1
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Wang Y, Yu F, Fu Y, Zhang Q, Zhao J, Qin Z, Shi K, Wu Y, Li J, Li X, Zhang L. End-point diagnostics of Giardia duodenalis assemblages A and B by combining RPA with CRISPR/Cas12a from human fecal samples. Parasit Vectors 2024; 17:463. [PMID: 39533301 PMCID: PMC11558988 DOI: 10.1186/s13071-024-06559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Giardia duodenalis is a common enteric protozoan parasite that is categorized into eight assemblages (A-H). In particular, assemblages A and B are zoonotic, capable of infecting both humans and animals worldwide, resulting in significant economic losses and public health challenges in epidemic regions. Thus, the development of rapid, accurate and non-laboratory-based diagnostic methods for infected animals is crucial for the effective prevention and control of giardiasis. Recent advancements in clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein (Cas12a) systems allow promising avenues for nucleic acid detection, characterized by their high flexibility, sensitivity and specificity. METHODS Combined recombinase polymerase amplification and CRISPR/Cas12a systems were combined and used as end-point diagnostic methods (termed REPORT) to detect G. duodenalis assemblage A and B. The diagnostic results can be observed by fluorescence readouts with the naked eye under blue light or colorimetric signals using a lateral flow strip (LFS). RESULTS The limit of detection (LOD) of the REPORT‑based G. duodenalis assemblage A detection was 2.04 CFU/ml and 10 trophozoites per gram (TPG), and the LOD of assemblage B was 1.1 CFU/ml and 10 cysts per gram (CPG). The REPORT‑based G. duodenalis assemblage A and assemblage B detection methods have strong specificity and no cross-reactivity with other assemblages of G. duodenalis or common enteric parasitic protozoa and have excellent performance in clinical sample detection. CONCLUSIONS This study presents a novel strategy for the direct identification of G. duodenalis assemblages A and B, requiring neither highly trained personnel nor costly specialized equipment.
Collapse
Affiliation(s)
- Yilin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Fuchang Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Qian Zhang
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266108, Shandong, People's Republic of China
| | - Jinfeng Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Ziyang Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Ke Shi
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003, People's Republic of China
| | - Yayun Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450000, People's Republic of China.
- National International Joint Research Center for Animal Immunology, Zhengzhou, 450000, Henan, People's Republic of China.
| |
Collapse
|
3
|
Wang D, Jiang P, Yang X, Zhang J, Chen T, Hu M, Cacciò SM, Yin J, Zhu G. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern. WATER RESEARCH 2024; 258:121788. [PMID: 38810599 DOI: 10.1016/j.watres.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxuan Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jifei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Golomazou E, Mamedova S, Eslahi AV, Karanis P. Cryptosporidium and agriculture: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170057. [PMID: 38242460 DOI: 10.1016/j.scitotenv.2024.170057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Cryptosporidiosis is a significant contributor to global foodborne and waterborne disease burden. It is a widespread cause of diarrheal diseases that affect humans and animals worldwide. Agricultural environments can become a source of contamination with Cryptosporidium species through faecal material derived from humans and animals. This review aims to report the main findings of scientific research on Cryptosporidium species related to various agricultural sectors, and highlights the risks of cryptosporidiosis in agricultural production, the contamination sources, the importance of animal production in transmission, and the role of farmed animals as hosts of the parasites. Agricultural contamination sources can cause water pollution in groundwater and different surface waters used for drinking, recreational purposes, and irrigation. The application of contaminated manure, faecal sludge management, and irrigation with inadequately treated water are the main concerns associated with foodborne and waterborne cryptosporidiosis related to agricultural activities. The review emphasizes the public health implications of agriculture concerning the transmission risk of Cryptosporidium parasites and the urgent need for a new concept in the agriculture sector. Furthermore, the findings of this review provide valuable information for developing appropriate measures and monitoring strategies to minimize the risk of infection.
Collapse
Affiliation(s)
- Eleni Golomazou
- Department of Ichthyology and Aquatic Environment - Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, Fytokou str., 38446 Volos, Greece
| | - Simuzer Mamedova
- Institute of Zoology, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan & Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50931 Cologne, Germany; University of Nicosia Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, 2408 Nicosia, Cyprus.
| |
Collapse
|
5
|
Kubina S, Costa D, Cazeaux C, Villena I, Favennec L, Razakandrainibe R, La Carbona S. Persistence and survival of Cryptosporidium parvum oocysts on lamb's lettuce leaves during plant growth and in washing conditions of minimally-processed salads. Int J Food Microbiol 2023; 388:110085. [PMID: 36652747 DOI: 10.1016/j.ijfoodmicro.2023.110085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Cryptosporidium is the causative agent of cryptosporidiosis, which results, among others, in profuse diarrhoea. Transmission to humans occurs via the faecal-oral route directly by contact with infected hosts or indirectly by waterborne or foodborne routes. For the latter, parasite transmission is closely linked to the oocyst's ability to persist and survive in food matrices. In this study, we evaluated the persistence and survival of Cryptosporidium oocysts in lamb's lettuce: i) during plant growth and ii) in conditions mimicking the industrial washing process applied in minimally-processed vegetables (MPV). Results show that oocysts persisted during the growth of lamb's lettuce, i.e. two months from the 2-leaf stage until the 8-leaf harvest time (-0.89 Log10 of oocysts). However, their survival decreased from as early as one week (-0.61 Log10), and only 6 % of oocysts remained infective at the time of harvest. The washing process had a limited effect on parasite load (<0.5 Log10) and no effect on survival; chlorination of washing water did not improve the efficiency (removal and inactivation) of the process. The ability of C. parvum to persist and survive throughout the food chain may drive its transmission to humans through MPV products. Appropriate management measures should be implemented at each operational level to limit contamination and ensure food safety of fresh produce.
Collapse
Affiliation(s)
- Sophie Kubina
- ACTALIA Food Safety Department, 310 Rue Popielujko, Saint-Lô 50000, France; Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France.
| | - Damien Costa
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France; Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, Rouen 76000, France.
| | - Catherine Cazeaux
- ACTALIA Food Safety Department, 310 Rue Popielujko, Saint-Lô 50000, France.
| | - Isabelle Villena
- Laboratoire de Parasitologie-Mycologie, EA 7510, SFR CAP-Santé, Université Reims-Champagne Ardenne, CHU, Reims, 51100, France.
| | - Loïc Favennec
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France; Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, Rouen 76000, France.
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France; Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, Rouen 76000, France.
| | | |
Collapse
|
6
|
Nasser AM. Transmission of Cryptosporidium by Fresh Vegetables. J Food Prot 2022; 85:1737-1744. [PMID: 36048914 DOI: 10.4315/jfp-22-152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumption of fresh fruits and vegetables is increasing thanks to a greater awareness of the human health benefits. Vegetables may become contaminated by enteric pathogens (protozoan parasites, bacteria, and viruses) by irrigation with contaminated water, fertilization with fresh animal manure, or by infected food handlers. Cryptosporidium spp. are fecal-oral protozoan parasites, known to be highly persistent in the environment. Efficient methods were developed for releasing and concentrating Cryptosporidium oocysts from leafy vegetables, and sensitive and specific methods were applied for detection. The aims of this review are to discuss the development and optimization of methods applied to elute, concentrate, and detect oocysts from leafy vegetables, to review the prevalence of Cryptosporidium oocysts on fresh leafy vegetables from various parts of the world, and to discuss cryptosporidiosis outbreaks resulting from the consumption of leafy vegetables. Three solutions were used with comparable efficiency to release oocysts from leafy vegetables: 1 M glycine solution; 0.1% Alconox; and filter elution buffer, with an efficiency of 36.2, 72.6, and 44%, respectively. The prevalence of Cryptosporidium oocysts was reported in developed, as well as from developing countries, although simple detection methods were applied. Most of the cryptosporidiosis outbreaks were reported in developed countries, which can be related to the efficient surveillance system. Transmission of infectious pathogens, such as Cryptosporidium, may be facilitated by fresh vegetables, which are imported and transferred from less developed to highly developed countries and consumed uncooked. Monitoring of Cryptosporidium oocysts by sensitive detection methods may enhance measures to prevent transmission by freshly consumed vegetables. HIGHLIGHTS
Collapse
Affiliation(s)
- Abidelfatah M Nasser
- Water Quality Research Laboratory, National Public Health Laboratory, Ministry of Health, 69 Ben Zvi Road, Tel Aviv-Jaffa 6810416, Israel
| |
Collapse
|
7
|
Rezende-Gondim MM, da Silva AV, Dubey JP, Schares GRM, Gondim LFP. Immunomagnetic separation of Toxoplasma gondii and Hammondia spp. tissue cysts generated in cell culture. Front Vet Sci 2022; 9:1033380. [PMID: 36311681 PMCID: PMC9606798 DOI: 10.3389/fvets.2022.1033380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Toxoplasma gondii is commonly transmitted among animals and humans by ingestion of infected animal tissues or by consumption of food and water contaminated with environmentally-resistant oocysts excreted by cats. Tissue cysts and oocysts have different walls, whose structures and compositions are poorly known. Herein, we describe an immunomagnetic separation (IMS) method that was successfully used for purification of T. gondii tissue cysts generated in cell culture. We used an IgG monoclonal antibody (mAb) that reacts against antigens in tissue cyst walls. Many in vitro produced cysts were obtained by this IMS; >2,000 T. gondii cysts were isolated from a single culture flask of 25 cm2. Tissue cysts from two Hammondia spp., H. hammondi, and H. heydorni, produced in cell culture were also separated using this method. As a reference, purification of tissue cysts by Percoll gradients was used. Percoll was able to separate T. gondii tissue cysts produced in mice but was not suitable for purifying T. gondii tissue cysts produced in vitro. The IMS described here should favor proteomic studies involving tissue cysts of T. gondii.
Collapse
Affiliation(s)
- Mariana M. Rezende-Gondim
- Departamento de Anatomia, Patologia e Clínicas, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Aristeu V. da Silva
- Departamento de Biologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Jitender P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States
| | - Gereon R. M. Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Greifswald-Insel Riems, Germany
| | - Luís F. P. Gondim
- Departamento de Anatomia, Patologia e Clínicas, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador, Bahia, Brazil,*Correspondence: Luís F. P. Gondim
| |
Collapse
|
8
|
Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods 2022; 11:foods11162542. [PMID: 36010541 PMCID: PMC9407268 DOI: 10.3390/foods11162542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, with approximately one third of the population around the world seropositive. The consumption of contaminated food is the main source of infection. These include meat products with T. gondii tissue cysts, and dairy products with tachyzoites. Recently, contamination has been detected in fresh products with oocysts and marine products. Despite the great health problems that are caused by T. gondii, currently there are no standardized methods for its detection in the food industry. In this review, we analyze the current detection methods, the prevalence of T. gondii in different food products, and the control measures. The main detection methods are bioassays, cell culture, molecular and microscopic techniques, and serological methods, but some of these do not have applicability in the food industry. As a result, emerging techniques are being developed that are aimed at the detection of multiple parasites simultaneously that would make their application more efficient in the industry. Since the prevalence of this parasite is high in many products (meat and milk, marine products, and vegetables), it is necessary to standardize detection methods, as well as implement control measures.
Collapse
|
9
|
de Barros RAM, Torrecilhas AC, Marciano MAM, Mazuz ML, Pereira-Chioccola VL, Fux B. Toxoplasmosis in Human and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Trop 2022; 231:106432. [PMID: 35390311 DOI: 10.1016/j.actatropica.2022.106432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is a unique health disease that significantly affects the health of humans, domestic animals, wildlife and is present in ecosystems, including water, soil and food. Toxoplasma gondii is one of the best-adapted parasites in the word. This parasite is able to persist for long periods in its hosts, in different geographic regions of the word. This review summarizes the current literature of these themes, focusing on: (1) toxoplasmosis, a zoonotic infection; (2) One health approach and toxoplasmosis; (3) human toxoplasmosis; (4) animal toxoplasmosis; (5) toxoplasmosis diagnosis, as immunological, parasitological and molecular diagnosis; (6) T. gondii outbreaks caused by infected meat, milk and dairy products, as well as, vegetables and water consume; (7) studies in experimental models; (8) genetic characterization of T. gondii strains; (9) extracellular vesicles and miRNA; and (10) future perspectives on T. gondii and toxoplasmosis. The vast prevalence of toxoplasmosis in both humans and animals and the dispersion and resistence of T. gondii parasites in environment highlight the importance of the one health approach in diagnostic and control of the disease. Here the different aspects of the one health approach are presented and discussed.
Collapse
Affiliation(s)
- Rosangela Aparecida Müller de Barros
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Sao Paulo, SP, Brazil..
| | | | - Monica Leszkowicz Mazuz
- Parasitology Division, Kimron Veterinary Institute, Israeli Veterinary Service and Animal Health, Ministry of Agriculture and Rural Development Beit Dagan, 5025000, Israel..
| | | | - Blima Fux
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| |
Collapse
|
10
|
Barlaam A, Sannella A, Ferrari N, Temesgen T, Rinaldi L, Normanno G, Cacciò S, Robertson L, Giangaspero A. Ready-to-eat salads and berry fruits purchased in Italy contaminated by Cryptosporidium spp., Giardia duodenalis, and Entamoeba histolytica. Int J Food Microbiol 2022; 370:109634. [DOI: 10.1016/j.ijfoodmicro.2022.109634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
|
11
|
Surveillance of berries sold on the Norwegian market for parasite contamination using molecular methods. Food Microbiol 2022; 104:103980. [DOI: 10.1016/j.fm.2022.103980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
|
12
|
Chalmers RM, Katzer F, La Carbona S, Lalle M, Razakandrainibe R, Robertson LJ, Robinson G, Šoba B, Temesgen T, Mayer-Scholl A. A guide to standardise artificial contamination procedures with protozoan parasite oocysts or cysts during method evaluation, using Cryptosporidium and leafy greens as models. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Berrouch S, Escotte-Binet S, Madline A, Aubert D, Nast E, La Carbona S, Hoummadi L, Hafid J, Villena I. Protozoan Parasites and Leafy Greens in Marrakech: Study of Occurrence Using a Molecular Method. Acta Parasitol 2022; 67:546-554. [PMID: 34800215 DOI: 10.1007/s11686-021-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE The aim of this study was to assess the presence of T. gondii, Cryptosporidium spp. oocysts, and G. duodenalis cysts, in three leafy greens (coriander, lettuce, and parsley) commonly consumed raw. Despite the recognition of the association between the parasitic illnesses and the consumption of contaminated food, there is still a lack of studies investigating the occurrence of parasitic contamination in food matrices. METHODS A total of 152 leafy green samples were collected in Marrakech from April 2018 to October 2019. Parasites were eluted and concentrated before detection of their DNA by real-time qPCR. RESULTS The analysis revealed an overall rate of contamination of 32.2% (49/152), with 29.6% (45/152) positive for T. gondii and 2.6% (4/152) for G. duodenalis, while none was positive for Cryptosporidium spp. CONCLUSION The results showed that humans can be exposed to protozoan parasites through vegetables consumption. Further investigations can be performed to acquire new epidemiological data to assess the public health impact of these protozoan diseases in Morocco.
Collapse
|
14
|
Nag R, Russell L, Nolan S, Auer A, Markey BK, Whyte P, O'Flaherty V, Bolton D, Fenton O, Richards KG, Cummins E. Quantitative microbial risk assessment associated with ready-to-eat salads following the application of farmyard manure and slurry or anaerobic digestate to arable lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151227. [PMID: 34715220 DOI: 10.1016/j.scitotenv.2021.151227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Farmyard manure and slurry (FYM&S) and anaerobic digestate are potentially valuable soil conditioners providing important nutrients for plant development and growth. However, these organic fertilisers may pose a microbial health risk to humans. A quantitative microbial risk assessment (QMRA) model was developed to investigate the potential human exposure to pathogens following the application of FYM&S and digestate to agricultural land. The farm-to-fork probabilistic model investigated the fate of microbial indicators (total coliforms and enterococci) and foodborne pathogens in the soil with potential contamination of ready-to-eat salads (RTEs) at the point of human consumption. The processes examined included pathogen inactivation during mesophilic anaerobic digestion (M-AD), post-AD pasteurisation, storage, dilution while spreading, decay in soil, post-harvest washing processes, and finally, the potential growth of the pathogen during refrigeration/storage at the retail level in the Irish context. The QMRA highlighted a very low annual probability of risk (Pannual) due to Clostridium perfringens, norovirus, and Salmonella Newport across all scenarios. Mycobacterium avium may result in a very high mean Pannual for the application of raw FYM&S, while Cryptosporidium parvum and pathogenic E. coli showed high Pannual, and Listeria monocytogenes displayed moderate Pannual for raw FYM&S application. The use of AD reduces this risk; however, pasteurisation reduces the Pannual to an even greater extent posing a very low risk. An overall sensitivity analysis revealed that mesophilic-AD's inactivation effect is the most sensitive parameter of the QMRA, followed by storage and the decay on the field (all negatively correlated to risk estimate). The information generated from this model can help to inform guidelines for policymakers on the maximum permissible indicator or pathogen contamination levels in the digestate. The QMRA can also provide the AD industry with a safety assessment of pathogenic organisms resulting from the digestion of FYM&S.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Lauren Russell
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland; University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, Galway, Ireland.
| | - Agathe Auer
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Bryan K Markey
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, Galway, Ireland.
| | - Declan Bolton
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- Teagasc, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl G Richards
- Teagasc, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Evaluation of real-time qPCR-based methods to detect the DNA of the three protozoan parasites Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii in the tissue and hemolymph of blue mussels (M. edulis). Food Microbiol 2021; 102:103870. [PMID: 34809958 DOI: 10.1016/j.fm.2021.103870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii can be transmitted to humans through shellfish consumption. No standardized methods are available for their detection in these foods, and the performance of the applied methods are rarely described in occurrence studies. Through spiking experiments, we characterized different performance criteria (e.g. sensitivity, estimated limit of detection (eLD95METH), parasite DNA recovery rates (DNA-RR)) of real-time qPCR based-methods for the detection of the three protozoa in mussel's tissues and hemolymph. Digestion of mussels tissues by trypsin instead of pepsin and the use of large buffer volumes was the most efficient for processing 50g-sample. Trypsin digestion followed by lipids removal and DNA extraction by thermal shocks and a BOOM-based technique performed poorly (e.g. eLD95METH from 30 to >3000 parasites/g). But trypsin digestion and direct DNA extraction by bead-beating and FastPrep homogenizer achieved higher performance (e.g. eLD95METH: 4-400 parasites/g, DNA-RR: 19-80%). Direct DNA recovery from concentrated hemolymph, by thermal shocks and cell lysis products removal was not efficient to sensitively detect the protozoa (e.g. eLD95METH: 10-1000 parasites/ml, DNA-RR ≤ 24%). The bead-beating DNA extraction based method is a rapid and simple approach to sensitively detect the three protozoa in mussels using tissues, that can be standardized to different food matrices. However, quantification in mussels remains an issue.
Collapse
|
16
|
Preventing Chagas disease: A new RT-qPCR method for rapid and specific quantification of viable Trypanosoma cruzi for food safety. Food Res Int 2021; 144:110368. [PMID: 34053561 DOI: 10.1016/j.foodres.2021.110368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Without standardized methods for rapidly detecting in food matrices viable T. cruzi, foodborne outbreaks remain neglected. In this work, a reverse-transcriptase real-time PCR (RT-qPCR) mRNA-based technique was developed for the rapid and specific detection and quantification of viable Trypanosoma cruzi in açai fruits and juice. The method uses specific primer targeting region on the cyt b gene. The maximum recovery rate of T. cruzi from inoculated açai juice was 82.50%. The limit of detection and quantification in açai juice was 10 parasites/mL for RT-qPCR (mRNA-based) and qPCR (DNA-based). The RT-qPCR efficiency was estimated at 97.27% with an R2 of 0.994. The RT-qPCR was shown to be able to discriminate between viable and nonviable cells. This method provides a useful tool for rapid assessment of low concentrations of viable T. cruzi in naturally contaminated food samples, and can be applied industrially as a quality and security method.
Collapse
|
17
|
Kakakhel MA, Wu F, Anwar Z, Saif I, Akbar NU, Gul N, Ali I, Feng H, Wang W. The presence of Toxoplasma gondii in soil, their transmission, and their influence on the small ruminants and human population: A review. Microb Pathog 2021; 158:104850. [PMID: 33766632 DOI: 10.1016/j.micpath.2021.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/23/2023]
Abstract
The ecosystem approach has been developed since the 1940s. An ecosystem is a community of living organism and their interaction and conjugation with abiotic factors of the environment. The ecosystem is not endemic to the aquatic environment only but, the terrestrial environment is also considered to be a part of an ecosystem. Soil act as mother role for the survival of different microorganism. The Toxoplasma gondii oocysts stay survive for a long time in the soil. This presence of these oocysts might critically enhance the success of this parasite in two ways. First, this parasite can widespread; second, it can create a lot of consequences regarding animals and their economic value. Soil contamination caused by Toxoplasma gondii Y is a significant and profound issue for animals and public health. Therefore, the current study was aimed to summarize and correlate the soil and parasite, their transmission, infection, and some aspects related to T. gondii. The small animals are pose at a high risk therefore, it was concluded that some preventive measures should be taken to keep secure itself from zoonotic diseases.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Fasi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China; Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Conservation Institute, Dunhuang Academy, Dunhuang, Gansu, 736200, PR China
| | - Zahid Anwar
- Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi, School of Life Sciences, Nanchang University, Jiangxi, 330031, PR China
| | - Irfan Saif
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Naila Gul
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ali
- College of Life Science, Northwest University, Xi'an, Shaanxi province, 710069, PR China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Wanfu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Conservation Institute, Dunhuang Academy, Dunhuang, Gansu, 736200, PR China; Key Scientific Research Base of Conservation for Ancient Mural, State Administration for Cultural Heritage, Dunhuang, 736200, Gansu, PR China.
| |
Collapse
|
18
|
Barlaam A, Temesgen TT, Tysnes KR, Rinaldi L, Ferrari N, Sannella AR, Normanno G, Cacciò SM, Robertson LJ, Giangaspero A. Contamination of fresh produce sold on the Italian market with Cyclospora cayetanensis and Echinococcus multilocularis. Food Microbiol 2021; 98:103792. [PMID: 33875219 DOI: 10.1016/j.fm.2021.103792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
To investigate the presence of Cyclospora cayetanensis, Toxoplasma gondii and Echinococcus spp. in fresh produce sold in Italy, 324 locally produced 'ready-to-eat' (RTE) mixed-salad packages belonging to three brands and 324 berries packages (blueberries and blackberries imported from Peru and Mexico, respectively, and raspberries grown in Italy) were purchased at retail. Nine individual packages from each of the six types of fresh produce were collected monthly for one year, and with the same produce pooled, this resulted in a total of 72 pools for the whole year. Using microscopy (FLOTAC), a Cyclospora-like oocyst was detected in a blueberry sample and a taeniid egg was detected in a RTE-salad sample. Molecular tools confirmed these to be C. cayetanensis and Echinococcus multilocularis, respectively. Toxoplasma gondii was not detected in any of the samples. This study shows for the first time in Europe that imported berries on the Italian market may be contaminated with C. cayetanensis and RTE salads grown in Italy with E. multilocularis. The results indicate a new epidemiological scenario and highlight that current management of fresh produce, locally produced or imported, does not ensure products are free from parasite contamination.
Collapse
Affiliation(s)
- Alessandra Barlaam
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71121, Foggia, Italy.
| | - Tamirat T Temesgen
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Kristoffer R Tysnes
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Anna R Sannella
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Giovanni Normanno
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71121, Foggia, Italy
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Lucy J Robertson
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Annunziata Giangaspero
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71121, Foggia, Italy
| |
Collapse
|
19
|
Deng H, Exel KE, Swart A, Bonačić Marinović AA, Dam-Deisz C, van der Giessen JWB, Opsteegh M. Digging into Toxoplasma gondii infections via soil: A quantitative microbial risk assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143232. [PMID: 33160663 DOI: 10.1016/j.scitotenv.2020.143232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Soil has been identified as an important source of exposure to a variety of chemical and biological contaminants. Toxoplasma gondii is one of those potential biological contaminants associated with serious health effects in pregnant women and immunocompromised patients. Gardening or consumption of homegrown vegetables may present an important route of T. gondii infection via accidental ingestion of soil. In the Netherlands, there is quantitative information on the risk of T. gondii infection via meat products, but not on the risk of infection through soil. The objective of this study was to develop a quantitative microbial risk assessment (QMRA) model for estimating the risk associated with T. gondii exposure via accidental soil ingestion in the Netherlands. In order to obtain the needed information, a magnetic capture method for detection of T. gondii oocysts in soil samples was developed, and T. gondii DNA was detected using qPCR targeting the 529 bp repeat element. The method was shown to provide 95% probability of detection (95% CI: 88-100%) when at least 34 oocysts are present in 25 g of soil. T. gondii DNA was detected in 5 of 148 soil samples with interpretable results (3%, 95% CI: 1.5-7.7%). Results for 18 samples were not interpretable due to PCR inhibition. The estimated amount of oocysts presented in qPCR positive samples was quantified by a linear model, and the amount varied from 8 to 478 in 25 g of soil. The estimated incidence rate of T. gondii infection from the QMRA model via soil varied from 0.3 to 1.8 per 1000 individuals per day. Several data gaps (e.g., soil contamination/ingestion and oocysts viability) have been identified in this study, the structure of the model can be applied to obtain more accurate estimates of the risk of T. gondii infection via soil when data become available.
Collapse
Affiliation(s)
- Huifang Deng
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Kitty E Exel
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands; Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands.
| | - Arno Swart
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Axel A Bonačić Marinović
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Cecile Dam-Deisz
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Johanna W B van der Giessen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Marieke Opsteegh
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
20
|
Kubina S, Costa D, Favennec L, Gargala G, Rousseau A, Villena I, La Carbona S, Razakandrainibe R. Detection of Infectious Cryptosporidium parvum Oocysts from Lamb's Lettuce: CC-qPCR's Intake. Microorganisms 2021; 9:microorganisms9020215. [PMID: 33494236 PMCID: PMC7909830 DOI: 10.3390/microorganisms9020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium spp. is responsible for several food and waterborne disease outbreaks worldwide. Healthier lifestyles attract consumers to eat, notably, fresh food like fruits and vegetables. The consumption of raw or under-cooked food increases the risk of foodborne transmission of Cryptosporidiosis. The assessment of the consumer’s exposure to Cryptosporidium danger is crucial for public health. Still, the standardized method to detect this parasite in fresh leafy greens and berry fruits has only been available since 2016 and suffers from weaknesses. Consequently, in this study, we propose a method with minimum processing steps that combines cell culture and the quantitative PCR (CC–qPCR) for detecting infectious C. parvum oocysts recovered from lamb’s lettuce. This CC–qPCR is a rapid and easy method that can detect up to one oocyst, whereas it is undetectable by classic qPCR.
Collapse
Affiliation(s)
- Sophie Kubina
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50 000 Saint-Lô, France; (A.R.); (S.L.C.)
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Correspondence: (S.K.); (R.R.)
| | - Damien Costa
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
| | - Loïc Favennec
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
| | - Gilles Gargala
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
| | - Angélique Rousseau
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50 000 Saint-Lô, France; (A.R.); (S.L.C.)
- Laboratoire de Parasitologie-Mycologie, EA 7510, SFR CAP-Santé, Université Reims-Champagne Ardenne, Centre Hospitalier Universitaire de Reims, 51 000 Reims, France;
| | - Isabelle Villena
- Laboratoire de Parasitologie-Mycologie, EA 7510, SFR CAP-Santé, Université Reims-Champagne Ardenne, Centre Hospitalier Universitaire de Reims, 51 000 Reims, France;
| | - Stéphanie La Carbona
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50 000 Saint-Lô, France; (A.R.); (S.L.C.)
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
- Correspondence: (S.K.); (R.R.)
| |
Collapse
|
21
|
Slana I, Bier N, Bartosova B, Marucci G, Possenti A, Mayer-Scholl A, Jokelainen P, Lalle M. Molecular Methods for the Detection of Toxoplasma gondii Oocysts in Fresh Produce: An Extensive Review. Microorganisms 2021; 9:microorganisms9010167. [PMID: 33451081 PMCID: PMC7828537 DOI: 10.3390/microorganisms9010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Human infection with the important zoonotic foodborne pathogen Toxoplasma gondii has been associated with unwashed raw fresh produce consumption. The lack of a standardised detection method limits the estimation of fresh produce as an infection source. To support method development and standardisation, an extensive literature review and a multi-attribute assessment were performed to analyse the key aspects of published methods for the detection of T. gondii oocyst contamination in fresh produce. Seventy-seven published studies were included, with 14 focusing on fresh produce. Information gathered from expert laboratories via an online questionnaire were also included. Our findings show that procedures for oocyst recovery from fresh produce mostly involved sample washing and pelleting of the washing eluate by centrifugation, although washing procedures and buffers varied. DNA extraction procedures including mechanical or thermal shocks were identified as necessary steps to break the robust oocyst wall. The most suitable DNA detection protocols rely on qPCR, mostly targeting the B1 gene or the 529 bp repetitive element. When reported, validation data for the different detection methods were not comparable and none of the methods were supported by an interlaboratory comparative study. The results of this review will pave the way for an ongoing development of a widely applicable standard operating procedure.
Collapse
Affiliation(s)
- Iva Slana
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (I.S.); (B.B.)
| | - Nadja Bier
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (N.B.); (A.M.-S.)
| | - Barbora Bartosova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (I.S.); (B.B.)
| | - Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (A.P.)
| | - Alessia Possenti
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (A.P.)
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (N.B.); (A.M.-S.)
| | - Pikka Jokelainen
- Laboratory of Parasitology, Infectious Disease Preparedness, Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (A.P.)
- Correspondence: ; Tel.: +39-0649902670
| |
Collapse
|
22
|
Berrouch S, Escotte-Binet S, Amraouza Y, Flori P, Aubert D, Villena I, Hafid J. Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii detection in fresh vegetables consumed in Marrakech, Morocco. Afr Health Sci 2020; 20:1669-1678. [PMID: 34394227 PMCID: PMC8351826 DOI: 10.4314/ahs.v20i4.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Protozoan parasites such as Toxoplasma gondii, Giardia duodenalis, and Cryptosporidium spp., can be transmitted to humans via accidental consumption of contaminated water, fresh produce and foodstuffs. There is a lack of epidemiological data about these pathogens in Morocco. Hence the aim of this study, which is the determination of their prevalence in some leafy greens and root vegetables sold in Marrakech. METHODS A total of 132 vegetable samples including carrot, coriander, lettuce, parsley and radish were purchased monthly from three different markets in Marrakech from March 2017 to January 2018, pre-treated and subjected to microscopic and molecular analyses. RESULTS Of the 132 samples of vegetables analyzed by qPCR, the overall rate of protozoan was 21.21% (28/132); 22 samples were found to be contaminated with T. gondii, 6 with G. duodenalis, and none was positive for C. parvum/hominis. Whereas, modified Ziehl-Neelsen staining allowed the detection of Cryptosporidium spp. in 3% (4/132) of examined samples. CONCLUSION This survey on the presence of protozoan parasites in fresh vegetables revealed that vegetables sold in Marrakech are contaminated by these protozoan parasites, as it showed that leafy green vegetables were more susceptible for parasitic contamination than root ones.
Collapse
Affiliation(s)
- Salma Berrouch
- Laboratory of Food, Environment and Health, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
- Laboratory of Parasitology-Mycology, ESCAPE EA 7510, SFR CAP SANTE, University of Reims Champagne-Ardenne, and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, Reims, France
| | - Sandie Escotte-Binet
- Laboratory of Parasitology-Mycology, ESCAPE EA 7510, SFR CAP SANTE, University of Reims Champagne-Ardenne, and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, Reims, France
| | - Yassine Amraouza
- Laboratory of Food, Environment and Health, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
| | - Pierre Flori
- Laboratory of Infectious Agents- Parasitology section- GIMAP, Faculty of Medicine, Saint-Etienne, France
| | - Dominique Aubert
- Laboratory of Parasitology-Mycology, ESCAPE EA 7510, SFR CAP SANTE, University of Reims Champagne-Ardenne, and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, Reims, France
| | - Isabelle Villena
- Laboratory of Parasitology-Mycology, ESCAPE EA 7510, SFR CAP SANTE, University of Reims Champagne-Ardenne, and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, Reims, France
| | - Jamaleddine Hafid
- Laboratory of Food, Environment and Health, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
23
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
24
|
Blaizot R, Nabet C, Laghoe L, Faivre B, Escotte-Binet S, Djossou F, Mosnier E, Henaff F, Blanchet D, Mercier A, Dardé ML, Villena I, Demar M. Outbreak of Amazonian Toxoplasmosis: A One Health Investigation in a Remote Amerindian Community. Front Cell Infect Microbiol 2020; 10:401. [PMID: 33042853 PMCID: PMC7516351 DOI: 10.3389/fcimb.2020.00401] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background:Toxoplasma gondii is a parasite of worldwide importance but its burden in indigenous communities remains unclear. In French Guiana, atypical strains of T. gondii originating from a complex rainforest cycle involving wild felids have been linked to severe infections in humans. These cases of Amazonian toxoplasmosis are sporadic and outbreaks are rarely described. We report on the investigation of an outbreak of acute toxoplasmosis in a remote Amerindian village. We discuss the causes and consequences of this emergence. Methods: In May 2017, during the rainy season and following an episode of flooding, four simultaneous cases of acute toxoplasmosis were serologically confirmed in two families living the village. Other non-diagnosed cases were then actively screened by a medical team along with epidemiological investigations. Inhabitants from nine households were tested for T. gondii antibodies and parasite DNA by PCR when appropriate. Samples of water, cat feces and cat rectal swabs, soil, and meat were tested for T. gondii DNA by PCR. Positive PCR samples with sufficient DNA amounts were genotyped using 15 microsatellite markers. Results: Between early May and early July 2017, out of 54 tested inhabitants, 20 cases were serologically confirmed. A fetus infected at gestational week 10 died but other cases were mild. Four patients tested positive for parasite DNA and two identical strains belonging to an atypical genotype could be isolated from unrelated patients. While domestic cats had recently appeared in the vicinity, most families drank water from unsafe sources. Parasite DNA was recovered from one water sample and nine soil samples. Three meat samples tested positive, including wild and industrial meat. Conclusions: The emergence of toxoplasmosis in such a community living in close contact with the Amazon rainforest is probably multifactorial. Sedentary settlements have been built in the last few decades without providing safe water sources, increasing the risk of parasite circulation in cases of dangerous new habits such as cat domestication. Public health actions should be implemented in these communities such as safe water supply, health recommendations, and epidemiological surveillance of acute toxoplasmosis. A “One Health” strategy of research involving medical anthropology, veterinary medicine, and public health needs to be pursued for a better understanding of the transmission routes and the emergence of this zoonosis.
Collapse
Affiliation(s)
- Romain Blaizot
- Department of Parasitology-Mycology, Hôpital Andrée Rosemon, Cayenne, French Guiana.,EA 3593, Ecosystèmes Amazoniens et Pathologies Tropicales, Université de Guyane, Cayenne, French Guiana
| | - Cécile Nabet
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| | - Laure Laghoe
- EA 3593, Ecosystèmes Amazoniens et Pathologies Tropicales, Université de Guyane, Cayenne, French Guiana
| | - Benjamin Faivre
- Department of Pediatrics, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - Sandie Escotte-Binet
- EA 7510 ESCAPE, Université de Reims Champagne-Ardenne, SFR Cap Santé, Reims, France.,Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Resource Center (BRC), Centre Hospitalier-Universitaire de Reims, Reims, France
| | - Felix Djossou
- Department of Infectious Diseases, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - Emilie Mosnier
- Centres Délocalisés de Prévention et de Soins, Hôpital Andrée Rosemon, Cayenne, French Guiana.,INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de La Santé & Traitement de l'Information Médicale, Aix Marseille University, Marseille, France
| | - Fanny Henaff
- Department of Pediatrics, Hôpital Andrée Rosemon, Cayenne, French Guiana.,Centres Délocalisés de Prévention et de Soins, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - Denis Blanchet
- Department of Parasitology-Mycology, Hôpital Andrée Rosemon, Cayenne, French Guiana.,EA 3593, Ecosystèmes Amazoniens et Pathologies Tropicales, Université de Guyane, Cayenne, French Guiana
| | - Aurélien Mercier
- Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Resource Center (BRC), Centre Hospitalier-Universitaire Dupuytren, Limoges, France.,INSERM, Univ. Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, Limoges, France
| | - Marie-Laure Dardé
- Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Resource Center (BRC), Centre Hospitalier-Universitaire Dupuytren, Limoges, France.,INSERM, Univ. Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, Limoges, France
| | - Isabelle Villena
- EA 7510 ESCAPE, Université de Reims Champagne-Ardenne, SFR Cap Santé, Reims, France.,Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Resource Center (BRC), Centre Hospitalier-Universitaire de Reims, Reims, France
| | - Magalie Demar
- Department of Parasitology-Mycology, Hôpital Andrée Rosemon, Cayenne, French Guiana.,EA 3593, Ecosystèmes Amazoniens et Pathologies Tropicales, Université de Guyane, Cayenne, French Guiana
| |
Collapse
|
25
|
Shrestha R, Duwal R, Wagle S, Pokhrel S, Giri B, Neupane BB. A smartphone microscopic method for simultaneous detection of (oo)cysts of Cryptosporidium and Giardia. PLoS Negl Trop Dis 2020; 14:e0008560. [PMID: 32898180 PMCID: PMC7500626 DOI: 10.1371/journal.pntd.0008560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/18/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Background Food and water-borne illness caused by ingestion of (oo)cysts of Cryptosporidium and Giardia is one of the major health problems globally. Several methods are available to detect Giardia cyst and Cryptosporidium oocyst in food and water. Most of the available methods require a good laboratory facility and well-trained manpower and are therefore costly. There is a need of affordable and reliable method that can be easily implemented in resource limited settings. Methodology/Principle findings We developed a smartphone based microscopic assay method to screen (oo)cysts of Cryptosporidium and Giardia contamination of vegetable and water samples. The method consisting of a ball lens of 1 mm diameter, white LED as illumination source and Lugols's iodine staining provided magnification and contrast capable of distinguishing (oo)cysts of Cryptosporidium and Giardia. The analytical performance of the method was tested by spike recovery experiments. The spike recovery experiments performed on cabbage, carrot, cucumber, radish, tomatoes, and water resulted in 26.8±10.3, 40.1±8.5, 44.4±7.3, 47.6±11.3, 49.2 ±10.9, and 30.2±7.9% recovery for Cryptosporidium, respectively and 10.2±4.0, 14.1±7.3, 24.2±12.1, 23.2±13.7, 17.1±13.9, and 37.6±2.4% recovery for Giardia, respectively. The spike recovery results are comparable with data obtained using commercial brightfield and fluorescence microscope methods. Finally, we tested the smartphone microscope system for detecting (oo)cysts on 7 types of vegetable (n = 196) and river water (n = 18) samples. Forty-two percent vegetable and thirty-nine percent water samples were found to be contaminated with Cryptosporidium oocyst. Similarly, thirty-one percent vegetable and thirty-three percent water samples were contaminated with Giardia cyst. Conclusions The newly developed smartphone microscopic method showed comparable performance to commercial microscopic methods. The new method can be a low-cost and easy to implement alternative method for simultaneous detection of (oo)cysts in vegetable and water samples in resource limited settings. Food and water-borne illness arising from the consumption of contaminated food and water are serious health hazards globally. Cryptosporidium and Giardia are the major food and water‒borne parasites. The infection occurs mainly by (oo)cyst phase of the parasites. People in developing countries are more vulnerable to these parasites where infection is more likely underdiagnosed and underreported due to limited resources for detection. There is need of a method that is affordable and easy to implement. In this study, we developed and optimized a novel smartphone microscope method that can detect and quantify the (oo)cyst of the parasites in food and water samples. The developed method is easy to implement and affordable and provides similar performance to the other commercially available microscopic methods.
Collapse
Affiliation(s)
- Retina Shrestha
- Center for analytical sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Rojina Duwal
- Center for analytical sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Sajeev Wagle
- Center for analytical sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Samiksha Pokhrel
- Center for analytical sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
- Department of Environmental Science, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Basant Giri
- Center for analytical sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
- * E-mail: (BG); (BBN)
| | - Bhanu Bhakta Neupane
- Center for analytical sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
- * E-mail: (BG); (BBN)
| |
Collapse
|
26
|
Guggisberg AR, Alvarez Rojas CA, Kronenberg PA, Miranda N, Deplazes P. A Sensitive, One-Way Sequential Sieving Method to Isolate Helminths' Eggs and Protozoal Oocysts from Lettuce for Genetic Identification. Pathogens 2020; 9:pathogens9080624. [PMID: 32751811 PMCID: PMC7460107 DOI: 10.3390/pathogens9080624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Different helminths and protozoa are transmitted to humans by oral uptake of environmentally resistant parasite stages after hand-to-mouth contact or by contaminated food and water. The aim of this study was to develop and validate a method for the simultaneous detection of parasite stages from fresh produce (lettuce) by a one-way isolation test kit followed by genetic identification (PCR, sequencing). Three sentinel zoonotic agents (eggs of Toxocara canis, Echinococcus multilocularis and oocysts of Toxoplasma gondii) were used to investigate the practicability and sensitivity of the method. The detection limits (100% positive results) in the recovery experiments were four Toxocara eggs, two E. multilocularis eggs and 18 T. gondii oocysts (in 4/5 replicates). In a field study, helminth DNA was detected in 14 of 157 lettuce samples including Hydatigera taeniaeformis (Syn. Taenia taeniaeformis) (four samples), T. polyacantha (three), T. martis (one), E. multilocularis (two) and Toxocara cati (four). Toxoplasma gondii was detected in six of 100 samples. In vivo testing in mice resulted in metacestode growth in all animals injected with 40–60 E. multilocularis eggs, while infection rates were 20–40% with 2–20 eggs. The developed diagnostic strategy is highly sensitive for the isolation and genetic characterisation of a broad range of parasite stages from lettuce, whereas the sensitivity of the viability tests needs further improvement.
Collapse
Affiliation(s)
| | | | | | | | - Peter Deplazes
- Correspondence: (C.A.A.R.); (P.D.); Tel.: +41-44-635-85-02 (P.D.)
| |
Collapse
|
27
|
Slany M, Dziedzinska R, Babak V, Kralik P, Moravkova M, Slana I. Toxoplasma gondii in vegetables from fields and farm storage facilities in the Czech Republic. FEMS Microbiol Lett 2020; 366:5542195. [PMID: 31365074 DOI: 10.1093/femsle/fnz170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Infection with Toxoplasma gondii has usually been connected with consumption of improperly treated meat. However, contaminated water and products of plant origin have emerged as new sources of infection in the last few years. Here, 292 vegetable samples-carrot, cucumber and lettuce-obtained from nine farms in the Czech Republic were examined using triplex real time PCR targeting two specific T. gondii sequences. Irrigation water and water used for washing of vegetables were also included. Overall, a positivity rate of 9.6% was found in vegetables. The concentration varied between 1.31 × 100 and 9.00 × 102 oocysts/g of sample. A significant difference was found between the positivity of vegetables collected directly from fields and that of vegetables collected from farm storage rooms (4.4-8.6% vs 10-24.1%, respectively). All samples of irrigation water and water used to rinse vegetables were negative. Genotyping based on restriction fragment length polymorphism (RFLP) analysis using seven markers revealed the exclusive presence of genotype II.
Collapse
Affiliation(s)
- Michal Slany
- Department of Food and Feed Safety, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Radka Dziedzinska
- Department of Food and Feed Safety, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Vladimir Babak
- Department of Food and Feed Safety, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Petr Kralik
- Department of Food and Feed Safety, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Monika Moravkova
- Department of Food and Feed Safety, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Iva Slana
- Department of Food and Feed Safety, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
28
|
|
29
|
Detection methods and prevalence of transmission stages of Toxoplasma gondii, Giardia duodenalis and Cryptosporidium spp. in fresh vegetables: a review. Parasitology 2020; 147:516-532. [PMID: 31965956 DOI: 10.1017/s0031182020000086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One of the ways of human parasitic infection is the accidental ingestion of vegetables contaminated with parasites, which represents a major human health hazard. This non-exhaustive review aims to evaluate studies carried out on five types of vegetables (lettuce, parsley, coriander, carrot and radish) since 2000, particularly the methods used for recovery, concentration, detection and identification of protozoan parasites such as Toxoplasma gondii, Giardia duodenalis and Cryptosporidium spp., and the results of each work. Various studies have determined the presence of pathogenic parasites in fresh vegetables with different rates; this variation in rate depends particularly on the detection method used which is related to each parasite and each vegetable type. The variation in parasitic prevalence in food could be due to different factors such as the geographical location, the size of analysed samples and the methods used for parasite detection.
Collapse
|
30
|
Freppel W, Ferguson DJ, Shapiro K, Dubey JP, Puech PH, Dumètre A. Structure, composition, and roles of the Toxoplasma gondii oocyst and sporocyst walls. Cell Surf 2019; 5:100016. [PMID: 32743133 PMCID: PMC7389338 DOI: 10.1016/j.tcsw.2018.100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is a coccidian parasite with the cat as its definitive host but any warm-blooded animal, including humans, may act as intermediate hosts. It has a worldwide distribution where it may cause acute and chronic toxoplasmosis. Infection can result from ingestion either of tissue cysts in infected meat of intermediate hosts or oocysts found in cat faeces via contaminated water or food. In this review, we highlight how the oocyst and sporocyst walls sustain the persistence and transmission of infective T. gondii parasites from terrestrial and aquatic environments to the host. We further discuss why targeting the oocyst wall structure and molecules may reduce the burden of foodborne and waterborne T. gondii infections.
Collapse
|
31
|
Escotte-Binet S, Da Silva AM, Cancès B, Aubert D, Dubey J, La Carbona S, Villena I, Poulle ML. A rapid and sensitive method to detect Toxoplasma gondii oocysts in soil samples. Vet Parasitol 2019; 274:108904. [PMID: 31557695 DOI: 10.1016/j.vetpar.2019.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/01/2019] [Accepted: 07/26/2019] [Indexed: 01/23/2023]
Abstract
Documenting the extent of soil contamination by Toxoplasma gondii oocysts is a key issue to prevent the worldwide infection caused by this protozoan. Our aim was to improve the practicability and sensitivity of a low-cost method to detect T. gondii DNA in soil samples developed a few years ago. Various parameters of the reference protocol were modified to determine their effect on the detection of T. gondii DNA in soil samples ("natural soil" and "sand") spiked with oocysts. We tested i) filtration using stomacher bags, ii) Tween 80, Tween 20, SDS and Triton X100 as dispersion solutions, iii) sucrose solution, zinc chloride solution, Optiprep and Percoll as density gradients, iv) freeze/thaw versus mechanical grinding as lysis methods, and v) Qiagen versus Fastprep as extraction kits The optimized protocol is quicker and easier to use than the previous one, and includes the following items: 0.1% Tween80/PBS for dispersion, sucrose solution for flotation, mechanical grinding, and FastDNA spin kit for extraction. It accurately detects T. gondii DNA in both fresh and frozen soil samples and displays a detection limit below 1 oocyst/g of fresh soil.
Collapse
Affiliation(s)
- Sandie Escotte-Binet
- Université de Reims Champagne Ardenne, ESCAPE EA 7510, CAP SANTE, 51097, Reims, France.
| | - Abdou Malik Da Silva
- Université de Reims Champagne Ardenne, ESCAPE EA 7510, CAP SANTE, 51097, Reims, France.
| | - Benjamin Cancès
- Université de Reims Champagne Ardenne, GEGENAA EA 3795, CONDORCET, 51097 Reims, France.
| | - Dominique Aubert
- Université de Reims Champagne Ardenne, ESCAPE EA 7510, CAP SANTE, 51097, Reims, France; CHU Reims, Hôpital Maison Blanche, Centre National de Référence de la Toxoplasmose, CRB Toxoplasma, Laboratoire de Parasitologie-Mycologie, 51097, Reims, France.
| | - Jitender Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, MD, 20705 2350, USA.
| | | | - Isabelle Villena
- Université de Reims Champagne Ardenne, ESCAPE EA 7510, CAP SANTE, 51097, Reims, France; CHU Reims, Hôpital Maison Blanche, Centre National de Référence de la Toxoplasmose, CRB Toxoplasma, Laboratoire de Parasitologie-Mycologie, 51097, Reims, France.
| | - Marie-Lazarine Poulle
- Université de Reims Champagne Ardenne, ESCAPE EA 7510, CAP SANTE, 51097, Reims, France; Université de Reims Champagne Ardenne, CERFE, 08240, Boult-aux-Bois, France.
| |
Collapse
|
32
|
Li J, Shi K, Sun F, Li T, Wang R, Zhang S, Jian F, Ning C, Zhang L. Identification of human pathogenic Enterocytozoon bieneusi, Cyclospora cayetanensis, and Cryptosporidium parvum on the surfaces of vegetables and fruits in Henan, China. Int J Food Microbiol 2019; 307:108292. [PMID: 31430663 DOI: 10.1016/j.ijfoodmicro.2019.108292] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/15/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022]
Abstract
Cryptosporidium spp., Giardia duodenalis, Cyclospora cayetanensis, and Enterocytozoon bieneusi are known etiological agents of self-limiting diarrhea, chronic disorders, and severe debilitating illnesses in humans, particularly children and patients with immunodeficiency diseases. To assess the pathogen carriage status of raw vegetables and fruits and the potential transmission routes of the aforementioned parasites in Henan province, China, a total of 1099 vegetables and fruits samples (21 items) were purchased and collected from agricultural farms or open markets. Cryptosporidium spp., E. bieneusi, C. cayetanensis and G. duodenalis were screened by employing polymerase chain reaction (PCR) amplification of species-specific genes. Three kinds of human pathogenic agent (E. bieneusi, C. cayetanensis and C. parvum) were identified on the surfaces of the vegetables and fruits (3.7%, 41/1099). E. bieneusi was found in 3.5% (38/1099) of the samples, whereas C. cayetanensis and C. parvum were only identified in two (0.2%) and one (0.1%) of the vegetable and fruit samples, respectively. No G. duodenalis contamination was detected in the present study. In total, 12 different E. bieneusi ITS genotypes (eight known and four novel) were detected, of which the ten (EbpA, CM8, CHG19, EbpC, CTS3, Henan-IV, and CHV1 to CHV4) that occurred in 20 samples (20/38, 52.6%) clustered into the previously described high potential zoonotic group 1 in the phylogenetic analysis. The remaining two known genotypes (BEB8 and CD6) detected in 18 samples (18/38, 47.4%) belonged to group 2. That C. cayetanensis, C. parvum and some E. bieneusi genotypes have been reported in humans, highlights the possible risk of foodborne related disease outbreaks.
Collapse
Affiliation(s)
- Junqiang Li
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Scientific Research Experiment Center & Laboratory Animal Center, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ke Shi
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fangfang Sun
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingwen Li
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Rongjun Wang
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Sumei Zhang
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fuchun Jian
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Changshen Ning
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Longxian Zhang
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
33
|
Shapiro K, Kim M, Rajal VB, Arrowood MJ, Packham A, Aguilar B, Wuertz S. Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR assay. Food Microbiol 2019; 84:103252. [PMID: 31421749 DOI: 10.1016/j.fm.2019.103252] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/05/2019] [Accepted: 06/23/2019] [Indexed: 01/20/2023]
Abstract
Pathogen contamination of fresh produce presents a health risk for consumers; however, the produce industry still lacks adequate tools for simultaneous detection of protozoan parasites. Here, a simple multiplex PCR (mPCR) assay was developed for detection of protozoan (oo)cysts and compared with previously published real-time PCR assays and microscopy methods. The assay was evaluated for simultaneous detection of Cryptosporidium, Giardia, Cyclospora cayetanensis, and Toxoplasma gondii followed by parasite differentiation via either a nested specific PCR or a restriction fragment length polymorphism (RFLP) assay. Spiking experiments using spinach as a model leafy green were performed for assay validation. Leaf-washing yielded higher recoveries and more consistent detection of parasites as compared with stomacher processing. Lowest limits of detection using the nested mPCR assay were 1-10 (oo)cysts/g spinach (in 10 g samples processed), and this method proved more sensitive than qPCR for parasite detection. Microscopy methods were more reliable for visual detection of parasites in lower spiking concentrations, but are more costly and laborious, require additional expertise, and lack molecular confirmation essential for accurate risk assessment. Overall, the nested mPCR assay provides a rapid (<24 h), inexpensive ($10 USD/sample), and simple approach for simultaneous detection of protozoan pathogens on fresh produce.
Collapse
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - Minji Kim
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Veronica B Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET, Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Salta, 4400, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Michael J Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea Packham
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Beatriz Aguilar
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore; School of Civil and Environmental Engineering, NTU, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
34
|
Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. [PMID: 32095620 PMCID: PMC7033973 DOI: 10.1016/j.fawpar.2019.e00049] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Collapse
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, One Shields Ave, 4206 VM3A, University of California, Davis, CA 95616-5270, USA
| | - Lillian Bahia-Oliveira
- Laboratory of Immunoparasitology, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON K1A 0K9, Canada
| | - Aurélien Dumètre
- Aix Marseille Univ, IRD 257, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Luz A. de Wit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95050, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska-Lincoln, VBS 111, Lincoln, NE 68583, USA
| | - Isabelle Villena
- EA 7510, UFR Medicine, University Reims Champagne-Ardenne, National Reference Center on Toxoplasmosis, Hospital Maison Blanche, Reims, France
| |
Collapse
|
35
|
Rousseau A, Villena I, Dumètre A, Escotte-Binet S, Favennec L, Dubey JP, Aubert D, La Carbona S. Evaluation of propidium monoazide–based qPCR to detect viable oocysts of Toxoplasma gondii. Parasitol Res 2019; 118:999-1010. [DOI: 10.1007/s00436-019-06220-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
|
36
|
Real-time PCR detection of Toxoplasma gondii in surface water samples in São Paulo, Brazil. Parasitol Res 2019; 118:631-640. [DOI: 10.1007/s00436-018-6185-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
37
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. Public health risks associated with food-borne parasites. EFSA J 2018; 16:e05495. [PMID: 32625781 PMCID: PMC7009631 DOI: 10.2903/j.efsa.2018.5495] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parasites are important food‐borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe‐focused ranking exercise, using multicriteria decision analysis, identified potentially food‐borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food‐borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well‐established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T. gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures.
Collapse
|
38
|
Ryan U, Hijjawi N, Feng Y, Xiao L. Giardia: an under-reported foodborne parasite. Int J Parasitol 2018; 49:1-11. [PMID: 30391227 DOI: 10.1016/j.ijpara.2018.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/26/2022]
Abstract
Foodborne zoonotic pathogens are a serious public health issue and result in significant global economic losses. Despite their importance to public health, epidemiological data on foodborne diseases including giardiasis caused by the enteric parasite, Giardia duodenalis, are lacking. This parasite is estimated to cause ∼28.2 million cases of diarrhoea each year due to contamination of food, but very few foodborne outbreaks have been documented due to the limitations of current detection as well as surveillance methods. The current method for the recovery of Giardia cysts from food matrices using immunomagnetic separation requires further standardisation and cost reduction before it can be widely used. It also should incorporate downstream molecular procedures for genotyping, and traceback and viability analyses. Foodborne giardiasis can be potentially controlled through improvements in national disease surveillance systems and the establishment of Hazard Analysis and Critical Control Point interventions across the food chain. Studies are needed to assess the true prevalence and public health impact of foodborne giardiasis.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University PO Box 150459, Zarqa 13115, Jordan
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
39
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
40
|
Comparison of current methods used to detect Cryptosporidium oocysts in stools. Int J Hyg Environ Health 2018; 221:743-763. [PMID: 29776848 DOI: 10.1016/j.ijheh.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023]
Abstract
In this review all of the methods that are currently in use for the investigation of Cryptosporidium in stool material are highlighted and critically discussed. It appears that more qualifications and background knowledge in this field regarding the diagnosis of the Cryptosporidium parasite is required. Furthermore, there is no standardization for the protocols that are commonly used to either detect oocysts in faeces or to diagnose the Cryptosporidium infection. It is therefore necessary to initiate further education and research that will assist in improving the accuracy of the diagnosis of Cryptosporidium oocysts in the faecal micro-cosmos. Where ambient concentrations of oocysts are low in stool material, detection becomes a formidable task. Procedures for ring tests and the standardization of multi-laboratory testing are recommended. It is also necessary to enhance the routine surveillance capacity of cryptosporidiosis and to improve the safety against it, considering the fact that this disease is under diagnosed and under reported. This review is intended to stimulate research that could lead to future improvements and further developments in monitoring the diagnostic methodologies that will assist in harmonizing Cryptosporidium oocysts in stool diagnosis.
Collapse
|
41
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
42
|
Tefera T, Tysnes KR, Utaaker KS, Robertson LJ. Parasite contamination of berries: Risk, occurrence, and approaches for mitigation. Food Waterborne Parasitol 2018; 10:23-38. [PMID: 32095598 PMCID: PMC7033989 DOI: 10.1016/j.fawpar.2018.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Fresh fruits and vegetables, including berries, are essential components of a healthy diet and are relevant in the prevention of chronic non-communicable diseases such as cancer and heart disease. Associations between diet and health are becoming an increasing focus of consumers, and, in response, consumption of fresh berries has been increasing rapidly in recent decades. However, increased consumption of berries may be associated with an increased risk of acquiring foodborne infections, including parasites. In this review, we describe how parasite contamination of berries may occur at several points on the farm-to-fork pathway, starting from the use of contaminated water for irrigation and pesticide application, and contact with animal and human faeces during cultivation, through contaminated harvesting equipment, and including unhygienic practices of berry pickers in the production field or others handling berries prior to consumption. Parasite transmission stages tend to be robust and therefore likely to survive from contamination in the field, through the various stages of harvesting, packaging, and sale, until consumption. We describe outbreaks of parasitic disease associated with consumption of berries - so far only described for Cyclospora and Trypanosoma cruzi, both of which are briefly introduced - but also show from survey data summarised in this review that sporadic infections or undetected outbreaks associated with contaminated berries may also occur. In addition, we describe methods for assessing whether berries are contaminated with parasite transmission stages, with emphasis on the challenges associated with analysing this particular matrix. Emphasis on current possibilities for mitigation and control are addressed; avoidance of contamination and implementation of good management practices and a hazard analysis and critical control points (HACCP) approach are essential.
Collapse
Affiliation(s)
- Tamirat Tefera
- Laboratory of Parasitology, Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 center, 0102 Oslo, Norway
| | | | | | | |
Collapse
|
43
|
An overview of methods/techniques for the detection of Cryptosporidium in food samples. Parasitol Res 2018; 117:629-653. [PMID: 29350281 DOI: 10.1007/s00436-017-5735-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/26/2017] [Indexed: 11/27/2022]
Abstract
Cryptosporidium is one of the most important parasitic protozoa of concern within the food production industry, worldwide. This review describes the evolution and its development, and it monitors the methodology that has been used for Cryptosporidium in food material since 1984, when the first publication appeared regarding the detection of Cryptosporidium parvum in food materials. The methods that are currently being used for the detection of Cryptosporidium oocysts in food material (mainly vegetables) and all of the other available published methods are discussed in this review. Generating more consistent and reliable data should lead to a better understanding of the occurrence, transport and fate of the oocysts in food material. Improvements in monitoring and developing effective methodology, along with food security, offer more practical possibilities for both the developed and developing worlds.
Collapse
|
44
|
Harito JB, Campbell AT, Tysnes KR, Robertson LJ. Use of lectin-magnetic separation (LMS) for detecting Toxoplasma gondii oocysts in environmental water samples. WATER RESEARCH 2017; 127:68-76. [PMID: 29031801 DOI: 10.1016/j.watres.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Proof-of-principle of lectin-magnetic separation (LMS) for isolating Toxoplasma oocysts (pre-treated with 0.5% acidified pepsin (AP)) from water for subsequent detection by microscopy or molecular methods has been shown. However, application of this technique in the routine water-analysis laboratory requires that the method is tested, modified, and optimized. The current study describes attempts to apply the LMS technique on supernatants from water samples previously analyzed for contamination with Cryptosporidium and Giardia using standard methods, and the supernatant following immunomagnetic separation (IMS) retained. Experiments on AP-treatment of Toxoplasma oocysts in situ in such samples demonstrated that overnight incubation at 37 °C was adequate, but excess AP had to be removed before continuing to LMS; neutralization in sodium hydroxide and a single wash step was found to be suitable. Mucilaginous material in post-IMS samples that had been stored at room temperature without washing, which was found to be probably an exudate from bacterial and fungal overgrowth, hampered the isolation of T. gondii oocysts by LMS beads. For detection, microscopy was successful only for clean samples, as debris occluded viewing in dirtier samples. Although qPCR was successful, for some samples non-specific inhibition occurred, as demonstrated by inhibition of an internal amplification control in the qPCR reaction. For some, but not all, samples this could be addressed by dilution. Finally, the optimized methodology was used for a pilot project in which 23 post-IMS water sample concentrates were analyzed. Of these, only 20 provided interpretable results (without qPCR inhibition) of which one sample was positive, and confirmed by sequencing of PCR product, indicating that Toxoplasma oocysts occur in Norwegian drinking water samples. In conclusion, we suggest that post-IMS samples may be suitable for analysis for Toxoplasma oocysts using LMS, only if freshly processed or washed before being refrigerated. In addition, application of AP treatment requires a neutralization step before proceeding to LMS. For detection, qPCR, rather than microscopy, is the most appropriate approach, although some inhibition may still occur, and therefore inclusion of an internal amplification control is important. Our study indicates that, despite some limitations, this approach would be appropriate for further large-scale analysis of samples of raw and treated drinking water.
Collapse
Affiliation(s)
- Jemere Bekele Harito
- Parasitology, Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Adamstuen Campus, P.O. Box 8146 Dep, N-0033 Oslo, Norway; College of Veterinary Medicine, Hawassa University, P.O. Box 1337, Hawassa, Ethiopia
| | | | - Kristoffer R Tysnes
- Parasitology, Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Adamstuen Campus, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Lucy J Robertson
- Parasitology, Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Adamstuen Campus, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
45
|
Klotz C, Šoba B, Skvarč M, Gabriël S, Robertson LJ. A European network for food-borne parasites (Euro-FBP): meeting report on 'Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices'. Parasit Vectors 2017; 10:559. [PMID: 29122002 PMCID: PMC5680827 DOI: 10.1186/s13071-017-2506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/29/2017] [Indexed: 11/24/2022] Open
Abstract
Food-borne parasites (FBPs) are a neglected topic in food safety, partly due to a lack of awareness of their importance for public health, especially as symptoms tend not to develop immediately after exposure. In addition, methodological difficulties with both diagnosis in infected patients and detection in food matrices result in under-detection and therefore the potential for underestimation of their burden on our societies. This, in consequence, leads to lower prioritization for basic research, e.g. for development new and more advanced detection methods for different food matrices and diagnostic samples, and thus a vicious circle of neglect and lack of progress is propagated. The COST Action FA1408, A European Network for Foodborne Parasites (Euro-FBP) aims to combat the impact of FBP on public health by facilitating the multidisciplinary cooperation and partnership between groups of researchers and between researchers and stakeholders. The COST Action TD1302, the European Network for cysticercosis/taeniosis, CYSTINET, has a specific focus on Taenia solium and T. saginata, two neglected FBPs, and aims to advance knowledge and understanding of these zoonotic disease complexes via collaborations in a multidisciplinary scientific network. This report summarizes the results of a meeting within the Euro-FBP consortium entitled 'Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices' and of the joined Euro-FBP and CYSTINET meeting.
Collapse
Affiliation(s)
- Christian Klotz
- Mycotic and Parasitic Agents and Mycobacteria (Unit 16), Department of Infectious Diseases, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Barbara Šoba
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Miha Skvarč
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Sarah Gabriël
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lucy J. Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
46
|
Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol 2017; 48:1-12. [PMID: 29122606 DOI: 10.1016/j.ijpara.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/26/2022]
Abstract
Foodborne illness, the majority of which is caused by enteric infectious agents, costs global economies billions of dollars each year. The protozoan parasite Cryptosporidium is particularly suited to foodborne transmission and is responsible for >8 million cases of foodborne illness annually. Procedures have been developed for sensitive detection of Cryptosporidium oocysts on fresh produce and molecular diagnostic assays have been widely used in case linkages and infection source tracking, especially during outbreak investigations. The integrated use of advanced diagnostic techniques with conventional epidemiological studies is essential to improve our understanding of the occurrence, source and epidemiology of foodborne cryptosporidiosis. The implementation of food safety management tools such as Good Hygienic Practices (GHP), Hazard Analysis and Critical Control Points (HACCP), and Quantitative Microbial Risk Assessment (QMRA) in industrialised nations and Water, Sanitation, and Hygiene (WASH) in developing countries is central for prevention and control and foodborne cryptosporidiosis in the future.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa 13115, Jordan
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
47
|
Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad. Food Microbiol 2017; 70:137-142. [PMID: 29173620 DOI: 10.1016/j.fm.2017.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a foodborne zoonosis with a global distribution and estimated to cause up to 20% of the total foodborne disease burden in Europe. Association between T. gondii infection and the consumption of unwashed raw fruits and vegetables contaminated with oocysts has been reported and the increasing habit to eat pre-washed ready-to-eat salads poses a new potential risk for consumers. It is therefore important to trace the occurrence of potential contamination with this parasite to guarantee the safety of ready-to-eat vegetables. Detection of T. gondii in vegetables by molecular techniques has been achieved but low sensitivity (PCR) or expensive equipments (qPCR) limit routine applicability. Here, we describe the development and validation of a sensitive and robust method relying on a LAMP assay, targeting the 529 bp locus, to detect T. gondii oocysts down to 25 oocysts/50 g in ready-to-eat baby lettuce. The LAMP has been also adapted for a faster visualization of the result by a lateral flow dipstick chromatographic detection method.
Collapse
|
48
|
Caradonna T, Marangi M, Del Chierico F, Ferrari N, Reddel S, Bracaglia G, Normanno G, Putignani L, Giangaspero A. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol 2017. [DOI: 10.1016/j.fm.2017.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Harito JB, Campbell AT, Tysnes KR, Dubey JP, Robertson LJ. Lectin-magnetic separation (LMS) for isolation of Toxoplasma gondii oocysts from concentrated water samples prior to detection by microscopy or qPCR. WATER RESEARCH 2017; 114:228-236. [PMID: 28249214 DOI: 10.1016/j.watres.2017.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
Although standard methods for analyzing water samples for the protozoan parasites Cryptosporidium spp. and Giardia duodenalis are available and widely used, equivalent methods for analyzing water samples for Toxoplasma gondii oocysts are lacking. This is partly due to the lack of a readily available, reliable immunomagnetic separation technique (IMS). Here we investigated the use of lectin-magnetic separation (LMS) for isolating T. gondii oocysts from water sample concentrates, with subsequent detection by microscopy or molecular methods. Four different types of magnetic beads coated with wheat germ agglutinin (WGA) were tested for capture of oocysts from clean or dirty water samples. Dynabeads (Myone T1 and M-280) consistently provided mean capture efficiencies from 1 ml clean water in excess of 97%. High recoveries were also found with Tamavidin beads (in excess of 90%) when LMS was used for capture from a small (1 ml) volume. Dissociation (required for detection by microscopy) using 0.1N hydrochloric acid (HCl), as standard in IMS, was not successful, but could be achieved using a combination of acidified pepsin (AP) and N-acetyl d-glucosamine. Although simple centrifugation was as effective as LMS when concentrating high numbers of oocysts from clean water, LMS provided superior results when oocysts numbers were low or the water sample was dirty. Application of LMS integrated with qPCR enabled detection of 10 oocysts per 10 ml dirty water sample concentrate. These findings indicate that LMS with WGA coupled to magnetic beads could be an efficient isolation step in the analysis of water sample concentrates for T. gondii oocysts, with detection either by microscopy or by qPCR.
Collapse
Affiliation(s)
- Jemere Bekele Harito
- Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences - Faculty of Veterinary Medicine, Adamstuen Campus, P.O. Box 8146 Dep, N-0033 Oslo, Norway; College of Veterinary Medicine, Hawassa University, P.O. Box 1337, Hawassa, Ethiopia
| | | | - Kristoffer Relling Tysnes
- Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences - Faculty of Veterinary Medicine, Adamstuen Campus, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA
| | - Lucy J Robertson
- Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences - Faculty of Veterinary Medicine, Adamstuen Campus, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
50
|
Pathogens of Food Animals: Sources, Characteristics, Human Risk, and Methods of Detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:277-365. [PMID: 28427535 DOI: 10.1016/bs.afnr.2016.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogens associated with food production (livestock) animals come in many forms causing a multitude of disease for humans. For the purpose of this review, these infectious agents can be divided into three broad categories: those that are associated with bacterial disease, those that are associated with viruses, and those that are parasitic in nature. The goal of this chapter is to provide the reader with an overview of the most common pathogens that cause disease in humans through exposure via the food chain and the consequence of this exposure as well as risk and detection methods. We have also included a collection of unusual pathogens that although rare have still caused disease, and their recognition is warranted in light of emerging and reemerging diseases. These provide the reader an understanding of where the next big outbreak could occur. The influence of the global economy, the movement of people, and food makes understanding production animal-associated disease paramount to being able to address new diseases as they arise.
Collapse
|