1
|
Frentzel H, Kraemer M, Kelner-Burgos Y, Uelze L, Bodi D. Cereulide production capacities and genetic properties of 31 emetic Bacillus cereus group strains. Int J Food Microbiol 2024; 417:110694. [PMID: 38614024 DOI: 10.1016/j.ijfoodmicro.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
The highly potent toxin cereulide is a frequent cause of foodborne intoxications. This extremely resistant toxin is produced by Bacillus cereus group strains carrying the plasmid encoded cesHPTABCD gene cluster. It is known that the capacities to produce cereulide vary greatly between different strains but the genetic background of these variations is not clear. In this study, cereulide production capacities were associated with genetic characteristics. For this, cereulide levels in cultures of 31 strains were determined after incubation in tryptic soy broth for 24 h at 24 °C, 30 °C and 37 °C. Whole genome sequencing based data were used for an in-depth characterization of gene sequences related to cereulide production. The taxonomy, population structure and phylogenetic relationships of the strains were evaluated based on average nucleotide identity, multi-locus sequence typing (MLST), core genome MLST and single nucleotide polymorphism analyses. Despite a limited strain number, the approach of a genome wide association study (GWAS) was tested to link genetic variation with cereulide quantities. Our study confirms strain-dependent differences in cereulide production. For most strains, these differences were not explainable by sequence variations in the cesHPTABCD gene cluster or the regulatory genes abrB, spo0A, codY and pagRBc. Likewise, the population structure and phylogeny of the tested strains did not comprehensively reflect the cereulide production capacities. GWAS yielded first hints for associated proteins, while their possible effect on cereulide synthesis remains to be further investigated.
Collapse
Affiliation(s)
- Hendrik Frentzel
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Marco Kraemer
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Ylanna Kelner-Burgos
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Laura Uelze
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Sequencing and Genotyping Service Unit, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Dorina Bodi
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Kranzler M, Walser V, Stark TD, Ehling-Schulz M. A poisonous cocktail: interplay of cereulide toxin and its structural isomers in emetic Bacillus cereus. Front Cell Infect Microbiol 2024; 14:1337952. [PMID: 38596651 PMCID: PMC11002159 DOI: 10.3389/fcimb.2024.1337952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Food intoxications evoked by emetic Bacillus cereus strains constitute a serious threat to public health, leading to emesis and severe organ failure. The emetic peptide toxin cereulide, assembled by the non-ribosomal peptide synthetase CesNRPS, cannot be eradicated from contaminated food by usual hygienic measures due to its molecular size and structural stability. Next to cereulide, diverse chemical variants have been described recently that are produced concurrently with cereulide by CesNRPS. However, the contribution of these isocereulides to the actual toxicity of emetic B. cereus, which produces a cocktail of these toxins in a certain ratio, is still elusive. Since cereulide isoforms have already been detected in food remnants from foodborne outbreaks, we aimed to gain insights into the composition of isocereulides and their impact on the overall toxicity of emetic B. cereus. The amounts and ratios of cereulide and isocereulides were determined in B. cereus grown under standard laboratory conditions and in a contaminated sample of fried rice balls responsible for one of the most severe food outbreaks caused by emetic B. cereus in recent years. The ratios of variants were determined as robust, produced either under laboratory or natural, food-poisoning conditions. Examination of their actual toxicity in human epithelial HEp2-cells revealed that isocereulides A-N, although accounting for only 10% of the total cereulide toxins, were responsible for about 40% of the total cytotoxicity. An this despite the fact that some of the isocereulides were less cytotoxic than cereulide when tested individually for cytotoxicity. To estimate the additive, synergistic or antagonistic effects of the single variants, each cereulide variant was mixed with cereulide in a 1:9 and 1:1 binary blend, respectively, and tested on human cells. The results showed additive and synergistic impacts of single variants, highlighting the importance of including not only cereulide but also the isocereulides in routine food and clinical diagnostics to achieve a realistic toxicity evaluation of emetic B. cereus in contaminated food as well as in patient samples linked to foodborne outbreaks. Since the individual isoforms confer different cell toxicity both alone and in association with cereulide, further investigations are needed to fully understand their cocktail effect.
Collapse
Affiliation(s)
- Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Walser
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Timo D. Stark
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Zheng Y, Xu W, Guo H, Yu S, Xue L, Chen M, Zhang J, Xu Z, Wu Q, Wang J, Ding Y. The potential of lactose to inhibit cereulide biosynthesis of emetic Bacillus cereus in milk. Int J Food Microbiol 2024; 411:110517. [PMID: 38096676 DOI: 10.1016/j.ijfoodmicro.2023.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.
Collapse
Affiliation(s)
- Yin Zheng
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Wenxing Xu
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Guo
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Shubo Yu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenlin Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Ding
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Wang Y, Liu Y, Yang S, Chen Y, Liu Y, Lu D, Niu H, Ren F, Xu A, Dong Q. Effect of Temperature, pH, and a w on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production. Toxins (Basel) 2024; 16:32. [PMID: 38251248 PMCID: PMC10818934 DOI: 10.3390/toxins16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Bacillus cereus is a food-borne pathogen that can produce cereulide in the growth period, which causes food poisoning symptoms. Due to its resistance to heat, extreme pH, and proteolytic enzymes, cereulide poses a serious threat to food safety. Temperature, pH, and aw can influence cereulide production, but there is still a lack of research with multi-environmental impacts. In this study, the effects of temperature (15~45 °C), pH (5~8), and aw (0.945~0.996) on the emetic reference strain B. cereus F4810/72 growth, cereulide production, relevant ces genes (cesA, cesB, cesP), and transcription regulators genes (codY and abrB) expression at transcription level were studied. B. cereus survived for 4~53 h or grew to 6.85~8.15 log10 CFU/mL in environmental combinations. Cereulide accumulation was higher in mid-temperature, acidic, or high aw environments. Increased temperature resulted in a lower cereulide concentration at pH 8 or aw of 0.970. The lowest cereulide concentration was found at pH 6.5 with an increased aw from 0.970 to 0.996. Water activity had a strong effect on transcriptional regulator genes as well as the cesB gene, and temperature was the main effect factor of cesP gene expression. Moreover, environmental factors also impact cereulide synthesis at transcriptional levels thereby altering the cereulide concentrations. The interaction of environmental factors may result in the survival of B. cereus without growth for a period. Gene expression is affected by environmental factors, and temperature and pH may be the main factors influencing the correlation between B. cereus growth and cereulide formation. This study contributed to an initial understanding of the intrinsic link between the impact of environmental factors and cereulide formation and provided valuable information for clarifying the mechanism of cereulide synthesis in combined environmental conditions.
Collapse
Affiliation(s)
- Yating Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Yuhang Chen
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yang Liu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China;
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Fanchong Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Anning Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| |
Collapse
|
5
|
Ben Akacha B, Michalak M, Generalić Mekinić I, Kačániová M, Chaari M, Brini F, Ben Saad R, Mnif W, Garzoli S, Ben Hsouna A. Mixture design of α-pinene, α-terpineol, and 1,8-cineole: A multiobjective response followed by chemometric approaches to optimize the antibacterial effect against various bacteria and antioxidant activity. Food Sci Nutr 2024; 12:574-589. [PMID: 38268912 PMCID: PMC10804091 DOI: 10.1002/fsn3.3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 01/26/2024] Open
Abstract
α-Pinene, α-terpineol, and 1,8-cineole are compounds naturally present in essential oils, although their amounts vary from oil to oil. Although several studies have reported their antibacterial and antioxidant effects, there are few reports on the synergistic or antagonistic effects of their combinations. The objective of this study was to investigate the combined antibacterial effect of these three compounds. To our knowledge, this is the first report on the prediction of their optimal combination using the mixture design approach. The experimental antibacterial activity of the α-pinene, α-terpineol, and 1,8-cineole mixtures depended on the proportion of each compound in the mixture and the target strain, with minimum inhibitory concentrations (MIC) ranging from 0.31 to 1.85 mg/mL. Using the increased simplex-centroid mixture design, the mixture containing 0.33% of each molecule proved to be the most effective against Bacillus cereus and had the lowest MIC values. In addition, α-pinene, α-terpineol, and 1,8-cineole showed significant antioxidant activity against 2,2-picryl-1-hydrazyl radical (DPPH), with IC50 values of 24.53 ± 0.05, 65.63 ± 0.71, and 63.58 ± 0.01 μg/mL, respectively. Statistical planning and the development of utility profiles of the substance mixtures can predict the optimal composition that will exhibit the highest antibacterial activity against B. cereus as well as antioxidant properties. Furthermore, the synergistic effect of the mixtures can contribute significantly to their successful use as natural preservatives in various applications.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | | | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and TechnologyUniversity of SplitSplitCroatia
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of HorticultureSlovak University of AgricultureNitraSlovakia
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE)Center of Biotechnology of Sfax (CBS)University of SfaxSfaxTunisia
| | - Faical Brini
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at BishaUniversity of BishaBishaSaudi Arabia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of DrugSapienza UniversityRomeItaly
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of MahdiaUniversity of MonastirMonastirTunisia
| |
Collapse
|
6
|
Nevers A, Kranzler M, Perchat S, Gohar M, Sorokin A, Lereclus D, Ehling-Schulz M, Sanchis-Borja V. Plasmid - Chromosome interplay in natural and non-natural hosts: global transcription study of three Bacillus cereus group strains carrying pCER270 plasmid. Res Microbiol 2023; 174:104074. [PMID: 37149076 DOI: 10.1016/j.resmic.2023.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The Bacillus cereus group comprises genetically related Gram-positive spore-forming bacteria that colonize a wide range of ecological niches and hosts. Despite their high degree of genome conservation, extrachromosomal genetic material diverges between these species. The discriminating properties of the B. cereus group strains are mainly due to plasmid-borne toxins, reflecting the importance of horizontal gene transfers in bacterial evolution and species definition. To investigate how a newly acquired megaplasmid can impact the transcriptome of its host, we transferred the pCER270 from the emetic B. cereus strains to phylogenetically distant B. cereus group strains. RNA-sequencing experiments allowed us to determine the transcriptional influence of the plasmid on host gene expression and the impact of the host genomic background on the pCER270 gene expression. Our results show a transcriptional cross-regulation between the megaplasmid and the host genome. pCER270 impacted carbohydrate metabolism and sporulation genes expression, with a higher effect in the natural host of the plasmid, suggesting a role of the plasmid in the adaptation of the carrying strain to its environment. In addition, the host genomes also modulated the expression of pCER270 genes. Altogether, these results provide an example of the involvement of megaplasmids in the emergence of new pathogenic strains.
Collapse
Affiliation(s)
- Alicia Nevers
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna; Vienna, Austria
| | - Stéphane Perchat
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Didier Lereclus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna; Vienna, Austria.
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
7
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
8
|
Impact of a Novel PagR-like Transcriptional Regulator on Cereulide Toxin Synthesis in Emetic Bacillus cereus. Int J Mol Sci 2022; 23:ijms231911479. [PMID: 36232797 PMCID: PMC9570423 DOI: 10.3390/ijms231911479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The emetic type of foodborne disease caused by Bacillus cereus is produced by the small peptide toxin cereulide. The genetic locus encoding the Ces nonribosomal peptide synthetase (CesNRPS) multienzyme machinery is located on a 270 kb megaplasmid, designated pCER270, which shares its backbone with the Bacillus anthracis toxin plasmid pXO1. Although the ces genes are plasmid-borne, the chromosomally encoded pleiotropic transcriptional factors CodY and AbrB are key players in the control of ces transcription. Since these proteins only repress cereulide synthesis during earlier growth phases, other factors must be involved in the strict control of ces expression and its embedment in the bacterial life cycle. In silico genome analysis revealed that pCER270 carries a putative ArsR/SmtB family transcription factor showing high homology to PagR from B. anthracis. As PagR plays a crucial role in the regulation of the protective antigen gene pagA, which forms part of anthrax toxin, we used a gene-inactivation approach, combined with electrophoretic mobility shift assays and a bacterial two-hybrid system for dissecting the role of the PagR homologue PagRBc in the regulation of cereulide synthesis. Our results highlight that the plasmid-encoded transcriptional regulator PagRBc plays an important role in the complex and multilayered process of cereulide synthesis.
Collapse
|
9
|
Chen H, Verplaetse E, Jauslin T, Cosson P, Slamti L, Lereclus D. The Fate of Bacteria of the Bacillus cereus Group in the Amoeba Environment. MICROBIAL ECOLOGY 2022; 83:1088-1104. [PMID: 34342700 DOI: 10.1007/s00248-021-01828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The Bacillus cereus sensu lato group consists of several closely related species, including B. anthracis, B. cereus sensu stricto, and B. thuringiensis. Spores of these pathogenic bacteria are commonly found in the soil but evidence suggests that they are unable to grow in such a natural environment in the absence of nutrient input. Amoebas have been reported to be an amplifier for several species of pathogenic bacteria and their potential involvement to explain the large amount of B. thuringiensis and B. cereus spores in soil has been frequently proposed. Here, we studied the fate of Bacillus and amoebas when cultured together. We show that the virulence factors produced by B. thuringiensis and B. cereus do not affect the amoeba Acanthamoeba castellanii, which, on the contrary, can phagocytose and effectively digest vegetative Bacillus cells to grow and prevent the formation of cysts. Bacterial spores can germinate in the amoeba environment and the vegetative cells can then form chains or aggregates that appear to be less efficiently phagocyted by the amoeba. The use of transcriptional fusions between fluorescent reporter genes and stationary phase- and sporulation-specific promoters showed that the sporulation process occurs more efficiently in the presence of amoebas than in their absence. Moreover, our results showed the amoeba environment to promote spore germination and allow the bacteria to complete their developmental cycle. Overall, this study suggests that the amoeba-Bacillus interaction creates a virtuous circle in which each protagonist helps the other to develop.
Collapse
Affiliation(s)
- Haibo Chen
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Emilie Verplaetse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Tania Jauslin
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Pierre Cosson
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Leyla Slamti
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Didier Lereclus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
10
|
Influence of the Phagemid PfNC7401 on Cereulide-Producing Bacillus cereus NC7401. Microorganisms 2022; 10:microorganisms10050953. [PMID: 35630395 PMCID: PMC9143728 DOI: 10.3390/microorganisms10050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
A phagemid-cured strain, NC7401-∆Pf, was constructed to survey the biological function of the plasmidal prophage PfNC7401 in cereulide-producing Bacillus cereus NC7401. The transcriptome analysis between the mutant and the wild strains revealed a series of differentially expressed genes mainly involved in different function classifications, including the two-component signal transduction system, bacterial structure, transporters, related antibiotic response, purine biosynthesis, non-ribosomal peptide synthetases (NRPS) and related secondary metabolites, and aromatic or other amino acid synthesis. BIOLOG and phenotypic experiment analyses confirmed that PfNC7401 may affect phage immunity and the metabolism of several amino acids, including L-Alanine, which was suggested to be related to one precursor (D-Alanine) of cereulide synthesis. However, neither the transcription levels of the cereulide production-related genes (e.g., ilvB, cesA, cesB, and cesH) nor the cereulide production nor cell cytotoxicity were affected by the presence or absence of PfNC7401, corresponding with the transcriptome data, in which only four genes unrelated to cereulide synthesis on the plasmid-carrying ces gene cluster were affected by the curing of PfNC7401.
Collapse
|
11
|
Emetic toxin production of Bacillus cereus in a biofilm. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Ellouze M, Buss Da Silva N, Rouzeau-Szynalski K, Coisne L, Cantergiani F, Baranyi J. Modeling Bacillus cereus Growth and Cereulide Formation in Cereal-, Dairy-, Meat-, Vegetable-Based Food and Culture Medium. Front Microbiol 2021; 12:639546. [PMID: 33679675 PMCID: PMC7925994 DOI: 10.3389/fmicb.2021.639546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022] Open
Abstract
This study describes the simultaneous Bacillus cereus growth and cereulide formation, in culture medium and cereal-, dairy-, meat-, and vegetable-based food matrices. First, bacterial growth experiments were carried out under a wide range of temperatures (from 9 to 45°C), using the emetic reference strain F4810/72, in the above-mentioned matrices. Then, the generated data were put in a modeling framework where the response variable was a vector of two components: the concentration of B. cereus and that of its toxin, cereulide. Both were considered time-, temperature- and matrix-dependent. The modeling was carried out in a series of steps: the parameters fitted in one step became the response variable of the following step. Using the square root link function, the maximum specific growth rate of the organism and the time to the appearance of quantifiable cereulide were modeled against temperature by cardinal parameters models (CPM), for each matrix. Finally, a validation study was carried out on an independent data set obtained in the same matrices and using various Bacillus cereus strains. Results showed that both growth and toxin-formation depended on the food matrix and on the environment but not in the same way. Thus, the matrix (culture medium), where the highest growth rate of B. cereus was observed, was not the medium where the shortest time to quantifiable cereulide occurred. While the cereal-based matrix generated the smallest growth rates (0.41-times smaller than culture medium did), quantifiable cereulide appeared in it at earlier times compared to the other tested matrices. In fact, three groups of matrices could be distinguished based on their ability to support cereulide formation (1) the cereal-based matrix (highest), (2) the culture medium and the dairy-based matrix (intermediate), and (3) the meat- and vegetable-based matrices (lowest). This ranking between the matrices is quite different from that based on their suitability to the growth of the organism. Our models can be used in HACCP studies, to improve shelf-life predictions and, generally, microbiological food safety assessments of products for which B. cereus is the main concern.
Collapse
Affiliation(s)
- Mariem Ellouze
- Food Safety Microbiology, Food Safety Research Department, Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Nathália Buss Da Silva
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Katia Rouzeau-Szynalski
- Food Safety Microbiology, Food Safety Research Department, Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Laura Coisne
- Food Safety Microbiology, Food Safety Research Department, Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Frédérique Cantergiani
- Food Safety Microbiology, Food Safety Research Department, Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - József Baranyi
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Kalbhenn EM, Bauer T, Stark TD, Knüpfer M, Grass G, Ehling-Schulz M. Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins (Basel) 2021; 13:toxins13020115. [PMID: 33557428 PMCID: PMC7915282 DOI: 10.3390/toxins13020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
The emetic toxin cereulide is a 1.2 kDa dodecadepsipeptide produced by the food pathogen Bacillus cereus. As cereulide poses a serious health risk to humans, sensitive and specific detection, as well as toxin purification and quantification, methods are of utmost importance. Recently, a stable isotope dilution assay tandem mass spectrometry (SIDA–MS/MS)-based method has been described, and an method for the quantitation of cereulide in foods was established by the International Organization for Standardization (ISO). However, although this SIDA–MS/MS method is highly accurate, the sophisticated high-end MS equipment required for such measurements limits the method’s suitability for microbiological and molecular research. Thus, we aimed to develop a method for cereulide toxin detection and isolation using equipment commonly available in microbiological and biochemical research laboratories. Reproducible detection and relative quantification of cereulide was achieved, employing reversed phase chromatography (RPC). Chromatographic signals were cross validated by ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS). The specificity of the RPC method was tested using a test panel of strains that included non-emetic representatives of the B. cereus group, emetic B. cereus strains, and cereulide-deficient isogenic mutants. In summary, the new method represents a robust, economical, and easily accessible research tool that complements existing diagnostics for the detection and quantification of cereulide.
Collapse
Affiliation(s)
- Eva Maria Kalbhenn
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
| | - Tobias Bauer
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany;
| | - Mandy Knüpfer
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.K.); (G.G.)
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.K.); (G.G.)
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
- Correspondence:
| |
Collapse
|
15
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
16
|
Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line. mBio 2020; 11:mBio.01577-20. [PMID: 32994334 PMCID: PMC7527721 DOI: 10.1128/mbio.01577-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study revealed a novel, potentially conserved mechanism involved in the biosynthesis of microbial natural products, exemplified by the mitochondrial active depsipeptide cereulide. Similar to other bioactive substances, such as the last-resort antibiotics vancomycin and daptomycin, the antitumor drug cryptophycin or the cholesterol-lowering agent lovastatin, cereulide is synthesized nonribosomally by multienzyme machinery, requiring the concerted actions of multiple proteins to ensure correct product assembly. Given the importance of microbial secondary metabolites in human and veterinary medicine, it is critical to understand how these processes are orchestrated within the host cells. By revealing that tethering of a biosynthetic enzyme to the cell membrane by an ABC transporter is essential for nonribosomal peptide production, our study provides novel insights into synthesis of microbial secondary metabolites, which could contribute to isolation of novel compounds from cryptic secondary metabolite clusters or improve the yield of produced pharmaceuticals. Nonribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) play a pivotal role in the production of bioactive natural products, such as antibiotics and cytotoxins. Despite biomedical and pharmaceutical importance, the molecular mechanisms and architectures of these multimodular enzyme complexes are not fully understood. Here, we report on an ABC transporter that forms a vital part of the nonribosomal peptide biosynthetic machinery. Emetic Bacillus cereus produces the highly potent, mitochondrial active nonribosomal depsipeptide cereulide, synthesized by the NRPS Ces. The ces gene locus includes, next to the structural cesAB genes, a putative ABC transporter, designated cesCD. Our study demonstrates that tethering of CesAB synthetase to the cell membrane by CesCD is critical for peptide assembly. In vivo studies revealed that CesAB colocalizes with CesCD on the cell membrane, suggesting direct involvement of this ABC transporter in the biosynthesis of a nonribosomal peptide. Mutation of cesCD, disrupting the assembly of the CesCD complex, resulted in decreased interaction with CesAB and, as a consequence, negatively affected cereulide biosynthesis. Specific domains within CesAB synthetase interacting with CesC were identified. Furthermore, we demonstrated that the structurally similar BerAB transporter from Bacillus thuringiensis complements CesCD function in cereulide biosynthesis, suggesting that the direct involvement of ABC transporter in secondary metabolite biosynthesis could be a widespread mechanism. In summary, our study revealed a novel, noncanonical function for ABC transporter, which is essential for megaenzyme functionality of NRPS. The new insights into natural product biosynthesis gained may facilitate the discovery of new metabolites with bioactive potential.
Collapse
|
17
|
Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, Beloglazova N, Tsilla V, Sas B, Madder A, De Saeger S, Uyttendaele M. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Compr Rev Food Sci Food Saf 2020; 19:1605-1657. [DOI: 10.1111/1541-4337.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Jelena Jovanovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Silvia Monteiro
- Laboratorio Analises, Instituto Superior TecnicoUniversidade de Lisboa Lisbon Portugal
| | - Marlies Decleer
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mirjana Andjelkovic
- Operational Directorate Food, Medicines and Consumer SafetyService for Chemical Residues and Contaminants Brussels Belgium
| | - Astrid Foubert
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Natalia Beloglazova
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
- Nanotechnology Education and Research CenterSouth Ural State University Chelyabinsk Russia
| | - Varvara Tsilla
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Annemieke Madder
- Laboratorium for Organic and Biomimetic Chemistry, Department of Organic and Macromolecular ChemistryGhent University Ghent Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| |
Collapse
|
18
|
Zhao G, Wang YF, Chen J, Yao Y. Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes. Toxins (Basel) 2020; 12:E78. [PMID: 31979410 PMCID: PMC7076863 DOI: 10.3390/toxins12020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Fermented pastes are some of the most popular traditional products in China. Many studies reported a strong possibility that fermented pastes promote exposure to mycotoxins, including aflatoxins, ochratoxins, and cereulide, which were proven to be carcinogenic and neurotoxic to humans. The primary mechanism of pathogenicity is by inhibiting protein synthesis and inducing oxidative stress using cytochrome P450 (CYP) enzymes. The level of mycotoxin production is dependent on the pre-harvest or post-harvest stage. It is possible to implement methods to control mycotoxins by using appropriate antagonistic microorganisms, such as Aspergillus niger, Lactobacillus plantarum, and Saccharomyces cerevisiae isolated from ordinary foods. Also, drying products as soon as possible to avoid condensation or moisture absorption in order to reduce the water activity to lower than 0.82 during storage is also effective. Furthermore, organic acid treatment during the soaking process reduces toxins by more than 90%. Some novel detection technologies based on magnetic adsorption, aptamer probes, and molecular-based methods were applied to rapidly and accurately detect mycotoxins in fermented pastes.
Collapse
Affiliation(s)
- Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| | - Yi-Fei Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| | - Junling Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, China;
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| |
Collapse
|
19
|
Within-host evolution of bovine Staphylococcus aureus selects for a SigB-deficient pathotype characterized by reduced virulence but enhanced proteolytic activity and biofilm formation. Sci Rep 2019; 9:13479. [PMID: 31530887 PMCID: PMC6748969 DOI: 10.1038/s41598-019-49981-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a major cause of bovine mastitis, commonly leading to long-lasting, persistent and recurrent infections. Thereby, S. aureus constantly refines and permanently adapts to the bovine udder environment. In this work, we followed S. aureus within-host adaptation over the course of three months in a naturally infected dairy cattle with chronic, subclinical mastitis. Whole genome sequence analysis revealed a complete replacement of the initial predominant variant by another isogenic variant. We report for the first time within-host evolution towards a sigma factor SigB-deficient pathotype in S. aureus bovine mastitis, associated with a single nucleotide polymorphism in rsbU (G368A → G122D), a contributor to SigB-functionality. The emerged SigB-deficient pathotype exhibits a substantial shift to new phenotypic traits comprising strong proteolytic activity and poly-N-acetylglucosamine (PNAG)-based biofilm production. This possibly unlocks new nutritional resources and promotes immune evasion, presumably facilitating extracellular persistence within the host. Moreover, we observed an adaptation towards attenuated virulence using a mouse infection model. This study extends the role of sigma factor SigB in S. aureus pathogenesis, so far described to be required for intracellular persistence during chronic infections. Our findings suggest that S. aureus SigB-deficiency is an alternative mechanism for persistence and underpin the clinical relevance of staphylococcal SigB-deficient variants which are consistently isolated during human chronic infections.
Collapse
|
20
|
Rouzeau-Szynalski K, Stollewerk K, Messelhäusser U, Ehling-Schulz M. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiol 2019; 85:103279. [PMID: 31500702 DOI: 10.1016/j.fm.2019.103279] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Abstract
Cereulide, a potent toxin produced by Bacillus cereus, is a small, highly heat- and acid-resistant depsipeptide toxin, which confronts food industry with several challenges. Due to the ubiquitous presence of B. cereus in the environment, this opportunistic pathogen can enter food production and processing at almost any stage. Although the bacteria itself might be removed during food processing, the cereulide toxin will most likely not be destroyed or inactivated by these processes. Because of the high toxicity of cereulide and the high incidence rates often observed in connection with foodborne outbreaks, the understanding of the mechanisms of toxin production as well as accurate data on contamination sources and factors promoting toxin formation are urgently needed to prevent contamination and toxin production in food production processes. Over the last decade, considerable progress had been made on the understanding of cereulide toxin biosynthesis in emetic B. cereus, but an overview of current knowledge on this toxin with regards to food industry perspective is lacking. Thus, we aim in this work to summarize data available on extrinsic parameters acting on cereulide toxin synthesis in emetic B. cereus and to discuss the food industry specific challenges related to this toxin. Furthermore, we emphasize how identification of the cardinals in food production processes can lead to novel effective strategies for prevention of toxin formation in the food processing chain and could contribute to the improvement of existing HACCP studies.
Collapse
Affiliation(s)
| | - Katharina Stollewerk
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Ute Messelhäusser
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764, Oberschleissheim, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
21
|
|
22
|
Rossi GAM, Aguilar CEG, Silva HO, Vidal AMC. Bacillus cereus group: genetic aspects related to food safety and dairy processing. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000232017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT: Bacillus cereus group includes not pathogenic and high pathogenic species. They are considered as a risk to public health due to foodborne diseases and as an important cause of economic losses to industries due to production of spoilage enzymes. Some researches have been performed in order to assess the possible factors that contribute to put public health into risk because of consumption of food contaminated with viable cells or toxins which have complex mechanisms of production. The control of these bacteria in food is difficult because they are resistant to several processes used in industries. Thus, in this way, this review focused on highlighting the risk due to toxins production by bacteria from B. cereus group in food and the consequences for food safety and dairy industries.
Collapse
|
23
|
Guérin A, Rønning HT, Dargaignaratz C, Clavel T, Broussolle V, Mahillon J, Granum PE, Nguyen-The C. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiol 2017; 65:130-135. [DOI: 10.1016/j.fm.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/15/2022]
|
24
|
Kranzler M, Stollewerk K, Rouzeau-Szynalski K, Blayo L, Sulyok M, Ehling-Schulz M. Temperature Exerts Control of Bacillus cereus Emetic Toxin Production on Post-transcriptional Levels. Front Microbiol 2016; 7:1640. [PMID: 27826288 PMCID: PMC5078297 DOI: 10.3389/fmicb.2016.01640] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
In recent years, the emetic toxin cereulide, produced by Bacillus cereus, has gained high relevance in food production and food safety. Cereulide is synthesized non-ribosomal by the multi-enzyme complex Ces-NRPS, which is encoded on a megaplasmid that shares its backbone with the Bacillus anthracis pX01 toxin plasmid. Due to its resistance against heat, proteolysis and extreme pH conditions, the formation of this highly potent depsipeptide toxin is of serious concern in food processing procedures including slow cooling procedures and/or storage of intermediate products at ambient temperatures. So far, systematic data on the effect of extrinsic factors on cereulide synthesis has been lacking. Thus, we investigated the influence of temperature, a central extrinsic parameter in food processing, on the regulation of cereulide synthesis on transcriptional, translational and post-translational levels over the growth temperature range of emetic B. cereus. Bacteria were grown in 3°C interval steps from 12 to 46°C and cereulide synthesis was followed from ces gene transcription to cereulide toxin production. This systematic study revealed that temperature is a cardinal parameter, which primarily impacts cereulide synthesis on post-transcriptional levels, thereby altering the composition of cereulide isoforms. Our work also highlights that the risk of cereulide production could not be predicted from growth parameters or sole cell numbers. Furthermore, for the first time we could show that the formation of the recently identified cereulide isoforms is highly temperature dependent, which may have great importance in terms of food safety and predictive microbiology. Notably the production of isocereulide A, which is about 10-fold more cytotoxic than cereulide, was specifically supported at low temperatures.
Collapse
Affiliation(s)
- Markus Kranzler
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | - Katharina Stollewerk
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | | | - Laurence Blayo
- Food Safety Microbiology, Nestec Ltd, Nestlé Research Center Lausanne, Switzerland
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology, IFA Tulln, University of Natural Resources and Life Sciences Vienna (BOKU) Vienna, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
25
|
Li F, Zuo S, Yu P, Zhou B, Wang L, Liu C, Wei H, Hengyi Xu. Distribution and expression of the enterotoxin genes of Bacillus cereus in food products from Jiangxi Province, China. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Zhu K, Hölzel CS, Cui Y, Mayer R, Wang Y, Dietrich R, Didier A, Bassitta R, Märtlbauer E, Ding S. Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China. Front Microbiol 2016; 7:718. [PMID: 27242738 PMCID: PMC4876114 DOI: 10.3389/fmicb.2016.00718] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/29/2016] [Indexed: 12/14/2022] Open
Abstract
Bacillus cereus is an important cause of foodborne infectious disease and food poisoning. However, B. cereus has also been used as a probiotic in human medicine and livestock production, with low standards of safety assessment. In this study, we evaluated the safety of 15 commercial probiotic B. cereus preparations from China in terms of mislabeling, toxin production, and transferable antimicrobial resistance. Most preparations were incorrectly labeled, as they contained additional bacterial species; one product did not contain viable B. cereus at all. In total, 18 B. cereus group strains-specifically B. cereus and Bacillus thuringiensis-were isolated. Enterotoxin genes nhe, hbl, and cytK1, as well as the ces-gene were assessed by PCR. Enterotoxin production and cytotoxicity were confirmed by ELISA and cell culture assays, respectively. All isolated B. cereus group strains produced the enterotoxin Nhe; 15 strains additionally produced Hbl. Antimicrobial resistance was assessed by microdilution; resistance genes were detected by PCR and further characterized by sequencing, transformation and conjugation assays. Nearly half of the strains harbored the antimicrobial resistance gene tet(45). In one strain, tet(45) was situated on a mobile genetic element-encoding a site-specific recombination mechanism-and was transferable to Staphylococcus aureus and Bacillus subtilis by electro-transformation. In view of the wide and uncontrolled use of these products, stricter regulations for safety assessment, including determination of virulence factors and transferable antimicrobial resistance genes, are urgently needed.
Collapse
Affiliation(s)
- Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural UniversityBeijing, China; Department of Veterinary Sciences, Ludwig Maximilian University of MunichOberschleißheim, Germany
| | - Christina S Hölzel
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany
| | - Yifang Cui
- National Center for Veterinary Drug Safety Evaluation, China Agricultural University Beijing, China
| | - Ricarda Mayer
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany
| | - Yang Wang
- National Center for Veterinary Drug Safety Evaluation, China Agricultural University Beijing, China
| | - Richard Dietrich
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany
| | - Rupert Bassitta
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, China Agricultural University Beijing, China
| |
Collapse
|
27
|
Biesta-Peters EG, Dissel S, Reij MW, Zwietering MH, in't Veld PH. Characterization and Exposure Assessment of Emetic Bacillus cereus and Cereulide Production in Food Products on the Dutch Market. J Food Prot 2016; 79:230-8. [PMID: 26818983 DOI: 10.4315/0362-028x.jfp-15-217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The emetic toxin cereulide, which can be produced by Bacillus cereus, can be the cause of food poisoning upon ingestion by the consumer. The toxin causes vomiting and is mainly produced in farinaceous food products. This article includes the prevalence of B. cereus and of cereulide in food products in The Netherlands, a characterization of B. cereus isolates obtained, cereulide production conditions, and a comparison of consumer exposure estimates with those of a previous exposure assessment. Food samples (n = 1,489) were tested for the presence of B. cereus; 5.4% of the samples contained detectable levels (>10(2) CFU/g), and 0.7% contained levels above 10(5) CFU/g. Samples (n = 3,008) also were tested for the presence of cereulide. Two samples (0.067%) contained detectable levels of cereulide at 3.2 and 5.4 μg/kg of food product. Of the 481 tested isolates, 81 produced cereulide and/or contained the ces gene. None of the starch-positive and hbl-containing isolates possessed the ces gene, whereas all strains contained the nhe genes. Culture of emetic B. cereus under nonoptimal conditions revealed a delay in onset of cereulide production compared with culture under optimal conditions, and cereulide was produced in all cases when B. cereus cells had been in the stationary phase for some time. The prevalence of cereulide-contaminated food approached the prevalence of contaminated products estimated in an exposure assessment. The main food safety focus associated with this pathogen should be to prevent germination and growth of any B. cereus present in food products and thus prevent cereulide production in foods.
Collapse
Affiliation(s)
- Elisabeth G Biesta-Peters
- Laboratory for Food and Feed Safety, Consumer and Safety Division, Netherlands Food and Consumer Product Safety Authority, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - Serge Dissel
- Laboratory for Food and Feed Safety, Consumer and Safety Division, Netherlands Food and Consumer Product Safety Authority, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Martine W Reij
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marcel H Zwietering
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Paul H in't Veld
- Department of Enforcement Development, Consumer and Safety Division, Netherlands Food and Consumer Product Safety Authority, Catharijnesingel 59, 3511 GG Utrecht, The Netherlands
| |
Collapse
|
28
|
Lücking G, Frenzel E, Rütschle A, Marxen S, Stark TD, Hofmann T, Scherer S, Ehling-Schulz M. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Front Microbiol 2015; 6:1101. [PMID: 26528255 PMCID: PMC4602138 DOI: 10.3389/fmicb.2015.01101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/23/2015] [Indexed: 11/13/2022] Open
Abstract
The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like megaplasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the non-ribosomal peptide synthetase (NRPS), gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase) embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY.
Collapse
Affiliation(s)
- Genia Lücking
- Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany
| | - Elrike Frenzel
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | - Andrea Rütschle
- Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany
| | - Sandra Marxen
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
| | - Siegfried Scherer
- Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany ; Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
29
|
Ehling-Schulz M, Frenzel E, Gohar M. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Front Microbiol 2015; 6:704. [PMID: 26236290 PMCID: PMC4500953 DOI: 10.3389/fmicb.2015.00704] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022] Open
Abstract
Bacillus cereus is a Gram-positive endospore forming bacterium known for its wide spectrum of phenotypic traits, enabling it to occupy diverse ecological niches. Although the population structure of B. cereus is highly dynamic and rather panmictic, production of the emetic B. cereus toxin cereulide is restricted to strains with specific genotypic traits, associated with distinct environmental habitats. Cereulide is an ionophoric dodecadepsipeptide that is produced non-ribosomally by an enzyme complex with an unusual modular structure, named cereulide synthetase (Ces non-ribosomal peptide synthetase). The ces gene locus is encoded on a mega virulence plasmid related to the B. anthracis toxin plasmid pXO1. Cereulide, a highly thermo- and pH- resistant molecule, is preformed in food, evokes vomiting a few hours after ingestion, and was shown to be the direct cause of gastroenteritis symptoms; occasionally it is implicated in severe clinical manifestations including acute liver failures. Control of toxin gene expression in emetic B. cereus involves central transcriptional regulators, such as CodY and AbrB, thereby inextricably linking toxin gene expression to life cycle phases and specific conditions, such as the nutrient supply encountered in food matrices. While in recent years considerable progress has been made in the molecular and biochemical characterization of cereulide toxin synthesis, far less is known about the embedment of toxin synthesis in the life cycle of B. cereus. Information about signals acting on toxin production in the food environment is lacking. We summarize the data available on the complex regulatory network controlling cereulide toxin synthesis, discuss the role of intrinsic and extrinsic factors acting on toxin biosynthesis in emetic B. cereus and stress how unraveling these processes can lead to the development of novel effective strategies to prevent toxin synthesis in the food production and processing chain.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine ViennaVienna, Austria
| | - Elrike Frenzel
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine ViennaVienna, Austria
| | - Michel Gohar
- INRA, UMR1319 Micalis, AgroParistech – Domaine de Vilvert, Génétique Microbienne et EnvironnementJouy-en-Josas, France
| |
Collapse
|
30
|
Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts. Int J Food Microbiol 2014; 185:82-92. [DOI: 10.1016/j.ijfoodmicro.2014.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/18/2014] [Accepted: 05/25/2014] [Indexed: 11/22/2022]
|
31
|
Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013). BIOMED RESEARCH INTERNATIONAL 2014; 2014:465603. [PMID: 24895578 PMCID: PMC4033357 DOI: 10.1155/2014/465603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 11/17/2022]
Abstract
Several Bacillus cereus strains possess the genetic fittings to produce two different types of toxins, the heat-stable cereulide or different heat-labile proteins with enterotoxigenic potential. Unlike the diarrheal toxins, cereulide is (pre-)formed in food and can cause foodborne intoxications shortly after ingestion of contaminated food. Based on the widely self-limiting character of cereulide intoxications and rarely performed differential diagnostic in routine laboratories, the real incidence is largely unknown. Therefore, during a 7-year period about 4.300 food samples linked to foodborne illness with a preliminary report of vomiting as well as food analysed in the context of monitoring programs were investigated to determine the prevalence of emetic B. cereus in food environments. In addition, a lux-based real-time monitoring system was employed to assess the significance of the detection of emetic strains in different food matrices and to determine the actual risk of cereulide toxin production in different types of food. This comprehensive study showed that emetic strains are much more volatile than previously thought. Our survey highlights the importance and need of novel strategies to move from the currently taxonomic-driven diagnostic to more risk orientated diagnostics to improve food and consumer safety.
Collapse
|
32
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
33
|
Ceuppens S, Boon N, Uyttendaele M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol 2013; 84:433-50. [PMID: 23488744 DOI: 10.1111/1574-6941.12110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/25/2022] Open
Abstract
Bacillus cereus comprises a highly versatile group of bacteria, which are of particular interest because of their capacity to cause disease. Emetic food poisoning is caused by the toxin cereulide produced during the growth of emetic B. cereus in food, while diarrhoeal food poisoning is the result of enterotoxin production by viable vegetative B. cereus cells in the small intestine, probably in the mucus layer and/or attached to the host's intestinal epithelium. The numbers of B. cereus causing disease are highly variable, depending on diverse factors linked to the host (age, diet, physiology and immunology), bacteria (cellular form, toxin genes and expression) and food (nutritional composition and meal characteristics). Bacillus cereus group strains show impressive ecological diversity, ranging from their saprophytic life cycle in soil to symbiotic (commensal and mutualistic) lifestyles near plant roots and in guts of insects and mammals to various pathogenic ones in diverse insect and mammalian hosts. During all these different ecological lifestyles, their toxins play important roles ranging from providing competitive advantages within microbial communities to inhibition of specific pathogenic organisms for their host and accomplishment of infections by damaging their host's tissues.
Collapse
Affiliation(s)
- Siele Ceuppens
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | |
Collapse
|
34
|
Germination and proliferation of emetic Bacillus cereus sensu lato strains in milk. Folia Microbiol (Praha) 2013; 58:529-35. [DOI: 10.1007/s12223-013-0237-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
35
|
Stark T, Marxen S, Rütschle A, Lücking G, Scherer S, Ehling-Schulz M, Hofmann T. Mass spectrometric profiling of Bacillus cereus strains and quantitation of the emetic toxin cereulide by means of stable isotope dilution analysis and HEp-2 bioassay. Anal Bioanal Chem 2012; 405:191-201. [PMID: 23079954 DOI: 10.1007/s00216-012-6485-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/29/2012] [Accepted: 10/05/2012] [Indexed: 11/25/2022]
Abstract
A fast and robust high-throughput ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-TOF MS) profiling method was developed and successfully applied to discriminate a total of 78 Bacillus cereus strains into no/low, medium and high producers of the emetic toxin cereulide. The data obtained by UPLC-TOF MS profiling were confirmed by absolute quantitation of cereulide in selected samples by means of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) and stable isotope dilution assay (SIDA). Interestingly, the B. cereus strains isolated from four vomit samples and five faeces samples from patients showing symptoms of intoxication were among the group of medium or high producers. Comparison of HEp-2 bioassay data with those determined by means of mass spectrometry showed differences, most likely because the HEp-2 bioassay is based on the toxic action of cereulide towards mitochondria of eukaryotic cells rather than on a direct measurement of the toxin. In conclusion, the UPLC-electrospray ionization (ESI)-TOF MS and the HPLC-ESI-MS/MS-SIDA analyses seem to be promising tools for the robust high-throughput analysis of cereulide in B. cereus cultures, foods and other biological samples.
Collapse
Affiliation(s)
- Timo Stark
- Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Frenzel E, Doll V, Pauthner M, Lücking G, Scherer S, Ehling-Schulz M. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Mol Microbiol 2012; 85:67-88. [PMID: 22571587 DOI: 10.1111/j.1365-2958.2012.08090.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacillus cereus causes gastrointestinal diseases and local and systemic infections elicited by the depsipeptide cereulide, enterotoxins, phospholipases, cytolysins and proteases. The PlcR-PapR quorum sensing system activates the expression of several virulence factors, whereas the Spo0A-AbrB regulatory circuit partially controls the plasmid-borne cereulide synthetase (ces) operon. Here, we show that CodY, a nutrient-responsive regulator of Gram-positive bacteria, has a profound effect on both regulatory systems, which have been assumed to operate independently of each other. Deletion of codY resulted in downregulation of virulence genes belonging to the PlcR regulon and a concomitant upregulation of the ces genes. CodY was found to be a repressor of the ces operon, but did not interact with the promoter regions of PlcR-dependent virulence genes in vitro, suggesting an indirect regulation of the latter. Furthermore, CodY binds to the promoter of the immune inhibitor metalloprotease InhA1, demonstrating that CodY directly links B. cereus metabolism to virulence. In vivo studies using a Galleria mellonella infection model, showed that the codY mutant was substantially attenuated, highlighting the importance of CodY as a key regulator of pathogenicity. Our results demonstrate that CodY profoundly modulates the virulence of B. cereus, possibly controlling the development of pathogenic traits in suitable host environments.
Collapse
Affiliation(s)
- Elrike Frenzel
- Institute of Functional Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. These organisms have undergone huge taxonomic changes in the last 30 years, with numbers of genera and species now standing at 56 and over 545, respectively. Despite this expansion, relatively few new species have been isolated from infections, few are associated with food and no important new agents of foodborne illness have been reported. What has changed is our knowledge of the established agents. Bacillus cereus is well known as a cause of food poisoning, and much more is now understood about its toxins and their involvement in infections and intoxications. Also, although B. licheniformis, B. subtilis and B. pumilus have occasionally been isolated from cases of food-associated illness, their roles were usually uncertain. Much more is now known about the toxins that strains of these species may produce, so that their significances in such episodes are clearer; however, it is still unclear why such cases are so rarely reported. Another important development is the use of aerobic endosporeformers as probiotics, as the potentials of such organisms to cause illness or to be sources of antibiotic resistance need to be borne in mind.
Collapse
Affiliation(s)
- N A Logan
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK.
| |
Collapse
|
38
|
Frenzel E, Letzel T, Scherer S, Ehling-Schulz M. Inhibition of cereulide toxin synthesis by emetic Bacillus cereus via long-chain polyphosphates. Appl Environ Microbiol 2011; 77:1475-82. [PMID: 21169440 PMCID: PMC3067231 DOI: 10.1128/aem.02259-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/07/2010] [Indexed: 01/15/2023] Open
Abstract
Severe intoxications caused by the Bacillus cereus emetic toxin cereulide can hardly be prevented due to the ubiquitous distribution and heat resistance of spores and the extreme thermal and chemical stability of cereulide. It would therefore be desirable to inhibit cereulide synthesis during food manufacturing processes or in prepared foods, which are stored under time-temperature abuse conditions. Toward this end, the impacts of three long-chain polyphosphate (polyP) formulations on growth and cereulide production were examined. The inhibition was dependent on the concentration and the type of the polyP blend, indicating that polyPs and not the orthophosphates were effective. Quantitative PCR (qPCR) monitoring at sublethal concentrations revealed that polyPs reduced the transcription of ces nonribosomal peptide synthetase (NRPS) genes by 3- to 4-fold along with a significantly reduced toxin production level. At lower concentrations, toxin synthesis was decreased, although the growth rate was not affected. These data indicate a differential effect on toxin synthesis independent of growth inhibition. The inhibition of toxin synthesis in food was also observed. Despite the growth of B. cereus, toxin synthesis was reduced by 70 to 100% in two model food systems (reconstituted infant food and oat milk), which were analyzed with HEp-2 cell culture assays and high-performance liquid chromatography (HPLC)/electrospray ionization-time of flight mass spectrometry (ESI-TOF-MS). Accordingly, ces promoter activity was strongly downregulated, as visualized by using a lux-based reporter strain. These data illustrate the potential of polyphosphate formulations to reduce the risk of cereulide synthesis in food and may contribute to targeted hurdle concepts.
Collapse
Affiliation(s)
- Elrike Frenzel
- Microbial Ecology Group, Department of Biosciences, Technische Universität München, D-85350 Freising, Germany, Competence Pool Weihenstephan, Technische Universität München, D-85354 Freising, Germany, Microbiology Unit, Nutrition and Food Research Center ZIEL, Technische Universität München, D-85350 Freising, Germany, Food Microbiology Unit, Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Letzel
- Microbial Ecology Group, Department of Biosciences, Technische Universität München, D-85350 Freising, Germany, Competence Pool Weihenstephan, Technische Universität München, D-85354 Freising, Germany, Microbiology Unit, Nutrition and Food Research Center ZIEL, Technische Universität München, D-85350 Freising, Germany, Food Microbiology Unit, Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Siegfried Scherer
- Microbial Ecology Group, Department of Biosciences, Technische Universität München, D-85350 Freising, Germany, Competence Pool Weihenstephan, Technische Universität München, D-85354 Freising, Germany, Microbiology Unit, Nutrition and Food Research Center ZIEL, Technische Universität München, D-85350 Freising, Germany, Food Microbiology Unit, Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Monika Ehling-Schulz
- Microbial Ecology Group, Department of Biosciences, Technische Universität München, D-85350 Freising, Germany, Competence Pool Weihenstephan, Technische Universität München, D-85354 Freising, Germany, Microbiology Unit, Nutrition and Food Research Center ZIEL, Technische Universität München, D-85350 Freising, Germany, Food Microbiology Unit, Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|