1
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
2
|
Pineda MEB, Sánchez DFV, Caycedo PAC, -Rozo JC. Nanocomposites: silver nanoparticles and bacteriocins obtained from lactic acid bacteria against multidrug-resistant Escherichia coli and Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:341. [PMID: 39358621 DOI: 10.1007/s11274-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de Investigación Gestión Ambiental-Universidad de Boyacá, Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Macromoléculas. Universidad Nacional de Colombia, Tunja, Colombia
| | | | | | | |
Collapse
|
3
|
Padmesh S, Singh A, Chopra S, Sen M, Habib S, Shrivastava D, Johri P. Isolation and characterization of novel lytic bacteriophages that infect multi drug resistant clinical strains of Escherichia coli. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57327-57337. [PMID: 37347328 DOI: 10.1007/s11356-023-28081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
The pathogenic strains of Escherichia coli (E. coli) are frequent cause of urinary tract infections including catheter-associated, soft tissue infections and sepsis. The growing antibiotic resistance in E. coli is a major health concern. Bacteriophages are specific for their bacterial host, thus providing a novel and effective alternatives. This study focuses on isolation of bacteriophages from urban sewage treatment plants. Initially 50 different bacteriophages have been isolated against non-resistant reference E. coli strain and fifty multidrug resistant clinical isolates of extraintestinal infections. Out of which only thirty-one lytic phages which gave clear plaques were further analysed for different physico-chemical aspects such as thermal inactivation, pH, effect of organic solvents and detergents. Two bacteriophages, ASEC2201 and ASEC2202, were selected for their ability to withstand temperature fluctuation from -20 to 62 °C and a pH range from 4 to 10. They also showed good survival (40-94%) in the presence of organic solvents like ethanol, acetone, DMSO and chloroform or ability to form plaques even after the treatment with detergents like SDS, CTAB and sarkosyl. Both efficiently killed reference strain and 40-44% of multidrug resistant clinical isolates of E. coli. Later ASEC2201 and ASEC2202 were subjected to morphological characterisation through transmission electron microscopy, which revealed them to be tailed phages. The genomic analysis confirmed them to be Escherichia phages which belonged to family Drexlerviridae of Caudovirales.
Collapse
Affiliation(s)
- Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow, 226028, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow, 226028, India.
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manodeep Sen
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parul Johri
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur, 208024, India
| |
Collapse
|
4
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Fabiyi K, Sintondji K, Agbankpe J, Assogba P, Koudokpon H, Lègba B, Gbotche E, Baba-Moussa L, Dougnon V. Harnessing Bacteriophages to Combat Antibiotic-Resistant Infections in Africa: A Comprehensive Review. Antibiotics (Basel) 2024; 13:795. [PMID: 39334970 PMCID: PMC11428528 DOI: 10.3390/antibiotics13090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The conventional treatment of bacterial infections with antibiotics is becoming increasingly ineffective due to the emergence of multidrug-resistant (MDR) pathogens. This literature review explores the potential of bacteriophages as an alternative or adjunctive therapy to antibiotics in combating MDR infections in Africa. This analysis focuses on current research regarding the integration of phage therapy into African healthcare, highlighting its challenges and opportunities. This review begins with the AMR crisis and the need for new treatments, then covers the history, mechanisms, benefits, and limitations of phage therapy. Key African studies are summarized, identifying major obstacles such as regulatory issues, infrastructure, and research standardization. Research efforts in West Africa that have made notable progress in bacteriophage research are highlighted. This review concludes with recommendations for policymakers, researchers, and healthcare professionals to enhance the development and use of phage therapy in Africa, aiming to reduce antibiotic resistance and improve patient outcomes. By addressing the identified challenges and leveraging the unique advantages of phages, there is potential to significantly mitigate the impact of antibiotic resistance and improve patient outcomes in Africa.
Collapse
Affiliation(s)
- Kafayath Fabiyi
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Kevin Sintondji
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Jerrold Agbankpe
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Phenix Assogba
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Hornel Koudokpon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Boris Lègba
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Elodie Gbotche
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou P.O. Box 1604, Benin
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, Cotonou P.O. Box 2009, Benin
| |
Collapse
|
6
|
Kim EJ, Lim MC, Woo MA, Kim BS, Lim JA. Development of Stabilizing Solution for Long-Term Storage of Bacteriophages at Room Temperature and Application to Control Foodborne Pathogens. Viruses 2024; 16:1155. [PMID: 39066317 PMCID: PMC11281399 DOI: 10.3390/v16071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteriophages (phages) have gained considerable attention as effective antimicrobial agents that infect and kill pathogenic bacteria. Based on this feature, phages have been increasingly used to achieve food safety. They are stored in a medium or buffer to ensure stability; however, they cannot be directly applied to food under these conditions due to reasons such as regulatory considerations and concerns about marketability. This study developed a stabilizing solution that allowed the maintenance of phage activity for extended periods at room temperature while being directly applicable to food. The stability of phages stored in distilled water was relatively low. However, adding a stabilizer composed of sugars and salts improved the survival rates of phages significantly, resulting in stability for up to 48 weeks at room temperature. When Escherichia coli O157:H7-contaminated vegetables were washed with tap water containing phages, the phages reduced the pathogenic E. coli count by over 90% compared with washing with tap water alone. Additionally, when pathogenic E. coli-contaminated vegetables were placed in a phage-coated container and exposed to water, the coating of the container dissolved, releasing phages and lysing the pathogenic E. coli. This led to a significant 90% reduction in pathogenic E. coli contamination compared to that after water rinsing. These results suggest an effective and economical method for maintaining phage activity and establishing the potential for commercialization through application in the food industry.
Collapse
Affiliation(s)
- Eo-Jin Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (E.-J.K.); (M.-C.L.); (M.-A.W.)
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min-Cheol Lim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (E.-J.K.); (M.-C.L.); (M.-A.W.)
| | - Min-Ah Woo
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (E.-J.K.); (M.-C.L.); (M.-A.W.)
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jeong-A Lim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (E.-J.K.); (M.-C.L.); (M.-A.W.)
| |
Collapse
|
7
|
Szymczak M, Pankowski JA, Kwiatek A, Grygorcewicz B, Karczewska-Golec J, Sadowska K, Golec P. An effective antibiofilm strategy based on bacteriophages armed with silver nanoparticles. Sci Rep 2024; 14:9088. [PMID: 38643290 PMCID: PMC11032367 DOI: 10.1038/s41598-024-59866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
The emerging antibiotic resistance in pathogenic bacteria is a key problem in modern medicine that has led to a search for novel therapeutic strategies. A potential approach for managing such bacteria involves the use of their natural killers, namely lytic bacteriophages. Another effective method involves the use of metal nanoparticles with antimicrobial properties. However, the use of lytic phages armed with nanoparticles as an effective antimicrobial strategy, particularly with respect to biofilms, remains unexplored. Here, we show that T7 phages armed with silver nanoparticles exhibit greater efficacy in terms of controlling bacterial biofilm, compared with phages or nanoparticles alone. We initially identified a novel silver nanoparticle-binding peptide, then constructed T7 phages that successfully displayed the peptide on the outer surface of the viral head. These recombinant, AgNP-binding phages could effectively eradicate bacterial biofilm, even when used at low concentrations. Additionally, when used at concentrations that could eradicate bacterial biofilm, T7 phages armed with silver nanoparticles were not toxic to eukaryotic cells. Our results show that the novel combination of lytic phages with phage-bound silver nanoparticles is an effective, synergistic and safe strategy for the treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jarosław A Pankowski
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bartłomiej Grygorcewicz
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Joanna Karczewska-Golec
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
8
|
Brás A, Braz M, Martinho I, Duarte J, Pereira C, Almeida A. Effect of Bacteriophages against Biofilms of Escherichia coli on Food Processing Surfaces. Microorganisms 2024; 12:366. [PMID: 38399770 PMCID: PMC10892694 DOI: 10.3390/microorganisms12020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial adhesion to food processing surfaces is a threat to human health, as these surfaces can serve as reservoirs of pathogenic bacteria. Escherichia coli is an easily biofilm-forming bacterium involved in surface contamination that can lead to the cross-contamination of food. Despite the application of disinfection protocols, contamination through food processing surfaces continues to occur. Hence, new, effective, and sustainable alternative approaches are needed. Bacteriophages (or simply phages), viruses that only infect bacteria, have proven to be effective in reducing biofilms. Here, phage phT4A was applied to prevent and reduce E. coli biofilm on plastic and stainless steel surfaces at 25 °C. The biofilm formation capacity of phage-resistant and sensitive bacteria, after treatment, was also evaluated. The inactivation effectiveness of phage phT4A was surface-dependent, showing higher inactivation on plastic surfaces. Maximum reductions in E. coli biofilm of 5.5 and 4.0 log colony-forming units (CFU)/cm2 after 6 h of incubation on plastic and stainless steel, respectively, were observed. In the prevention assays, phage prevented biofilm formation in 3.2 log CFU/cm2 after 12 h. Although the emergence of phage-resistant bacteria has been observed during phage treatment, phage-resistant bacteria had a lower biofilm formation capacity compared to phage-sensitive bacteria. Overall, the results suggest that phages may have applicability as surface disinfectants against pathogenic bacteria, but further studies are needed to validate these findings using phT4A under different environmental conditions and on different materials.
Collapse
Affiliation(s)
| | | | | | | | - Carla Pereira
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| | - Adelaide Almeida
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| |
Collapse
|
9
|
Hou Y, Wu Z, Ren L, Chen Y, Zhang YA, Zhou Y. Characterization and application of a lytic jumbo phage ZPAH34 against multidrug-resistant Aeromonas hydrophila. Front Microbiol 2023; 14:1178876. [PMID: 37415809 PMCID: PMC10321303 DOI: 10.3389/fmicb.2023.1178876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Aeromonas hydrophila is an emerging foodborne pathogen causing human gastroenteritis. Aeromonas species isolated from food such as seafood presented multidrug-resistance (MDR), raising serious concerns regarding food safety and public health. The use of phages to infect bacteria is a defense against drug-resistant pathogens. In this study, phage ZPAH34 isolated from the lake sample exerted lytic activity against MDR A. hydrophila strain ZYAH75 and inhibited the biofilm on different food-contacting surfaces. ZPAH34 has a large dsDNA genome of 234 kb which belongs to a novel jumbo phage. However, its particle size is the smallest of known jumbo phages so far. Based on phylogenetic analysis, ZPAH34 was used to establish a new genus Chaoshanvirus. Biological characterization revealed that ZPAH34 exhibited wide environmental tolerance, and a high rapid adsorb and reproductive capacity. Food biocontrol experiments demonstrated that ZPAH34 reduces the viable count of A. hydrophila on fish fillets (2.31 log) and lettuce (3.28 log) with potential bactericidal effects. This study isolated and characterized jumbo phage ZPAH34 not only enriched the understanding of phage biological entity diversity and evolution because of its minimal virion size with large genome but also was the first usage of jumbo phage in food safety to eliminate A. hydrophila.
Collapse
Affiliation(s)
- Yuting Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Ren
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Azari R, Yousefi MH, Taghipour Z, Wagemans J, Lavigne R, Hosseinzadeh S, Mazloomi SM, Vallino M, Khalatbari-Limaki S, Berizi E. Application of the lytic bacteriophage Rostam to control Salmonella enteritidis in eggs. Int J Food Microbiol 2023; 389:110097. [PMID: 36731200 DOI: 10.1016/j.ijfoodmicro.2023.110097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/16/2023]
Abstract
Foodborne Salmonella enteritidis infections place human health at risk, driven by regular outbreaks and individual cases by different contaminated food materials. This study was conducted to characterize and employ a single bacteriophage as a potential biocontrol agent. Phage Rostam was isolated, characterized and then applied as biocontrol agent against S. enteritidis in liquid whole eggs and eggshell. Rostam is a novel myovirus belonging to the Rosemountvirus genus and active against Escherichia coli and Salmonella spp. Rostam is stable in a pH range from 4 to 10, a salt concentration of 1-9 %, whereas UV radiation gradually reduces phage stability, and its 53 kb genome sequence indicates this phage does not contain known toxins or lysogeny-associated genes. Its latent period is short with a burst size of 151 PFU/cell, under standard growth conditions. Killing curves indicate that at higher multiplicities of infection (MOI), the reduction in S. enteritidis count is more pronounced. Phage Rostam (MOI 10,000) reduces S. enteritidis growth to below the detection limit at 4 °C in both liquid whole eggs and on the eggshell within 24 h. Due to its high lytic activity and stability in relevant conditions, Rostam has the potential to be an efficient biopreservative for egg and egg products.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zohreh Taghipour
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135 Turin, Italy
| | - Sepideh Khalatbari-Limaki
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Characterization and Genomic Analysis of a Novel Lytic Phage DCp1 against Clostridium perfringens Biofilms. Int J Mol Sci 2023; 24:ijms24044191. [PMID: 36835606 PMCID: PMC9965233 DOI: 10.3390/ijms24044191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is one of the foremost pathogens responsible for diarrhea in foals. As antibiotic resistance increases, phages that specifically lyse bacteria are of great interest to us with regard to C. perfringens. In this study, a novel C. perfringens phage DCp1 was isolated from the sewage of a donkey farm. Phage DCp1 had a non-contractile short tail (40 nm in length) and a regular icosahedral head (46 nm in diameter). Whole-genome sequencing indicated that phage DCp1 had a linear double-stranded DNA genome with a total length of 18,555 bp and a G + C content of 28.2%. A total of 25 ORFs were identified in the genome, 6 of which had been assigned to functional genes, others were annotated to encode hypothetical proteins. The genome of phage DCp1 lacked any tRNA, virulence gene, drug resistance gene, or lysogenic gene. Phylogenetic analysis indicated that phage DCp1 belonged to the family Guelinviridae, Susfortunavirus. Biofilm assay showed that phage DCp1 was effective in inhibiting the formation of C. perfringens D22 biofilms. Phage DCp1 could completely degrade the biofilm after 5 h of interaction. The current study provides some basic information for further research on phage DCp1 and its application.
Collapse
|
12
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
13
|
Nagel TE, Mutai IJ, Josephs T, Clokie MR. A Brief History of Phage Research and Teaching in Africa. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:184-193. [PMID: 36793885 PMCID: PMC9917308 DOI: 10.1089/phage.2022.29037.inp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
| | | | - Theodore Josephs
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Control Measurements of Escherichia coli Biofilm: A Review. Foods 2022; 11:foods11162469. [PMID: 36010469 PMCID: PMC9407607 DOI: 10.3390/foods11162469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli (E. coli) is a common pathogen that causes diarrhea in humans and animals. In particular, E. coli can easily form biofilm on the surface of living or non-living carriers, which can lead to the cross-contamination of food. This review mainly summarizes the formation process of E. coli biofilm, the prevalence of biofilm in the food industry, and inhibition methods of E. coli biofilm, including chemical and physical methods, and inhibition by bioactive extracts from plants and animals. This review aims to provide a basis for the prevention and control of E. coli biofilm in the food industry.
Collapse
|
15
|
Rahman SME, Islam SMA, Xi Q, Han R, Oh DH, Wang J. Control of bacterial biofilms in red meat - A systematic review. Meat Sci 2022; 192:108870. [PMID: 35671629 DOI: 10.1016/j.meatsci.2022.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Biofilm formation is a serious threat in the meat industry, mainly since it aids food-borne pathogen survival. Biofilms are often difficult to eliminate, and it is essential to understand the best possible deployable measures to remove or inactivate biofilms. We systematically reviewed the published in vitro studies that investigated various methods for removing biofilms in red meat. Publicly available databases, including Google Scholar and PubMed, were queried for relevant studies. The search was restricted to articles published in the English language from 2010 to 2021. We mined a total of 394 studies, of which 12 articles were included in this review. In summary, the studies demonstrated the inhibitory effect of various methods, including the use of bacteriophages, dry heat, cold atmospheric pressure, ozone gas, oils, and acids, on red meat extract or red meat culture. This systematic review suggests that in addition to existing sanitation and antibiotic procedures, other methods, such as the use of phage cocktails and different oils as nanoparticles, yield positive outcomes and may be taken from the in vitro setting to industry with prior validation of the techniques.
Collapse
Affiliation(s)
- S M E Rahman
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - S M A Islam
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Engineering Technology Research Center of Food Quality and Safety Control, Qingdao 266109, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Engineering Technology Research Center of Food Quality and Safety Control, Qingdao 266109, China.
| |
Collapse
|
16
|
Wang D, Flint SH, Palmer JS, Gagic D, Fletcher GC, On SL. Global expansion of Vibrio parahaemolyticus threatens the seafood industry: Perspective on controlling its biofilm formation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
18
|
Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022; 14:pharmaceutics14020427. [PMID: 35214158 PMCID: PMC8875263 DOI: 10.3390/pharmaceutics14020427] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial biofilms formed by pathogens are known to be hundreds of times more resistant to antimicrobial agents than planktonic cells, making it extremely difficult to cure biofilm-based infections despite the use of antibiotics, which poses a serious threat to human health. Therefore, there is an urgent need to develop promising alternative antimicrobial therapies to reduce the burden of drug-resistant bacterial infections caused by biofilms. As natural enemies of bacteria, bacteriophages (phages) have the advantages of high specificity, safety and non-toxicity, and possess great potential in the defense and removal of pathogenic bacterial biofilms, which are considered to be alternatives to treat bacterial diseases. This work mainly reviews the composition, structure and formation process of bacterial biofilms, briefly discusses the interaction between phages and biofilms, and summarizes several strategies based on phages and their derivatives against biofilms and drug-resistant bacterial infections caused by biofilms, serving the purpose of developing novel, safe and effective treatment methods against biofilm-based infections and promoting the application of phages in maintaining human health.
Collapse
Affiliation(s)
| | | | | | - Ying Shi
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| | - Qihe Chen
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| |
Collapse
|
19
|
Sun Z, Mandlaa, Wen H, Ma L, Chen Z. Isolation, characterization and application of bacteriophage PSDA-2 against Salmonella Typhimurium in chilled mutton. PLoS One 2022; 17:e0262946. [PMID: 35073376 PMCID: PMC8786174 DOI: 10.1371/journal.pone.0262946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/08/2022] [Indexed: 12/01/2022] Open
Abstract
Salmonella is a common foodborne pathogen, especially in meat and meat products. Lytic phages are promising alternatives to conventional methods for Salmonella biocontrol in food and food processing. In this study, a virulent bacteriophage (PSDA-2) against Salmonella enterica serovar Typhimurium was isolated from the sewage and it was found that PSDA-2 belongs to Cornellvirus genus of Siphoviridae family by morphological and phylogenetic analysis. Based on the one-step growth curve, PSDA-2 has a short latent period (10 min) and a high burst size (120 PFU/cell). The stability test in vitro reveals that PSDA-2 is stable at 30–70°C and pH 3–10. Bioinformatics analysis show that PSDA-2 genome consists of 40,062 bp with a GC content of 50.21% and encodes 63 open reading frames (ORFs); no tRNA genes, lysogenic genes, drug resistance genes and virulence genes were identified in the genome. Moreover, the capacity for PSDA-2 to control Salmonella Typhimurium in chilled mutton was investigated. The results show that incubation of PSDA-2 at 4°C reduced recoverable Salmonella by 1.7 log CFU/mL and 2.1 log CFU/mL at multiplicity of infection (MOI) of 100 and 10,000 respectively, as relative to the phage-excluded control. The features of phage PSDA-2 suggest that it has the potential to be an agent to control Salmonella.
Collapse
|
20
|
Application of Bacteriophages on Shiga Toxin-Producing Escherichia coli (STEC) Biofilm. Antibiotics (Basel) 2021; 10:antibiotics10111423. [PMID: 34827361 PMCID: PMC8614735 DOI: 10.3390/antibiotics10111423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.
Collapse
|
21
|
González-Gómez JP, González-Torres B, Guerrero-Medina PJ, López-Cuevas O, Chaidez C, Avila-Novoa MG, Gutiérrez-Lomelí M. Efficacy of Novel Bacteriophages against Escherichia coli Biofilms on Stainless Steel. Antibiotics (Basel) 2021; 10:1150. [PMID: 34680731 PMCID: PMC8532843 DOI: 10.3390/antibiotics10101150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Biofilm formation by E. coli is a serious threat to meat processing plants. Chemical disinfectants often fail to eliminate biofilms; thus, bacteriophages are a promising alternative to solve this problem, since they are widely distributed, environmentally friendly, and nontoxic to humans. In this study, the biofilm formation of 10 E. coli strains isolated from the meat industry and E. coli ATCC BAA-1430 and ATCC 11303 were evaluated. Three strains, isolated from the meat contact surfaces, showed adhesion ability and produced extracellular polymeric substances. Biofilms of these three strains were developed onto stainless steel (SS) surfaces and enumerated at 2, 12, 24, 48, and 120 h, and were visualized by scanning electron microscopy. Subsequently, three bacteriophages showing podovirus morphology were isolated from ground beef and poultry liver samples, which showed lytic activity against the abovementioned biofilm-forming strains. SS surfaces with biofilms of 2, 14, and 48 h maturity were treated with mixed and individual bacteriophages at 8 and 9 log10 PFU/mL for 1 h. The results showed reductions greater than 6 log10 CFU/cm2 as a result of exposing SS surfaces with biofilms of 24 h maturity to 9 log10 PFU/mL of bacteriophages; however, the E. coli and bacteriophage strains, phage concentration, and biofilm development stage had significant effects on biofilm reduction (p < 0.05). In conclusion, the isolated bacteriophages showed effectiveness at reducing biofilms of isolated E. coli; however, it is necessary to increase the libraries of phages with lytic activity against the strains isolated from production environments.
Collapse
Affiliation(s)
- Jean Pierre González-Gómez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47820, Mexico; (J.P.G.-G.); (B.G.-T.); (P.J.G.-M.)
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Culiacán 80110, Mexico; (O.L.-C.); (C.C.)
| | - Berenice González-Torres
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47820, Mexico; (J.P.G.-G.); (B.G.-T.); (P.J.G.-M.)
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Culiacán 80110, Mexico; (O.L.-C.); (C.C.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47820, Mexico; (J.P.G.-G.); (B.G.-T.); (P.J.G.-M.)
| | - Osvaldo López-Cuevas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Culiacán 80110, Mexico; (O.L.-C.); (C.C.)
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Culiacán 80110, Mexico; (O.L.-C.); (C.C.)
| | - María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47820, Mexico; (J.P.G.-G.); (B.G.-T.); (P.J.G.-M.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47820, Mexico; (J.P.G.-G.); (B.G.-T.); (P.J.G.-M.)
| |
Collapse
|
22
|
Amankwah S, Abdella K, Kassa T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol Sci Appl 2021; 14:161-177. [PMID: 34548785 PMCID: PMC8449863 DOI: 10.2147/nsa.s325594] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.
Collapse
Affiliation(s)
- Stephen Amankwah
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Accra Medical Centre, Accra, Ghana
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
23
|
Makumi A, Mhone AL, Odaba J, Guantai L, Svitek N. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. Antibiotics (Basel) 2021; 10:antibiotics10091085. [PMID: 34572667 PMCID: PMC8470919 DOI: 10.3390/antibiotics10091085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
One of the world’s fastest-growing human populations is in Sub-Saharan Africa (SSA), accounting for more than 950 million people, which is approximately 13% of the global population. Livestock farming is vital to SSA as a source of food supply, employment, and income. With this population increase, meeting this demand and the choice for a greater income and dietary options come at a cost and lead to the spread of zoonotic diseases to humans. To control these diseases, farmers have opted to rely heavily on antibiotics more often to prevent disease than for treatment. The constant use of antibiotics causes a selective pressure to build resistant bacteria resulting in the emergence and spread of multi-drug resistant (MDR) organisms in the environment. This necessitates the use of alternatives such as bacteriophages in curbing zoonotic pathogens. This review covers the underlying problems of antibiotic use and resistance associated with livestock farming in SSA, bacteriophages as a suitable alternative, what attributes contribute to making bacteriophages potentially valuable for SSA and recent research on bacteriophages in Africa. Furthermore, other topics discussed include the creation of phage biobanks and the challenges facing this kind of advancement, and the regulatory aspects of phage development in SSA with a focus on Kenya.
Collapse
|
24
|
Li Y, Wu X, Chen H, Zhao Y, Shu M, Zhong C, Wu G. A bacteriophage JN02 infecting multidrug‐resistant Shiga toxin‐producing
Escherichia
coli
: isolation, characterisation and application as a biocontrol agent in foods. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ya‐Ke Li
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Xin Wu
- Jiangxi Province Food Control Institute Nanchang China
| | - Hu Chen
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Yuan‐Yang Zhao
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Mei Shu
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Chan Zhong
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Guo‐Ping Wu
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| |
Collapse
|
25
|
Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Res Int 2021; 147:110492. [PMID: 34399488 DOI: 10.1016/j.foodres.2021.110492] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023]
Abstract
Salmonella is one of the most common foodborne pathogens around the world. Phages are envisioned as a new strategy to control foodborne pathogenic bacteria and food safety. A Salmonella specific lytic phage vB_SalS-LPSTLL (LPSTLL) was selected for food applications on the basis of lytic range, lytic efficiency, functional stability and characteristics. Phage LPSTLL was able to lyse 11 Salmonella serotypes, which represents the broadest range reported Salmonella phages, and was able to suppress the growth of Salmonella enterica in liquid culture over nine hours. LPSTLL exhibited rapid reproductive activity with a short latent period and a large burst size in one-step growth experiment. LPSTLL remained active over a pH range of 3.0 to 12.0, and at incubation temperatures up to 60 °C for 60 min, indicating wide applicability for food processing and storage. Significant reductions of viable Salmonella were observed in diverse foods (milk, apple juice, chicken and lettuce) with reductions up to 2.8 log CFU/mL recorded for milk. Sensory evaluation indicated that treatment with phage LPSTLL did not alter the visual or tactile quality of food matrices. Genome analysis of LPSTLL indicated the absence of any virulence or antimicrobial resistance genes. Genomic comparisons suggest phage LPSTLL constitutes a novel member of a new genus, the LPSTLLvirus with the potential for Salmonella biocontrol in the food industry.
Collapse
|
26
|
Montso PK, Mnisi CM, Ateba CN, Mlambo V. An Assessment of the Viability of Lytic Phages and Their Potency against Multidrug Resistant Escherichia coli O177 Strains under Simulated Rumen Fermentation Conditions. Antibiotics (Basel) 2021; 10:antibiotics10030265. [PMID: 33807633 PMCID: PMC7999206 DOI: 10.3390/antibiotics10030265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/21/2023] Open
Abstract
Preslaughter starvation and subacute ruminal acidosis in cattle are known to promote ruminal proliferation of atypical enteropathogenic Escherichia coli strains, thereby increasing the risk of meat and milk contamination. Using bacteriophages (henceforth called phages) to control these strains in the rumen is a potentially novel strategy. Therefore, this study evaluated the viability of phages and their efficacy in reducing E. coli O177 cells in a simulated ruminal fermentation system. Fourteen phage treatments were allocated to anaerobic serum bottles containing a grass hay substrate, buffered (pH 6.6–6.8) bovine rumen fluid, and E. coli O177 cells. The serum bottles were then incubated at 39 °C for 48 h. Phage titres quadratically increased with incubation time. Phage-induced reduction of E. coli O177 cell counts reached maximum values of 61.02–62.74% and 62.35–66.92% for single phages and phage cocktails, respectively. The highest E. coli O177 cell count reduction occurred in samples treated with vB_EcoM_366B (62.31%), vB_EcoM_3A1 (62.74%), vB_EcoMC3 (66.67%), vB_EcoMC4 (66.92%), and vB_EcoMC6 (66.42%) phages. In conclusion, lytic phages effectively reduced E. coli O177 cells under artificial rumen fermentation conditions, thus could be used as a biocontrol strategy in live cattle to reduce meat and milk contamination in abattoirs and milking parlours, respectively.
Collapse
Affiliation(s)
- Peter Kotsoana Montso
- Antimicrobial Resistance and Phage Biocontrol Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Correspondence: ; Tel.: +27-73-896-8423
| | - Caven Mguvane Mnisi
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| |
Collapse
|