1
|
Johne R, Scholz J, Falkenhagen A. Heat stability of foodborne viruses - Findings, methodological challenges and current developments. Int J Food Microbiol 2024; 413:110582. [PMID: 38290272 DOI: 10.1016/j.ijfoodmicro.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Heat treatment of food represents an important measure to prevent pathogen transmission. Thus far, evaluation of heat treatment processes is mainly based on data from bacteria. However, foodborne viruses have gained increasing attention during the last decades. Here, the published literature on heat stability and inactivation of human norovirus (NoV), hepatitis A virus (HAV) and hepatitis E virus (HEV) was reviewed. Data for surrogate viruses were not included. As stability assessment for foodborne viruses is often hampered by missing infectivity assays, an overview of applied methods is also presented. For NoV, molecular capsid integrity assays were mainly applied, but data from initial studies utilizing novel intestinal enteroid or zebrafish larvae assays are available now. However, these methods are still limited in applicability and sensitivity. For HAV, sufficient cell culture-based inactivation data are available, but almost exclusively for one single strain, thus limiting interpretation of the data for the wide range of field strains. For HEV, data are now available from studies using pig inoculation or cell culture. The results of the reviewed studies generally indicate that NoV, HAV and HEV possess a high heat stability. Heating at 70-72 °C for 2 min significantly reduces infectious titers, but often does not result in a >4 log10 decrease. However, heat stability greatly varied dependent on virus strain, matrix and heating regime. In addition, the applied method largely influenced the result, e.g. capsid integrity assays tend to result in higher measured stabilities than cell culture approaches. It can be concluded that the investigated foodborne viruses show a high heat stability, but can be inactivated by application of appropriate heating protocols. For HAV, suggestions for safe time/temperature combinations for specific foods can be derived from the published studies, with the limitation that they are mostly based on one strain only. Although significant improvement of infectivity assays for NoV and HEV have been made during the last years, further method development regarding sensitivity, robustness and broader applicability is important to generate more reliable heat inactivation data for these foodborne viruses in future.
Collapse
Affiliation(s)
- Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Johannes Scholz
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander Falkenhagen
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Yeak KYC, Dank A, den Besten HMW, Zwietering MH. A web-based microbiological hazard identification tool for infant foods. Food Res Int 2024; 178:113940. [PMID: 38309868 DOI: 10.1016/j.foodres.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
An integrated approach to identify and assess Microbiological Hazards (MHs) and mitigate risks in infant food chains is crucial to ensure safe foods for infants and young children. A systematic procedure was developed to identify MHs in specific infant foods. This includes five major steps: 1) relevant hazard-food pairing, 2) process inactivation efficiency, 3) recontamination possibility after processing, 4) MHs growth opportunity, and 5) MHs-food association level. These steps were integrated into an online tool called the Microbiological Hazards IDentification (MiID) decision support system (DSS), targeting food companies, governmental agencies and academia users, and is accessible at https://foodmicrobiologywur.shinyapps.io/Microbial_hazards_ID/. The MiID DSS was validated in four case studies, focussing on infant formula, fruit puree, cereal-based meals, and fresh fruits, each representing distinct products and processing characteristics. The results obtained through the application of the MiID DSS, compared with identification by food safety experts, consistently identified the top MHs in these food products. This process affirms its effectiveness in systematic hazard identification. The introduction of the MiID DSS helps to structure the first steps in HACCP (hazard analysis) and in risk assessment (hazard identification) to follow a structured and well-documented procedure, balancing the risk of overlooking relevant MHs or including too many irrelevant MHs. It is a valuable addition to risk analysis/assessment in infant food chains and has the potential for future extension. This includes the incorporation of newly acquired data related to infant foods via a semi-publicly hosted platform, or it can be adapted for hazard identification in general food products using a similar framework.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alexander Dank
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Estimation of Bacteriophage MS2 Inactivation Parameters During Microwave Heating of Frozen Strawberries. J Food Prot 2023; 86:100032. [PMID: 36916576 DOI: 10.1016/j.jfp.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Frozen berries have been repeatedly linked to acute gastroenteritis caused by norovirus, the most common cause of foodborne illness in the United States. Many guidelines recommend that frozen berries be microwaved for at least 2 min, but it is unclear if this thermal treatment is effective at inactivating norovirus. The objective of this study was to model the effect of microwave heating at varying power levels on the survival of bacteriophage MS2, a norovirus surrogate, when inoculated onto frozen strawberries. Bacteriophage MS2 was inoculated onto the surface of frozen strawberries with a starting concentration of approximately 10 log PFU/g. Samples (either 3 or 5 whole strawberries) were heated in a 1300-Watt domestic research microwave oven (frequency of 2450 MHz) at power levels of 30, 50, 70, and 100% (full power), for times ranging from 15 to 300 s to determine inactivation. Temperatures at berry surfaces were monitored during heating using fiberoptic thermometry. All experiments were conducted in triplicate. The primary model for thermal inactivation was a log-linear model of logN vs. time. The secondary model was for a D-value decreasing linearly with temperature and an added term that was path-dependent on the thermal history. Parameters in the model were estimated using dynamic temperature history at the surface of the berry, via nonlinear regression using all data simultaneously. The root mean square error was ∼0.5 PFU/g out of a total 6-log reduction. Log reductions of 1.1 ± 0.4, 1.5 ± 0.5, 3.1 ± 0.1, and 3.8 ± 0.2 log PFU/g were observed for 30, 50, 70, and 100% microwave power levels when three berries were heated for 60 s. D-values were 21.4 ± 1.95 s and 10.6 ± 1.1 s at 10 and 60°C, respectively. This work demonstrates an approach to estimate inactivation parameters for viruses from dynamic temperature data during microwave heating. These findings will be useful in predicting the safety effect of microwave heating of berries in the home or food service.
Collapse
|
4
|
Shahi S, Khorvash R, Goli M, Ranjbaran SM, Najarian A, Mohammadi Nafchi A. Review of proposed different irradiation methods to inactivate food-processing viruses and microorganisms. Food Sci Nutr 2021; 9:5883-5896. [PMID: 34646553 PMCID: PMC8498048 DOI: 10.1002/fsn3.2539] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses, which have been enveloped nonsegmented positive-sense RNA viruses, were first mentioned in the mid-1960s and can attack people as well as a wide range of animals (including mammals and birds). Three zoonotic coronaviruses have been identified as the cause of large-scale epidemics over the last two decades: Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and swine acute diarrhea syndrome (SADS). Epithelial cells in the respiratory and gastrointestinal tract are the principal targeted cells, and viral shedding occurs via these systems in diverse ways such as through fomites, air, or feces. Patients infected with the novel coronavirus (2019-nCoV) reported having visited the Wuhan seafood wholesale market shortly before disease onset. The clinical data on established 2019-nCoV cases reported so far indicate a milder disease course than that described for patients with SARS-CoV or MERS-CoV. This study aimed to review radiation inactivation of these viruses in the food industry in three sections: visible light, ionizing radiation (alpha ray, beta ray, X-ray, gamma ray, neutron, plasma, and ozone), and nonionizing radiation (microwave, ultraviolet, infrared, laser light, and radiofrequency). Due to the obvious possibility of human-to-human and animal-to-human transmission, using at least one of these three methods in food processing and packaging during coronavirus outbreaks will be critical for preventing further outbreaks at the community level.
Collapse
Affiliation(s)
- Sharifeh Shahi
- Department of Biomedical EngineeringIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
- Laser and Biophotonics in Biotechnologies Research CenterIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Reza Khorvash
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Goli
- Laser and Biophotonics in Biotechnologies Research CenterIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
- Department of Food Science and TechnologyIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Seyed Mohsen Ranjbaran
- Laser and Biophotonics in Biotechnologies Research CenterIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
5
|
Jama-Kmiecik A, Sarowska J, Wojnicz D, Choroszy-Król I, Frej-Mądrzak M. Natural Products and Their Potential Anti-HAV Activity. Pathogens 2021; 10:1095. [PMID: 34578128 PMCID: PMC8469781 DOI: 10.3390/pathogens10091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The role of purified natural products in the prevention and treatment of countless diseases of bacterial, fungal, and viral origin cannot be overestimated. New antiviral drugs have been obtained from natural sources and transformed into preparations for prophylactic and therapeutic purposes. Flavonoids, polyphenols, saponins, proanthocyanins, polysaccharides, organic acids, proteins, polypeptides, and essential oils derived from plants, animals, or microorganisms can control and combat foodborne viral infections, including hepatitis A. The components of essential oils are characterized by numerous therapeutic and antioxidant properties and exhibit a broad spectrum of antimicrobial and antiviral activity. Due to these properties, they can be used to preserve meat, fruit, vegetables, and their products. Over the past two decades, much effort has been made to identify natural products, mostly of plant origin, to combat foodborne viruses. Natural plant extracts have several potential uses, not limited to increasing the safety of food products and improving their quality, but also as natural antiviral agents.
Collapse
Affiliation(s)
- Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Medical Biology and Parasitology, Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland;
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| |
Collapse
|
6
|
Espinosa MF, Sancho AN, Mendoza LM, Mota CR, Verbyla ME. Systematic review and meta-analysis of time-temperature pathogen inactivation. Int J Hyg Environ Health 2020; 230:113595. [DOI: 10.1016/j.ijheh.2020.113595] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
|
7
|
Battistini R, Rossini I, Listorti V, Ercolini C, Maurella C, Serracca L. HAV detection from milk-based products containing soft fruits: Comparison between four different extraction methods. Int J Food Microbiol 2020; 328:108661. [PMID: 32454367 DOI: 10.1016/j.ijfoodmicro.2020.108661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Virus detection in food requires appropriate elution and concentration techniques which need to be adapted for different food matrices. ISO/TS-15216-1:2017 and ISO/TS-15216-2:2019 describe standard methods for hepatitis A virus (HAV) research in some food only. Milk-based products containing one or more types of fruit are not covered by ISO procedures, even though they can be contaminated by fruit added to these products or by the food handlers. The aim of this work was to identify an efficient method for the detection of HAV in milk-based products. Four methods were tested to recover HAV from artificially contaminated milk, yoghurt and ice cream containing soft fruits. Results showed that the efficiency of the tested methods depends on the analyzed matrix. In milk we obtained a mean recovery from 13.4% to 1.9%; method based on high speed centrifuge gave the best values. The average recovery in yoghurt was between 3.3% and 114.4%, the latter value achieved by method with beef extract at 3% as eluent. Finally, two methods gave the best results in ice cream with similar recoveries: 29.1% and 27.7% respectively. The first method used glycine as eluent while the other one was based on high speed centrifugation. The ISO method has never proved to be the most efficient in the matrices studied. Therefore, based on the results obtained, a complete rethinking of the ISO method may be necessary to improve its recovery for some products such as milk, while only small changes would be sufficient for other products, such as yoghurt and ice cream.
Collapse
Affiliation(s)
- Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy.
| | - Irene Rossini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| |
Collapse
|
8
|
Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T. Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 2018; 285:110-128. [PMID: 30075465 PMCID: PMC7132524 DOI: 10.1016/j.ijfoodmicro.2018.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
Abstract
In a recent report by risk assessment experts on the identification of food safety priorities using the Delphi technique, foodborne viruses were recognized among the top rated food safety priorities and have become a greater concern to the food industry over the past few years. Food safety experts agreed that control measures for viruses throughout the food chain are required. However, much still needs to be understood with regard to the effectiveness of these controls and how to properly validate their performance, whether it is personal hygiene of food handlers or the effects of processing of at risk foods or the interpretation and action required on positive virus test result. This manuscript provides a description of foodborne viruses and their characteristics, their responses to stress and technologies developed for viral detection and control. In addition, the gaps in knowledge and understanding, and future perspectives on the application of viral detection and control strategies for the food industry, along with suggestions on how the food industry could implement effective control strategies for viruses in foods. The current state of the science on epidemiology, public health burden, risk assessment and management options for viruses in food processing environments will be highlighted in this review.
Collapse
Affiliation(s)
- Albert Bosch
- University of Barcelona, Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, and Institute of Nutrition and Food Safety, Diagonal 643, 8028 Barcelona, Spain.
| | - Elissavet Gkogka
- Arla Innovation Centre, Arla R&D, Agro Food Park 19, 8200 Aarhus N, Denmark,.
| | - Françoise S Le Guyader
- IFREMER, Environment and Microbiology Laboratory, Rue de l'Ile d'Yeu, BP 21103, 44311 Nantes, France.
| | - Fabienne Loisy-Hamon
- bioMérieux, Centre Christophe Mérieux, 5 rue des berges, 38025 Grenoble, France.
| | - Alvin Lee
- Illinois Institute of Technology, Moffett Campus, 6502 South Archer Road, 60501-1957 Bedford Park, IL, United States.
| | - Lilou van Lieshout
- The International Life Sciences Institute, Av. E. Mounier 83/B.6, 1200 Brussels, Belgium.
| | - Balkumar Marthi
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands; DaQsh Consultancy Services, 203, Laxmi Residency, Kothasalipeta, Visakhapatnam 530 002, India
| | - Mette Myrmel
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, P.O. Box 8146, 0033 Oslo, Norway.
| | - Annette Sansom
- Campden BRI Group, Station Road, Chipping Campden, GL55 6LD Gloucestershire, United Kingdom.
| | - Anna Charlotte Schultz
- National Food Institute Technical University of Denmark, Mørkhøj Bygade 19, Building H, Room 204, 2860 Søborg, Denmark.
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809 Krefeld, Germany.
| | - Sophie Zuber
- Nestlé Research Centre, Institute of Food Safety and Analytical Science, Vers-chez-les-Blanc, Box 44, 1000 Lausanne, Switzerland.
| | - Trevor Phister
- PepsiCo Europe, Beaumont Park 4, Leycroft Road, LE4 1ET Leicester, United Kingdom.
| |
Collapse
|
9
|
Lebourgeois S, Fraisse A, Hennechart-Collette C, Guillier L, Perelle S, Martin-Latil S. Development of a Real-Time Cell Analysis (RTCA) Method as a Fast and Accurate Method for Detecting Infectious Particles of the Adapted Strain of Hepatitis A Virus. Front Cell Infect Microbiol 2018; 8:335. [PMID: 30319992 PMCID: PMC6167467 DOI: 10.3389/fcimb.2018.00335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/30/2018] [Indexed: 11/26/2022] Open
Abstract
Hepatitis A virus (HAV) is one of the most common agents causing acute liver disease worldwide. HAV has been increasingly reported as the cause of foodborne disease outbreaks. The standard method currently available for detection of the genome of HAV in vulnerable foodstuffs is by RT-qPCR (ISO 15216). Despite its usefulness in the investigation of foodborne viruses, the use of RT-qPCR in food virology has been shown to overestimate the quantity of infectious virus or to highly underestimate the effect of the treatment on virus inactivation. The gold standard methods currently used for evaluating the efficacy of inactivation treatments on the adapted strain of HAV (HM175/18f) are either the plaque assay or the end-point dilution assay (TCID50). However, both assays are labor-intensive and time-consuming. The aim of this study was to evaluate the use of the xCELLigence real-time cell analysis (RTCA) system for detecting the infectivity of the adapted strain of HAV. Kinetics of cell impedance showed that HAV induced a decrease in cell index (CI) correlated with the onset of HAV-induced cell death. In addition, the time to which the HAV-induced CI drop occurred was dependent on the viral concentration. An inverse linear relation could be established over a range of 5 log10 between the concentration of HAV and the time to reach 50% of CI decrease (TCI50), showing that the RTCA assay could be used as a titration method for HAV. In addition, the RTCA-based assay could be performed in less than 6 days instead of 12 to 14 days with the gold standard methods. Therefore, the RTCA-based titration method is a powerful and suitable tool for high-throughput screening of anti-viral treatments. Its usefulness in HAV inactivation studies will improve the assessment of viral risk in food virology, as controlling transmission of viruses through their removal from foodstuffs is also an important challenge in reducing the burden of viral foodborne illnesses.
Collapse
Affiliation(s)
- Samuel Lebourgeois
- Laboratory for Food Safety, Université Paris Est, ANSES, Maisons-Alfort, France
| | - Audrey Fraisse
- Laboratory for Food Safety, Université Paris Est, ANSES, Maisons-Alfort, France
| | | | - Laurent Guillier
- Laboratory for Food Safety, Université Paris Est, ANSES, Maisons-Alfort, France
| | - Sylvie Perelle
- Laboratory for Food Safety, Université Paris Est, ANSES, Maisons-Alfort, France
| | - Sandra Martin-Latil
- Laboratory for Food Safety, Université Paris Est, ANSES, Maisons-Alfort, France
| |
Collapse
|
10
|
Cook N, Bertrand I, Gantzer C, Pinto RM, Bosch A. Persistence of Hepatitis A Virus in Fresh Produce and Production Environments, and the Effect of Disinfection Procedures: A Review. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:253-262. [PMID: 29761412 DOI: 10.1007/s12560-018-9349-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Although information is limited, it is evident that prolonged persistence of infectious Hepatitis A virus (HAV) is a factor in the transmission of the virus via fresh produce. Consequently, data on persistence of the virus on produce, and in environments relevant to production, such as soils, water and surfaces, are required to fully understand the dynamics of transmission of HAV via foods. Furthermore, information on effective disinfection procedures is necessary to implement effective post-harvest control measures. This review summarises current information on HAV persistence in fresh produce and on relevant disinfection procedures. On vegetables, HAV can remain infectious for several days; on frozen berries, it can persist for several months. HAV can remain infectious on surfaces for months, depending on temperature and relative humidity, and can survive desiccation. It can survive for several hours on hands. Washing hands can remove the virus, but further data are required on the appropriate procedure. Chlorination is effective in water, but not when HAV is associated with foodstuffs. Bleach and other sodium hypochlorite disinfectants at high concentrations can reduce HAV on surfaces, but are not suitable for use on fresh produce. There is only limited information on the effects of heating regimes used in the food industry on HAV. HAV is resistant to mild pasteurisation. Some food components, e.g. fats and sugars, can increase the virus' resistance to higher temperatures. HAV is completely eliminated by boiling. Quantitative prevalence data are needed to allow the setting of appropriate disinfection log reduction targets for fresh produce.
Collapse
Affiliation(s)
- N Cook
- Food and Environment Research Agency, York, UK.
- Jorvik Food and Environmental Virology Ltd., York, UK.
| | - I Bertrand
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, 54000, Nancy, France
- CNRS, LCPME, UMR 7564, 54000, Nancy, France
- Institut Jean Barriol, Université de Lorraine, Faculté des Sciences et Technologies, 54506, Vandœuvre-lès-Nancy, France
| | - C Gantzer
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, 54000, Nancy, France
- CNRS, LCPME, UMR 7564, 54000, Nancy, France
- Institut Jean Barriol, Université de Lorraine, Faculté des Sciences et Technologies, 54506, Vandœuvre-lès-Nancy, France
| | - R M Pinto
- University of Barcelona, Barcelona, Spain
| | - A Bosch
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Ghadirzad S, Yavarmanesh M, Habibi Najafi MB. Survival of male-specific coliphage (MS2) as a surrogate for enteric viruses in the production process of traditional ice cream. J Food Saf 2018. [DOI: 10.1111/jfs.12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheila Ghadirzad
- Department of Food Science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Masoud Yavarmanesh
- Department of Food Science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mohammad B. Habibi Najafi
- Department of Food Science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
12
|
Brié A, Boudaud N, Mssihid A, Loutreul J, Bertrand I, Gantzer C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol 2017; 70:1-6. [PMID: 29173615 DOI: 10.1016/j.fm.2017.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Raspberries are vulnerable products for which industrial treatment solutions ensuring both food safety and sensory quality are not easily applicable. Raspberries have been associated with numerous foodborne outbreaks in recent decades. Ozone has been proven effective as a drinking water treatment against pathogenic microorganisms. Nevertheless, to date, little information is available regarding the effect of gaseous ozone on viruses in food matrices. A comparison of the effect of gaseous ozone on murine norovirus (MNV-1) and hepatitis A virus (HAV) adsorbed on fresh raspberries was performed. Infectious MNV-1 was highly inactivated (>3.3 log10) by ozone (3 ppm, 1 min). The raspberry matrix seems to enhance inactivation by ozone compared to water. The same treatment was observed to have little effect on HAV even for the highest dose under the tested conditions (5 ppm, 3 min). Ozone treatment (5 ppm, 3 min) did not affect the appearance of raspberries even after three days post-treatment. No ozone effect was observed on the genomes detected by RT-PCR on both tested viruses, irrespective of the matrix or tested doses used. Gaseous ozone could therefore be a good candidate for human norovirus inactivation on raspberries but new conditions are needed for it to have significant effects on HAV inactivation.
Collapse
Affiliation(s)
- Adrien Brié
- ACTALIA, Food Safety Department, Saint Lô, F-50000, France; Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, Nancy, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Nancy, France
| | | | | | - Julie Loutreul
- ACTALIA, Food Safety Department, Saint Lô, F-50000, France
| | - Isabelle Bertrand
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, Nancy, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Nancy, France
| | - Christophe Gantzer
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, Nancy, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Nancy, France.
| |
Collapse
|
13
|
Thermal inactivation of MS2 bacteriophage as a surrogate of enteric viruses in cow milk. J Verbrauch Lebensm 2017. [DOI: 10.1007/s00003-017-1119-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Moradi Moghadam S, Yavarmanesh M, Habibi Najafi MB. Survival of enteric viruses during yoghurt making process using male-specific coliphage. J Food Saf 2016. [DOI: 10.1111/jfs.12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Somayeh Moradi Moghadam
- Department of Food Science and Technology; Ferdowsi University of Mashhad-International Campus; Mashhad Iran
| | - Masoud Yavarmanesh
- Faculty of Agriculture, Department of Food Science and Technology; Ferdowsi University of Mashhad; Mashhad Iran
| | | |
Collapse
|
15
|
Peng J, Tang J, Barrett DM, Sablani SS, Anderson N, Powers JR. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Crit Rev Food Sci Nutr 2015; 57:2970-2995. [DOI: 10.1080/10408398.2015.1082126] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Li D, De Keuckelaere A, Uyttendaele M. Fate of Foodborne Viruses in the "Farm to Fork" Chain of Fresh Produce. Compr Rev Food Sci Food Saf 2015; 14:755-770. [PMID: 32313514 PMCID: PMC7162173 DOI: 10.1111/1541-4337.12163] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022]
Abstract
Norovirus (NoV) and hepatitis A virus (HAV) are the most important foodborne viruses. Fresh produce has been identified as an important vehicle for their transmission. In order to supply a basis to identify possible prevention and control strategies, this review intends to demonstrate the fate of foodborne viruses in the farm to fork chain of fresh produce, which include the introduction routes (contamination sources), the viral survival abilities at different stages, and the reactions of foodborne viruses towards the treatments used in food processing of fresh produce. In general, the preharvest contamination comes mainly from soli fertilizer or irrigation water, while the harvest and postharvest contaminations come mainly from food handlers, which can be both symptomatic and asymptomatic. Foodborne viruses show high stabilities in all the stages of fresh produce production and processing. Low-temperature storage and other currently used preservation techniques, as well as washing by water have shown limited added value for reducing the virus load on fresh produce. Chemical sanitizers, although with limitations, are strongly recommended to be applied in the wash water in order to minimize cross-contamination. Alternatively, radiation strategies have shown promising inactivating effects on foodborne viruses. For high-pressure processing and thermal treatment, efforts have to be made on setting up treatment parameters to induce sufficient viral inactivation within a food matrix and to protect the sensory and nutritional qualities of fresh produce to the largest extent.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering Ghent Univ Coupure Links 653 B-9000 Ghent Belgium
| | - Ann De Keuckelaere
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering Ghent Univ Coupure Links 653 B-9000 Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering Ghent Univ Coupure Links 653 B-9000 Ghent Belgium
| |
Collapse
|
17
|
Sánchez G. Processing Strategies to Inactivate Hepatitis A Virus in Food Products: A Critical Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gloria Sánchez
- Dept. of Microbiology and Ecology; Univ. of Valencia, Dr. Moliner; 50. Burjassot Valencia Spain
- Inst. of Agrochemistry and Food Technology (IATA); Spanish Council for Scientific Research (CSIC); Agustín Escardino, 7. Paterna Valencia Spain
| |
Collapse
|
18
|
Bozkurt H, D'Souza DH, Davidson PM. Thermal inactivation kinetics of hepatitis A virus in homogenized clam meat (Mercenaria mercenaria). J Appl Microbiol 2015; 119:834-44. [PMID: 26184406 DOI: 10.1111/jam.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/08/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
AIMS Epidemiological evidence suggests that hepatitis A virus (HAV) is the most common pathogen transmitted by bivalve molluscs such as clams, cockles, mussels and oysters. This study aimed to generate thermal inactivation kinetics for HAV as a first step to design adequate thermal processes to control clam-associated HAV outbreaks. METHODS AND RESULTS Survivor curves and thermal death curves were generated for different treatment times (0-6 min) at different temperatures (50-72°C) and Weibull and first-order models were compared. D-values for HAV ranged from 47·37 ± 1·23 to 1·55 ± 0·12 min for the first-order model and 64·43 ± 3·47 to 1·25 ± 0·45 min for the Weibull model at temperatures from 50 to 72°C. z-Values for HAV in clams were 12·97 ± 0·59°C and 14·83 ± 0·0·28°C using the Weibull and first-order model respectively. The calculated activation energies for the first-order and Weibull model were 145 and 170 kJ mole(-1) respectively. CONCLUSION The Weibull model described the thermal inactivation behaviour of HAV better than the first-order model. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides novel and precise information on thermal inactivation kinetics of HAV in homogenized clams. This will enable reliable thermal process calculations for HAV inactivation in clams and closely related seafood.
Collapse
Affiliation(s)
- H Bozkurt
- Department of Food Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - D H D'Souza
- Department of Food Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - P M Davidson
- Department of Food Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
19
|
Kalia A, Parshad VR. Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Crit Rev Food Sci Nutr 2014; 55:159-82. [DOI: 10.1080/10408398.2011.649315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Bozkurt H, D'Souza DH, Davidson PM. Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel (Mytilus edulis) homogenate. Appl Environ Microbiol 2014; 80:3191-7. [PMID: 24632250 PMCID: PMC4018912 DOI: 10.1128/aem.00428-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/07/2014] [Indexed: 02/04/2023] Open
Abstract
Hepatitis A virus (HAV) is a food-borne enteric virus responsible for outbreaks of hepatitis associated with shellfish consumption. The objectives of this study were to determine the thermal inactivation behavior of HAV in blue mussels, to compare the first-order and Weibull models to describe the data, to calculate Arrhenius activation energy for each model, and to evaluate model efficiency by using selected statistical criteria. The times required to reduce the population by 1 log cycle (D-values) calculated from the first-order model (50 to 72°C) ranged from 1.07 to 54.17 min for HAV. Using the Weibull model, the times required to destroy 1 log unit (tD = 1) of HAV at the same temperatures were 1.57 to 37.91 min. At 72°C, the treatment times required to achieve a 6-log reduction were 7.49 min for the first-order model and 8.47 min for the Weibull model. The z-values (changes in temperature required for a 90% change in the log D-values) calculated for HAV were 15.88 ± 3.97°C (R(2), 0.94) with the Weibull model and 12.97 ± 0.59°C (R(2), 0.93) with the first-order model. The calculated activation energies for the first-order model and the Weibull model were 165 and 153 kJ/mol, respectively. The results revealed that the Weibull model was more appropriate for representing the thermal inactivation behavior of HAV in blue mussels. Correct understanding of the thermal inactivation behavior of HAV could allow precise determination of the thermal process conditions to prevent food-borne viral outbreaks associated with the consumption of contaminated mussels.
Collapse
Affiliation(s)
- Hayriye Bozkurt
- Department of Food Science and Technology, The University of Tennessee, Knoxville, Tennessee, USA
| | | | | |
Collapse
|
21
|
Coudray-Meunier C, Fraisse A, Martin-Latil S, Guillier L, Perelle S. Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiol 2013; 13:216. [PMID: 24083486 PMCID: PMC3853579 DOI: 10.1186/1471-2180-13-216] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human enteric viruses are major agents of foodborne diseases. Because of the absence of a reliable cell culture method for most of the enteric viruses involved in outbreaks, real-time reverse transcriptase PCR is now widely used for the detection of RNA viruses in food samples. However this approach detects viral nucleic acids of both infectious and non infectious viruses, which limits the impact of conclusions with regard to public health concern. The aim of the study was to develop a method to discriminate between infectious and non-infectious particles of hepatitis A virus (HAV) and two strains of rotavirus (RV) following thermal inactivation by using intercalating dyes combined with RT-qPCR. RESULTS Once the binding of propidium monoazide (PMA) or ethidium monoazide (EMA) was shown to be effective on the viral ssRNA of HAV and dsRNA of two strains of RV (SA11 and Wa), their use in conjunction with three surfactants (IGEPAL CA-630, Tween 20, Triton X-100) prior to RT-qPCR assays was evaluated to quantify the infectious particles remaining following heat treatment. The most promising conditions were EMA (20 μM) and IGEPAL CA-630 (0.5%) for HAV, EMA (20 μM) for RV (WA) and PMA (50 μM) for RV (SA11). The effectiveness of the pre-treatment RT-qPCR developed for each virus was evaluated with three RT-qPCR assays (A, B, C) during thermal inactivation kinetics (at 37°C, 68 C, 72°C, 80°C) through comparison with data obtained by RT-qPCR and by infectious titration in cell culture. At 37°C, the quantity of virus (RV, HAV) remained constant regardless of the method used. The genomic titers following heat treatment at 68°C to 80°C became similar to the infectious titers only when a pre-treatment RT-qPCR was used. Moreover, the most effective decrease was obtained by RT-qPCR assay A or B for HAV and RT-qPCR assay B or C for RV. CONCLUSIONS We concluded that effectiveness of the pre-treatment RT-qPCR is influenced by the viral target and by the choice of the RT-qPCR assay. Currently, it would be appropriate to further develop this approach under specific conditions of inactivation for the identification of infectious viruses in food and environmental samples.
Collapse
Affiliation(s)
- Coralie Coudray-Meunier
- ANSES, Food Safety Laboratory, Food and Water Virology Unit, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort cedex, France
| | - Audrey Fraisse
- ANSES, Food Safety Laboratory, Food and Water Virology Unit, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort cedex, France
| | - Sandra Martin-Latil
- ANSES, Food Safety Laboratory, Food and Water Virology Unit, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort cedex, France
| | - Laurent Guillier
- ANSES, Food Safety Laboratory, Modelling of Bacterial Behaviour Unit, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort cedex, France
| | - Sylvie Perelle
- ANSES, Food Safety Laboratory, Food and Water Virology Unit, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort cedex, France
| |
Collapse
|
22
|
Nguyen-The C. Biological hazards in processed fruits and vegetables – Risk factors and impact of processing techniques. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Scientific Opinion on Public health risks represented by certain composite products containing food of animal origin. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
24
|
Lee JY, Suk HJ, Lee HY, Lee SM, Yoon YH. Application of Probabilistic Model to Calculate Probabilities of Escherichia coli O157:H7 Growth on Polyethylene Cutting Board. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.1.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|