximing Yang
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
| | - Yangyang Tao
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
| | - Wang Luo
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
| | - Yu Xiong
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
| | - Lan He
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Prevention & Treatment of Ophthalmology and Otolaryngology Diseases and Visual Function Protection with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fangliang Zhou
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
- Hunan Key Laboratory for Prevention & Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Hunan University of Chinese Medicine, Hanpu Science and Education Park, Changsha, China
- Hunan Engineering Technology Research Center for Prevention & Treatment of Ophthalmology and Otolaryngology Diseases and Visual Function Protection with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory for Prevention & Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Research Advances in Antitumor Mechanism of Evodiamine. J CHEM-NY 2022. [DOI: 10.1155/2022/2784257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evodiamine is a natural alkaloid extracted from Fructus Evodia. This bioactive alkaloid has been reported to have a wide range of biological activities, including anti-injury, antiobesity, vasodilator, and anti-inflammatory effects. In recent years, it has been found that evodiamine has tumor-suppressive effects on a variety of tumors. There is growing evidence that evodiamine can inhibit the rapid proliferation of tumor cells, induce cell cycle arrest at a certain phase, increase the incidence of apoptosis, promote autophagy, inhibit microangiogenesis and migration, and regulate immunotherapy. Evodiamine can inhibit Wnt/β-catenin, mTOR, NF-κB, PI3K/AKT, JAK-STAT, and other signaling pathways in various cancer cells, and it can significantly downregulate the expression of many tumor markers, such as VEGF and COX-2. These facts partially explain the antitumor mechanism of evodiamine. In this article, the antitumor mechanism of evodiamine was reviewed to provide the basis for its clinical application and therapeutic development in the future.
Collapse
|
13
|
Zhao Z, Xue Y, Zhang G, Jia J, Xiu R, Jia Y, Wang Y, Wang X, Li H, Chen P, Zhang X. Identification of evodiamine and rutecarpine as novel TMEM16A inhibitors and their inhibitory effects on peristalsis in isolated Guinea-pig ileum. Eur J Pharmacol 2021; 908:174340. [PMID: 34265294 DOI: 10.1016/j.ejphar.2021.174340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
The transmembrane member 16A (TMEM16A)-encoded Ca2+-activated Cl- channel (CaCC) is expressed in interstitial cells of Cajal (ICCs) and involved in the generation of the slow-wave currents of gastrointestinal (GI) smooth muscles. TMEM16A modulators have been shown to positively or negatively regulate the contraction of gastrointestinal smooth muscle. Therefore, targeting the pharmacological modulation of TMEM16A may represent a novel treatment approach for gastrointestinal dysfunctions such as constipation and diarrhoea. In this study, evodiamine and rutecarpine were extracted from the traditional Chinese medicine Evodia rutaecarpa and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on intestinal peristalsis were examined. Whole-cell patch clamp results show that evodiamine and rutecarpine inhibited TMEM16A Cl- currents in CHO cells. The half-maximal inhibition values (IC50) of evodiamine and rutecarpine on TMEM16A Cl- currents were 11.8 ± 1.3 μΜ and 9.2 ± 0.4 μM, and the maximal effect values (Emax) were 95.8 ± 5.1% and 99.1 ± 1.6%, respectively. The Lys384, Thr385, and Met524 in TMEM16A are critical for evodiamine and rutecarpine's inhibitory effects. Further functional studies show that both evodiamine and rutecarpine can significantly suppress the peristalsis in isolated guinea-pig ileum. These findings demonstrate that evodiamine and rutecarpine are new TMEM16A inhibitors and support the regulation effect of TMEM16A modulators on gastrointestinal motility.
Collapse
Affiliation(s)
- Zhijun Zhao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yurun Xue
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Gaohua Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jie Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruilian Xiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yugai Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanyuan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangchong Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Honglin Li
- Department of Respiratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China.
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
14
|
Xin X, Shao B, Li Y, Liu S, Li D, Wang C, Chen L, Jin L, Ma X, Wu G. New chemical constituents from the fruits of Tetradium ruticarpum. Nat Prod Res 2020; 36:1673-1678. [PMID: 32820668 DOI: 10.1080/14786419.2020.1808639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two new γ-lactone derivatives, evodinoids A (1) and B (2), along with a new essential oil (3) were isolated from the nearly ripe fruits of Tetradium ruticarpum. The structures of these isolations were determined by 1D and 2D NMR, HR-ESI-MS and ECD data analysis. In addition, the cytotoxic effect of compounds 1-3 was evaluated against human cancer cells A498, A549, HepG-2, MCF-7 and SHSY-5Y, which displayed no significant cytotoxicity (IC50 > 100 μM).
Collapse
Affiliation(s)
- Xiulan Xin
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Bo Shao
- Zhendong Pharmaceutical Research Institute Co. Ltd, Changzhi, China
| | - Ye Li
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Shasha Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dawei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Lihua Jin
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Guoyu Wu
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|