1
|
Verešová A, Vukic MD, Vukovic NL, Terentjeva M, Ban Z, Li L, Bianchi A, Kollár J, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Kluz MI, Čmiková N, Garzoli S, Kačániová M. Chemical Composition, Biological Activity, and Application of Rosa damascena Essential Oil as an Antimicrobial Agent in Minimally Processed Eggplant Inoculated with Salmonella enterica. Foods 2024; 13:3579. [PMID: 39593995 PMCID: PMC11592901 DOI: 10.3390/foods13223579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Rosa damascena is mostly grown for its usage in the food, medical, and perfume industries, while it is also used as an attractive plant in parks, gardens, and homes. The use of R. damascena essential oil may yield new results in relation to the antimicrobial activity of essential oils and their use mainly in extending the shelf life of foods. This study investigates the chemical composition and antimicrobial properties of Rosa damascena essential oil (RDEO) using gas chromatography-mass spectrometry (GC-MS) and various bioassays to explore its potential applications in food preservation and microorganism growth control. The GC-MS analysis revealed that RDEO is predominantly composed of phenylethyl alcohol (70%), which is known for its antimicrobial and aromatic properties. Additionally, other significant constituents were identified, including nerol, citronellol, and geraniol, which may contribute to the EOs overall bioactivity. The antimicrobial activity was assessed through the minimal inhibition concentration against five Candida yeast strains, four Gram-positive, and four Gram-negative bacteria, including biofilm-forming Salmonella enterica. Determination of minimum inhibitory concentrations (MIC) revealed the strongest effects of RDEO's on Gram-negative species, with MIC50 values as low as 0.250 mg/mL for S. enterica. Moreover, an in situ assessment utilizing fruit and vegetable models demonstrated that the vapor phase of RDEO significantly suppressed microbial growth, with the most substantial reductions observed on kiwi and banana models. As a result of our study, the antimicrobial effect of RDEO on the microbiota of sous vide processed eggplant was detected, as well as an inhibitory effect on S. enterica during storage. The insecticidal activity against Megabruchidius dorsalis Fahreus, 1839, was also studied in this work and the best insecticidal activity was found at the highest concentrations. These results suggest that RDEO has the potential to serve as a natural antimicrobial agent in food preservation and safety applications, providing an alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.V.); (N.Č.)
| | - Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.V.); (N.L.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.V.); (N.L.V.)
| | - Margarita Terentjeva
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia;
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Ján Kollár
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tulipánová 7, 94976 Nitra, Slovakia;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Joel Horacio Elizondo-Luévano
- Department of Chemistry, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, Nuevo León, Mexico;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.V.); (N.Č.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.V.); (N.Č.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland;
| |
Collapse
|
2
|
Gajendran VP, Rajamani S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10392-3. [PMID: 39514163 DOI: 10.1007/s12602-024-10392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H2O2), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Vaishnavi Pratha Gajendran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Subhashini Rajamani
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
3
|
Gomez-Galindo M, Serra-Castelló C, Bover-Cid S, Truchado P, Gil MI, Allende A. The Gamma concept approach as a tool to predict fresh produce supporting or not the growth of L. monocytogenes. Food Microbiol 2024; 122:104554. [PMID: 38839220 DOI: 10.1016/j.fm.2024.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Challenge tests are commonly employed to evaluate the growth behavior of L. monocytogenes in food matrices; they are known for being expensive and time-consuming. An alternative could be the use of predictive models to forecast microbial behavior under different conditions. In this study, the growth behavior of L. monocytogenes in different fresh produce was evaluated using a predictive model based on the Gamma concept considering pH, water activity (aw), and temperature as input factors. An extensive literature search resulted in a total of 105 research articles selected to collect growth/no growth behavior data of L. monocytogenes. Up to 808 L. monocytogenes behavior values and physicochemical characteristics were extracted for different fruits and vegetables. The predictive performance of the model as a tool for identifying the produce commodities supporting the growth of L. monocytogenes was proved by comparing with the experimental data collected from the literature. The model provided satisfactory predictions on the behavior of L. monocytogenes in vegetables (>80% agreement with experimental observations). For leafy greens, a 90% agreement was achieved. In contrast, the performance of the Gamma model was less satisfactory for fruits, as it tends to overestimate the potential of acid commodities to inhibit the growth of L. monocytogenes.
Collapse
Affiliation(s)
- Marisa Gomez-Galindo
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain
| | | | - Sara Bover-Cid
- IRTA, Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121, Monells, Spain
| | - Pilar Truchado
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain
| | - Maria I Gil
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain
| | - Ana Allende
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
4
|
Oliveira FS, da Silva Rodrigues R, Cavicchioli VQ, de Carvalho AF, Nero LA. Influence of different culture media on the antimicrobial activity of Pediococcus pentosaceus ST65ACC against Listeria monocytogenes. Braz J Microbiol 2024; 55:2539-2545. [PMID: 38789904 PMCID: PMC11405628 DOI: 10.1007/s42770-024-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediococcus pentosaceus ST65ACC is a bacteriocinogenic lactic acid bacteria (LAB) isolated from Brazilian artisanal cheese that is capable of inhibiting different food pathogens, mainly Listeria monocytogenes. The production of bacteriocins can be influenced by several growth conditions, such as temperature, pH, and medium composition. This study aimed to evaluate the effect of different culture media on the production of bacteriocins and antimicrobial activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The strains were inoculated alone and in coculture in four different media: BHI broth, MRS broth, meat broth, and reconstituted skim milk (RSM) 10% (w/v). The culture media were then incubated at 37 °C for 96 h, and count analysis, pH measurement, and bacteriocin production were performed at 0, 24, 48, 72 and 96 h. L. monocytogenes was inhibited to nondetectable levels in coculture with P. pentosaceus ST65ACC in MRS broth within 96 h, consistent with the high production of bacteriocin throughout the analysis period (3,200-12,800 AU/mL). However, lower inhibitory activities of P. pentosaceus ST65ACC on L. monocytogenes Scott A were recorded in BHI, RSM, and meat broth, with low or no production of bacteriocins at the analyzed times. The composition of these culture media may have repressed the production and activity of bacteriocins and, consequently, the antagonist activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The results showed that the antimicrobial activity was more effective in MRS broth, presenting greater production of bacteriocins and less variability when compared to the other media analyzed.
Collapse
Affiliation(s)
- Francielly Soares Oliveira
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Rafaela da Silva Rodrigues
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Valéria Quintana Cavicchioli
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, 74690 900, GO, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil.
| |
Collapse
|
5
|
Alegbeleye O, Rhee MS. Growth of Listeria monocytogenes in fresh vegetables and vegetable salad products: An update on influencing intrinsic and extrinsic factors. Compr Rev Food Sci Food Saf 2024; 23:e13423. [PMID: 39169547 DOI: 10.1111/1541-4337.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The ability of foodborne pathogens to grow in food products increases the associated food safety risks. Listeria monocytogenes (Lm) is a highly adaptable pathogen that can survive and grow under a wide range of environmental circumstances, including otherwise inhibitory conditions, such as restrictive cold temperatures. It can also survive long periods under adverse environmental conditions. This review examines the experimental evidence available for the survival and growth of Lm on fresh vegetables and ready-to-eat vegetable salads. Published data indicate that, depending on certain intrinsic (e.g., nutrient composition) and extrinsic factors (e.g., storage temperature, packaging atmosphere), Lm can survive on and in a wide variety of vegetables and fresh-cut minimally processed vegetable salads. Studies have shown that temperature, modified atmosphere packaging, relative humidity, pH, water activity, background microbiota of vegetables, microbial strain peculiarities, and nutrient type and availability can significantly impact the fate of Lm in vegetables and vegetable salads. The influence of these factors can either promote its growth or decline. For example, some studies have shown that background microbiota inhibit the growth of Lm in vegetables and minimally processed vegetable salads, but others have reported a promoting, neutral, or insignificant effect on the growth of Lm. A review of relevant literature also indicated that the impact of most influencing factors is related to or interacts with other intrinsic or extrinsic factors. This literature synthesis contributes to the body of knowledge on possible strategies for improving food safety measures to minimize the risk of Lm-associated foodborne outbreaks involving vegetables and vegetable salads.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas, Campinas, Brazil
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
Doukaki A, Papadopoulou OS, Tzavara C, Mantzara AM, Michopoulou K, Tassou C, Skandamis P, Nychas GJ, Chorianopoulos N. Monitoring the Bioprotective Potential of Lactiplantibacillus pentosus Culture on Pathogen Survival and the Shelf-Life of Fresh Ready-to-Eat Salads Stored under Modified Atmosphere Packaging. Pathogens 2024; 13:557. [PMID: 39057784 PMCID: PMC11280402 DOI: 10.3390/pathogens13070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, fresh vegetables or minimally processed salads have been implicated in several foodborne disease outbreaks. This work studied the effect of Lactiplantibacillus pentosus FMCC-B281 cells (F) and its supernatant (S) on spoilage and on the fate of Listeria monocytogenes and Escherichia coli O157:H7 on fresh-cut ready-to-eat (RTE) salads during storage. Also, Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used as rapid and non-destructive techniques to estimate the microbiological status of the samples. Fresh romaine lettuce, rocket cabbage, and white cabbage were used in the present study and were inoculated with L. pentosus and the two pathogens. The strains were grown at 37 °C for 24 h in MRS and BHI broths, respectively, and then were centrifuged to collect the supernatant and the pellet (cells). Cells (F, ~5 log CFU/g), the supernatant (S), and a control (C, broth) were used to spray the leaves of each fresh vegetable that had been previously contaminated (sprayed) with the pathogen (3 log CFU/g). Subsequently, the salads were packed under modified atmosphere packaging (10%CO2/10%O2/80%N2) and stored at 4 and 10 °C until spoilage. During storage, microbiological counts and pH were monitored in parallel with FTIR and MSI analyses. The results showed that during storage, the population of the pathogens increased for lettuce and rocket independent of the treatment. For cabbage, pathogen populations remained stable throughout storage. Regarding the spoilage microbiota, the Pseudomonas population was lower in the F samples, while no differences in the populations of Enterobacteriaceae and yeasts/molds were observed for the C, F, and S samples stored at 4 °C. According to sensory evaluation, the shelf-life was shorter for the control samples in contrast to the S and F samples, where their shelf-life was elongated by 1-2 days. Initial pH values were ca. 6.0 for the three leafy vegetables. An increase in the pH of ca. 0.5 values was recorded until the end of storage at both temperatures for all cases of leafy vegetables. FTIR and MSI analyses did not satisfactorily lead to the estimation of the microbiological quality of salads. In conclusion, the applied bioprotective strain (L. pentosus) can elongate the shelf-life of the RTE salads without an effect on pathogen growth.
Collapse
Affiliation(s)
- Angeliki Doukaki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Olga S. Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization–DIMITRA, S. Venizelou 1, Lycovrissi, 14123 Athens, Greece; (O.S.P.); (C.T.)
| | - Chrysavgi Tzavara
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Aikaterini-Malevi Mantzara
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Konstantina Michopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization–DIMITRA, S. Venizelou 1, Lycovrissi, 14123 Athens, Greece; (O.S.P.); (C.T.)
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Nikos Chorianopoulos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| |
Collapse
|
7
|
Ben Hsouna A, Čmiková N, Ben Akacha B, Ben Saad R, Mnif W, Garzoli S, Kačániová M. Changes in inoculated Salmonella enterica subsp. enterica Serovar Enteritidis and other microbiological qualities of vacuum-packed carrot slices after treatment with aqueous extract of Lobularia maritima. Heliyon 2024; 10:e29065. [PMID: 38576551 PMCID: PMC10990898 DOI: 10.1016/j.heliyon.2024.e29065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
After harvesting, pathogens can infect fresh vegetables in different ways. Pathogenic bacteria associated with fresh vegetables can cause widespread epidemics associated with foodborne illness. The aim of this study was to assess the microbiological quality of carrot slices after treatment with aqueous extracts of Lobularia maritima (AELm) at different concentrations AELm1 (10 mg/mL), AELm2 (5 mg/mL), AELm3 (2.5 mg/mL) and AELm4 (1.25 mg/mL), and Salmonella enterica subsp. enterica serovar Enteritidis, along with vacuum packaging and storage of carrots for 7 days at 4 °C. On days 1. and 7., total viable counts (TVC), and coliforms bacteria (CB), and Salmonella count were all analysed. Microorganisms that were obtained from carrots were identified using MALDI-TOF MS Biotyper Mass Spectrometry. The total viable, coliform bacteria and Salmonella counts were varied by the group of treatment. Higher counts were found in the control group on both days. The most isolated species of bacteria were Salmonella enterica and Pantoea agglomerans on the 1. day and Klebsiella oxytoca on the 7. day. The current study adds useful information for a better understanding of how Salmonella enterica reacts to the effect of AELm and its potential use as a sustainable washing method to eliminate bacteria from freshly cut carrots.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, 5000, Tunisia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha, 61922, Saudi Arabia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185, Rome, Italy
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, Warszawa, 01 043, Poland
| |
Collapse
|
8
|
Grigore-Gurgu L, Bucur FI, Mihalache OA, Nicolau AI. Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods 2024; 13:734. [PMID: 38472848 DOI: 10.3390/foods13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a group of human illnesses that appear more frequently in countries with better-developed food supply systems. This review discusses the efficacy of actual biocontrol methods combined with the main types of food involved in illnesses. Comments on bacteriophages, lactic acid bacteria, bacteriocins, essential oils, and endolysins and derivatives, as main biological antilisterial agents, are made bearing in mind that, using them, food processors can intervene to protect consumers. Both commercially available antilisterial products and solutions presented in scientific papers for mitigating the risk of contamination are emphasized. Potential combinations between different types of antilisterial agents are highlighted for their synergic effects (bacteriocins and essential oils, phages and bacteriocins, lactic acid bacteria with natural or synthetic preservatives, etc.). The possibility to use various antilisterial biological agents in active packaging is also presented to reveal the diversity of means that food processors may adopt to assure the safety of their products. Integrating biocontrol solutions into food processing practices can proactively prevent outbreaks and reduce the occurrences of L. monocytogenes-related illnesses.
Collapse
Affiliation(s)
- Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Octavian Augustin Mihalache
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| |
Collapse
|
9
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Murali AP, Trząskowska M, Trafialek J. Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms 2023; 11:1557. [PMID: 37375059 DOI: 10.3390/microorganisms11061557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The review aimed to analyse the latest data on microorganisms present in organic food, both beneficial and unwanted. In conclusion, organic food's microbial quality is generally similar to that of conventionally produced food. However, some studies suggest that organic food may contain fewer pathogens, such as antibiotic-resistant strains, due to the absence of antibiotic use in organic farming practices. However, there is little discussion and data regarding the importance of some methods used in organic farming and the risk of food pathogens presence. Concerning data gaps, it is necessary to plan and perform detailed studies of the microbiological safety of organic food, including foodborne viruses and parasites and factors related to this method of cultivation and specific processing requirements. Such knowledge is essential for more effective management of the safety of this food. The use of beneficial bacteria in organic food production has not yet been widely addressed in the scientific literature. This is particularly desirable due to the properties of the separately researched probiotics and the organic food matrix. The microbiological quality of organic food and its potential impact on human health is worth further research to confirm its safety and to assess the beneficial properties resulting from the addition of probiotics.
Collapse
Affiliation(s)
- Aparna P Murali
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Joanna Trafialek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
11
|
Castellano P, Melian C, Burgos C, Vignolo G. Bioprotective cultures and bacteriocins as food preservatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:275-315. [PMID: 37722775 DOI: 10.1016/bs.afnr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food preservation technologies face the challenge of extending product shelf life applying different factors to prevent the microbiological spoilage of food and inhibit/inactivate food borne pathogens maintaining or even enhancing its quality. One such preservation strategy is the application of bacteriocins or bacteriocin-producer cultures as a kind of food biopreservation. Bacteriocins are ribosomally synthesized small polypeptide molecules that exert antagonistic activity against closely related and unrelated bacteria without harming the producing strain by specific immunity proteins. This chapter aims to contribute to current knowledge about innovative natural preservative agents and their application in the food industry. Specifically, its purpose is to analyze the classification of bacteriocins from lactic acid bacteria (LAB), desirable characteristics of bacteriocins that position them in a privileged place in food biopreservation technology, their success story as well as the bacteriocinogenic LAB in various food systems. Finally, challenges and barrier strategies used to enhance the efficiency of the bacteriocins antimicrobial effect are presented in this chapter.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Carla Burgos
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
12
|
Maurizzi E, Bigi F, Quartieri A, De Leo R, Volpelli LA, Pulvirenti A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers (Basel) 2022; 14:polym14204257. [PMID: 36297835 PMCID: PMC9610407 DOI: 10.3390/polym14204257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green.
Collapse
Affiliation(s)
- Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Antonella Volpelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
13
|
Banerji R, Karkee A, Saroj SD. Bacteriocins against Foodborne Pathogens (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
15
|
Iseppi R, Zurlini C, Cigognini IM, Cannavacciuolo M, Sabia C, Messi P. Eco-Friendly Edible Packaging Systems Based on Live- Lactobacillus kefiri MM5 for the Control of Listeria monocytogenes in Fresh Vegetables. Foods 2022; 11:foods11172632. [PMID: 36076818 PMCID: PMC9455171 DOI: 10.3390/foods11172632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023] Open
Abstract
To meet consumer requirements for high quality food free of chemical additives, according to the principles of sustainability and respect for the environment, new “green” packaging solutions have been explored. The antibacterial activity of edible bioactive films and coatings, based on biomolecules from processing by-products and biomasses, added with the bacteriocin producer Lactobacillus kefiri MM5, has been determined in vegetables against L. monocytogenes NCTC 10888 (i) “in vitro” by a modified agar diffusion assay and (ii) “on food” during storage of artificially contaminated raw vegetable samples, after application of active films and coatings. Both polysaccharides-based and proteins-based films and coatings showed excellent antilisterial activity, especially at 10 and 20 days. Protein-based films displayed a strong activity against L. monocytogenes in carrots and zucchini samples (p < 0.0001). After 10 days, both polysaccharide-based and protein-based films demonstrated more enhanced activity than coatings towards the pathogen. These edible active packagings containing live probiotics can be used both to preserve the safety of fresh vegetables and to deliver a beneficial probiotic bacterial strain. The edible ingredients used for the formulation of both films and coatings are easily available, at low cost and environmental impact.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Chiara Zurlini
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale F. Tanara 31/A, 43121 Parma, Italy
| | - Ilaria Maria Cigognini
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale F. Tanara 31/A, 43121 Parma, Italy
| | - Mariarosaria Cannavacciuolo
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale F. Tanara 31/A, 43121 Parma, Italy
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
16
|
De Marco I, Fusieger A, Nero LA, Kempka AP, Moroni LS. Bacteriocin-like inhibitory substances (BLIS) synthesized by Lactococcus lactis LLH20: Antilisterial activity and application for biopreservation of minimally processed lettuce (Lactuca sativa L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yin HB, Chen CH, Colorado-Suarez S, Patel J. Biocontrol of Listeria monocytogenes and Salmonella enterica on Fresh Strawberries with Lactic Acid Bacteria During Refrigerated Storage. Foodborne Pathog Dis 2022; 19:324-331. [PMID: 35290741 DOI: 10.1089/fpd.2021.0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small fruits such as strawberries have been increasingly implicated in outbreaks of foodborne illnesses. Salmonella enterica and Listeria monocytogenes may contaminate strawberries leading to potential public health concern. The objective of this study was to investigate the efficacy of a combined lactic acid bacteria (LAB) treatment of Lactobacillus plantarum and Pediococcus pentosaceus for controlling S. enterica and L. monocytogenes on fresh strawberries during storage at 4°C and 10°C. Strawberries purchased from a local grocery store were separately dip inoculated with Salmonella Newport, Salmonella Tennessee, Salmonella Thompson, or a three-strain cocktail of L. monocytogenes at ∼9 log colony-forming unit (CFU)/mL and allowed to air-dry for 1 h. Inoculated strawberries were then divided into three groups: (1) Control (pathogen alone), (2) Man, Rogosa, Sharpe (MRS) control (dipping in MRS broth), and (3) LAB treatment (dipping in a LAB cocktail of L. plantarum and P. pentosaceus). After treatment, strawberries were stored at 4°C or 10°C for 7 d in vented clamshell containers. Surviving Listeria, Salmonella, and LAB populations on strawberries were determined on 0, 1, 3, and 7 d post-treatment by plating on selective agars. At both 4°C and 10°C, LAB treatment significantly decreased Listeria populations by up to 2 log CFU/g compared to controls after 3 d of storage (p < 0.05). When strawberries were stored at 4°C, LAB treatment reduced ∼2.5 log, ∼2.7 log, and ∼2.9 log CFU/g in Salmonella Newport, Salmonella Tennessee, and Salmonella Thompson populations, respectively, compared to control on day 7. Similarly, ∼2.5 log CFU/g reductions of Salmonella populations were observed with LAB treatment at 10°C on day 7. LAB populations remained at ∼7.5 log CFU/g levels on strawberries at both temperatures throughout the entire study. Results of this study suggest that a combined LAB treatment can be potentially used as biocontrol agents against Salmonella and L. monocytogenes on strawberries at postharvest level.
Collapse
Affiliation(s)
- Hsin-Bai Yin
- Environmental Microbial & Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Chi-Hung Chen
- Environmental Microbial & Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Stephanie Colorado-Suarez
- Environmental Microbial & Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Jitendra Patel
- Environmental Microbial & Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|
18
|
Khalil N, Kheadr E, El‐Ziney M, Dabour N. Lactobacillus plantarum
protective cultures to improve safety and quality of wheyless Domiati‐like cheese. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noha Khalil
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture University of Alexandria Egypt
| | - Ehab Kheadr
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture University of Alexandria Egypt
| | - Mohamed El‐Ziney
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture University of Alexandria Egypt
| | - Nassra Dabour
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture University of Alexandria Egypt
| |
Collapse
|
19
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
20
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
21
|
Wildlife symbiotic bacteria are indicators of the health status of the host and its ecosystem. Appl Environ Microbiol 2021; 88:e0138521. [PMID: 34669453 PMCID: PMC8752132 DOI: 10.1128/aem.01385-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are gut symbionts that can be used as a model to understand the host-microbiota crosstalk under unpredictable environmental conditions such as wildlife ecosystems. The aim of this study was to determine whether viable LAB can be informative of the health status of wild boar populations. We monitored the genotype and phenotype of LAB based on markers that included safety and phylogenetic origin, antibacterial activity and immunomodulatory properties. A LAB profile dominated by lactobacilli appears to stimulate protective immune responses and relates to strains widely used as probiotics, resulting in a potentially healthy wildlife population whereas microbiota overpopulated by enterococci was observed in a hostile environment. These enterococci were closely related to pathogenic strains that have developed mechanisms to evade innate immune system, posing a potential risk for the host health. Furthermore, our LAB isolates displayed antibacterial properties in a species-dependent manner. Nearly all of them were able to inhibit bacterial pathogens, raising the possibility of using them as a la carte antibiotic alternative in the unexplored field of wildlife disease mitigation. Our study highlights that microbiological characterization of LAB is a useful indicator of wildlife health status and the ecological origin from which they derive. Significance Statement The wildlife symbiotic microbiota is an important component to the greater for greater diversity and functionality of their bacterial populations, influencing the host health and adaptability to its ecosystem. Although many microbes are partly responsible for the development of multiple physiological processes, only certain bacterial groups such as lactic acid bacteria (LAB) have the capacity to overpopulate the gut, promoting health (or disease) when specific genetic and environmental conditions are present. LAB have been exploited in many ways due to their probiotic properties, in particular lactobacilli, however their relationship with wildlife gut-associated microbiota hosts remains to be elucidated. On the other hand, it is unclear whether LAB such as enterococci, which have been associated with detrimental health effects, could lead to disease. These important questions have not been properly addressed in the field of wildlife, and therefore, should be clearly attained.
Collapse
|
22
|
El-Saber Batiha G, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Tiwari A, Pagnossa JP, Lima CM, Thorat ND, Zahoor M, El-Esawi M, Dey A, Alghamdi S, Hetta HF, Cruz-Martins N. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108066] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Sustained-release modeling of clove essential oil in brine to improve the shelf life of Iranian white cheese by bioactive electrospun zein. Int J Food Microbiol 2021; 355:109337. [PMID: 34340156 DOI: 10.1016/j.ijfoodmicro.2021.109337] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/20/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
In this study, the sustained-release of clove essential oil (CEO) loaded into the structure of electrospun zein was used as a biopreservative to extend the shelf life of Iranian white cheese. CEO was loaded at levels of 5, 7.5, and 10% w/w in the structure of electrospun nanofibers. In this study, a concentration of 35% w/v zein was used to produce electrospun fibers, and in the field emission scanning electron microscope (FESEM) it was observed that by increasing the loading of CEO from 5 to 10% w/w in the fiber structure, their diameter decreased from 517.96 ± 41.57 nm to 457.88 ± 32.45 nm. Although increasing the level of CEO reduced the diameter of the electrospun nanofibers, Young's modulus, tensile strength, and a higher level of CEO increased elongation at break of the films. The results of mechanical properties showed that by increasing the amount of CEO application in the structure of electrospun zein nanofibers from 5 to 10% w/w tensile strength from 8.18 ± 0.62 to 4.43 ± 0.86 MPa, and Young's modulus from 38.25 ± 2.81 to 27.25 ± 3.48 MPa decreased. Successful encapsulation of CEO in designed structures and the absence of adverse bonds between the encapsulant material (zein) and the core (CEO) were confirmed by the Fourier-transform infrared spectroscopy (FTIR) test. The in vitro sustained-release of the CEO in 8% w/v brine during 45 days of storage at 4 °C was modeled. The Fickian diffusion was the dominant release mechanism of the CEO and the Peppas-Sahlin model was the best model describing the essential oil release behavior. The electrospun films containing CEO were well able to suppress the growth of Listeria monocytogenes and Escherichia coli O157: H7 in samples of Iranian white cheese kept in 8% brine for 45 days at 4 °C. The samples treated with the electrospun film containing 7.5% w/w of CEO had the highest acceptability among different treatments.
Collapse
|
24
|
Bourdichon F, Arias E, Babuchowski A, Bückle A, Bello FD, Dubois A, Fontana A, Fritz D, Kemperman R, Laulund S, McAuliffe O, Miks MH, Papademas P, Patrone V, Sharma DK, Sliwinski E, Stanton C, Von Ah U, Yao S, Morelli L. The forgotten role of food cultures. FEMS Microbiol Lett 2021; 368:fnab085. [PMID: 34223876 PMCID: PMC8397475 DOI: 10.1093/femsle/fnab085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Emmanuelle Arias
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Anne Bückle
- Milchprüfring Baden-Württemberg e.V., Marie-Curie-Straße 19, 73230 Kirchheim, u.T., Germany
| | | | - Aurélie Dubois
- International Dairy Federationiry Federation, 70 Boulevard Auguste Reyers, 1030 Brussels, Belgium
| | - Alessandra Fontana
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Duresa Fritz
- International Flavors and Fragrances, 20 rue Brunel, Paris 75017, France
| | - Rober Kemperman
- Lesaffre International, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Svend Laulund
- Chr. Hansen A/S, Agern Allé 24, 2970 Hoersholm, Denmark
| | | | - Marta Hanna Miks
- Glycom A/S, Kogle Allé 4, 2970 Hørsholm, Denmark
- Faculty of Food Science, Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10–726 Olsztyn, Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archiepiskopou Kyprianou, PO BOX 50329, Limassol, Cyprus
| | - Vania Patrone
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | | | - Edward Sliwinski
- The European Federation of Food Science & Technology, Nieuwe Kanaal 9a, 6709 PA, Wageningen, The Netherlands
| | | | - Ueli Von Ah
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Su Yao
- China National Research Institute of Food & Fermentation Industries, China Center of Industrial Culture Collection, Building 6, No.24, Jiuxianqiaozhong Road, Chaoyang District, Beijing 100015, PR China
| | - Lorenzo Morelli
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| |
Collapse
|
25
|
Sheng L, Zhu MJ. Practical in-storage interventions to control foodborne pathogens on fresh produce. Compr Rev Food Sci Food Saf 2021; 20:4584-4611. [PMID: 34190395 DOI: 10.1111/1541-4337.12786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Although tremendous efforts have been made to ensure fresh produce safety, various foodborne outbreaks and recalls occur annually. Most of the current intervention strategies are evaluated within a short timeframe (less than 1 h), leaving the behavior of the remaining pathogens unknown during subsequent storages. This review summarized outbreak and recall surveillance data from 2009 to 2018 obtained from government agencies in the United States to identify major safety concerns associated with fresh produce, discussed the postharvest handling of fresh produce and the limitations of current antimicrobial interventions, and reviewed the intervention strategies that have the potential to be applied in each storage stage at the commercial scale. One long-term (up to 12 months) prepacking storage (apples, pears, citrus among others) and three short-term (up to 3 months) postpacking storages were identified. During the prepacking storage, continuous application of gaseous ozone at low doses (≤1 ppm) is a feasible option. Proper concentration, adequate circulation, as well as excess gas destruction and ventilation systems are essential to commercial application. At the postpacking storage stages, continuous inhibition can be achieved through controlled release of gaseous chlorine dioxide in packaging, antimicrobial edible coatings, and biocontrol agents. During commercialization, factors that need to be taken into consideration include physicochemical properties of antimicrobials, impacts on fresh produce quality and sensory attributes, recontamination and cross-contamination, cost, and feasibility of large-scale production. To improve fresh produce safety and quality during storage, the collaboration between researchers and the fresh produce industry needs to be improved.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
The impact of cell-free supernatants of Lactococcus lactis subsp. lactis strains on the tyramine formation of Lactobacillus and Lactiplantibacillus strains isolated from cheese and beer. Food Microbiol 2021; 99:103813. [PMID: 34119100 DOI: 10.1016/j.fm.2021.103813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Tyramine is one of the most toxic biogenic amines and it is produced commonly by lactic acid bacteria in fermented food products. In present study, we investigated the influence of selected nisin-producing Lactococcus lactis subsp. lactis strains and their cell-free supernatants (CFSs) on tyramine production by four Lactobacillus and two Lactiplantibacillus strains isolated from cheese and beer. Firstly, we examined the antimicrobial effect of the CFSs from twelve Lactococcus strains against tested tyramine producers by agar-well diffusion assay. Six Lactococcus strains whose CFSs showed the highest antimicrobial effect on tyramine producers were further studied. Secondly, we investigated the influence of the selected six Lactococcus strains and their respective CFSs on tyramine production by tested Lactobacillus and Lactiplantibacillus strains in MRS broth supplemented with 2 g.L-1 of l-tyrosine. Tyramine production was monitored by HPLC-UV. The tyramine formation of all tested Lactobacillus and Lactiplantibacillus strains was not detected in the presence of Lc. lactis subsp. lactis CCDM 71 and CCDM 702, and their CFSs. Moreover, the remainder of the investigated Lactococcus strains (CCDM 670, CCDM 686, CCDM 689 and CCDM 731) and their CFSs decreased tyramine production significantly (P < 0.05) - even suppressing it completely in some cases - in four of the six tested tyramine producing strains.
Collapse
|
27
|
Silvetti T, Pedroni M, Brasca M, Vassallo E, Cocetta G, Ferrante A, De Noni I, Piazza L, Morandi S. Assessment of Possible Application of an Atmospheric Pressure Plasma Jet for Shelf Life Extension of Fresh-Cut Salad. Foods 2021; 10:foods10030513. [PMID: 33804422 PMCID: PMC8001164 DOI: 10.3390/foods10030513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Ready-to-eat salads are very perishable with quality losses within 6–7 days, and the extension of their shelf life is still a challenge. In this work, an atmospheric pressure plasma jet (APPJ) was applied for the surface decontamination of fresh-cut lettuce baby leaves. The APPJ antimicrobial efficiency on the natural microbiota and its impact on some physicochemical attributes of lettuce were evaluated as a function of the treatment duration (0–30 s). Then, the influence of plasma treatment on the salad shelf life was studied, following the growth of aerobic mesophilic bacteria in both untreated and plasma-treated samples during 9 days of storage at 4 °C, together with the plasma-induced changes in physicochemical parameters of lettuce leaves. The APPJ induced a fast (15 s) microbial decontamination (1.3 log10 CFU/g) of the salad surface. Exposure time and salad-plasma plume distance were the parameters that substantially affected the microbial inactivation. APPJ treatment retarded bacterial growth during the refrigerated storage, as plasma-treated samples were noticeably less contaminated than the non-treated ones in the first 3–4 days. No significant effect were observed on electrolyte leakage, pH, and dry matter content in both the set up phase and the shelf life study.
Collapse
Affiliation(s)
- Tiziana Silvetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (T.S.); (I.D.N.)
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy;
| | - Matteo Pedroni
- National Research Council, Institute for Plasma Science and Technology, Via R. Cozzi 53, 20125 Milan, Italy; (M.P.); (E.V.)
| | - Milena Brasca
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy;
- Correspondence:
| | - Espedito Vassallo
- National Research Council, Institute for Plasma Science and Technology, Via R. Cozzi 53, 20125 Milan, Italy; (M.P.); (E.V.)
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (G.C.); (A.F.)
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (G.C.); (A.F.)
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (T.S.); (I.D.N.)
| | - Laura Piazza
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20131 Milan, Italy;
| | - Stefano Morandi
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy;
| |
Collapse
|
28
|
Kang J, Song KB. Combined washing effect of noni extract and oregano essential oil on the decontamination of
Listeria monocytogenes
on romaine lettuce. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ji‐Hoon Kang
- Department of Food Science and Technology Chungnam National University Daejeon 34134 Korea
| | - Kyung Bin Song
- Department of Food Science and Technology Chungnam National University Daejeon 34134 Korea
| |
Collapse
|
29
|
Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020; 8:E952. [PMID: 32599824 PMCID: PMC7356186 DOI: 10.3390/microorganisms8060952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Eygenia Stamatelopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
30
|
Bagheri Darvish H, Bahrami A, Jafari SM, Williams L. Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against Listeria monocytogenes in food products. Crit Rev Food Sci Nutr 2020; 61:1241-1259. [PMID: 32323558 DOI: 10.1080/10408398.2020.1755950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes (Lm), the etiological agent of listeriosis diseases in humans, is a serious pathogenic microorganism threatening the food safety especially in ready-to-eat food products. Adhesion on both biotic and abiotic surfaces is making it a potential source of contamination by Lm. Also, this bacterium has become more tolerant in food processing conditions, including in the presence of adverse conditions such as cold and dehydration. One of the attractive and effective methods to inhibit the growth of Lm in the food products is using natural antimicrobial agents, which can be a suitable alternative to synthetic preservatives for producing organic food products. The use of pure natural antimicrobials has some limitations including low stability against harsh conditions, low solubility and absorption, and un-controlled release, which can decrease their functions. These limitations have been overcome by using new advanced encapsulation techniques, which have boosted the anti-listerial activity of natural agents. Therefore, the current paper is aiming to review the results of recent studies conducted on using natural antimicrobials added directly or as encapsulated forms into the food formulation to control the growth of Lm. The information of current study can be used by the researchers as well as the food companies for the optimization of food formulations through encapsulation strategies to control Lm and potentially produce safe foods for the consumers.
Collapse
Affiliation(s)
| | - Akbar Bahrami
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Leonard Williams
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| |
Collapse
|
31
|
Pellegrini M, Rossi C, Palmieri S, Maggio F, Chaves-López C, Lo Sterzo C, Paparella A, De Medici D, Ricci A, Serio A. Salmonella enterica Control in Stick Carrots Through Incorporation of Coriander Seeds Essential Oil in Sustainable Washing Treatments. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|