1
|
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants (Basel) 2024; 13:128. [PMID: 38275653 PMCID: PMC10813149 DOI: 10.3390/antiox13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the 'rancid' off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector.
Collapse
Affiliation(s)
| | | | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (B.S.); (S.U.); (R.S.); (L.D.); (G.V.); (M.S.); (A.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Ciriello M, Cirillo V, Formisano L, De Pascale S, Romano R, Fusco GM, Nicastro R, Carillo P, Kyriacou MC, Soteriou GA, Rouphael Y. Salt-Induced Stress Impacts the Phytochemical Composition and Aromatic Profile of Three Types of Basil in a Genotype-Dependent Mode. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112167. [PMID: 37299145 DOI: 10.3390/plants12112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Basil (Ocimum basilicum L.) is among the most widely used aromatic plants of Lamiaceae, often grown in areas where salinity is an adverse factor. Most studies on the effect of salinity on basil focused on the influence of salt stress on productive traits, while few reported on how it affects the phytochemical composition and the aroma profile. Three basil cultivars (Dark Opal, Italiano Classico, and Purple Ruffles) were grown hydroponically for 34 days with two nutrient solutions that differed in NaCl concentration [no NaCl (Control) and 60 mM NaCl]. Yield, secondary metabolite concentration (β-carotene and lutein), antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reduction antioxidant power (FRAP)], and aroma profile based on composition of volatile organic compounds (VOCs) were appraised in response to salinity applications. Salt stress significantly reduced fresh yield in Italiano Classico and Dark Opal by 43.34 and 31.69%, respectively, while no effect was observed in Purple Ruffles. Furthermore, the salt-stress treatment increased β-carotene and lutein concentrations, DPPH, and FRAP activities, and the total nitrogen content of the latter cultivar. CG-MS analysis revealed significant differences in VOCs composition of the basil cultivars, with Italiano Classico and Dark Opal characterized by the predominance of linalool (average 37.52%), which, however, was negatively affected by salinity. In Purple Ruffles, the predominant VOC compound, estragole (79.50%), was not affected by the deleterious effects of NaCl-induced stress.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Georgios A Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
Tsurunaga Y, Kanou M. Effects of Steam Treatment Time and Drying Temperature on Properties of Sweet Basil's Antioxidants, Aroma Compounds, Color, and Tissue Structure. Foods 2023; 12:foods12081663. [PMID: 37107458 PMCID: PMC10137634 DOI: 10.3390/foods12081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
This study has developed a production method for high-quality Genova tea with excellent antioxidant properties. The antioxidant properties of each part of the Genova basil plant (i.e., leaves, flowers, and stems) were determined; the leaves and flowers showed higher antioxidant values. We also investigated the effects of steaming time and drying temperature on the antioxidant composition and properties, color, and aroma using leaves with good yield potential and high antioxidant properties. The color showed excellent green color retention with freeze- and machine-drying at 40 °C without steam-heat treatment. Steaming for 2 min was effective in maintaining high values of total polyphenol content, antioxidant properties (1,1-diphenyl-2-picrylhydrazine and hydrophilic oxygen radical adsorption capacity), rosmarinic acid, and chicoric acid, and a drying temperature of ≤40 °C was recommended. Freeze-drying without steaming was the best method to retain all three of Genova's main aroma components, Linalool, trans-alpha-bergamotene, and 2-methoxy-3-(2-propenyl)-phenol. The method developed in this study can improve the quality of dried Genova products and be applied in the food industry, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yoko Tsurunaga
- Faculty of Human Science, Shimane University, Shimane 690-8504, Japan
| | - Mina Kanou
- Graduate School of Human and Social Sciences, Shimane University, Shimane 690-8504, Japan
| |
Collapse
|
4
|
Turrini F, Farinini E, Leardi R, Grasso F, Orlandi V, Boggia R. A Preliminary Color Study of Different Basil-Based Semi-Finished Products during Their Storage. Molecules 2022; 27:2059. [PMID: 35408458 PMCID: PMC9000349 DOI: 10.3390/molecules27072059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Basil-based semi-finished products, which are mainly used as an intermediate to produce the typical pesto sauce, are prepared and exported all over the world. Color is a fundamental organoleptic requirement for the acceptability of these semi-finished products by the manufacturers of the pesto sauce. Some alternative formulations, which adjust the typical industrial recipe by both changing the preservative agent (ascorbic acid, citric acid, or a mixture of both) and introducing a preliminary thermic treatment (blast chilling), were evaluated. In this work, a fast and non-destructive spectrophotometric analysis, to monitor the color variations in these food products during their shelf-life, was proposed. The raw diffuse reflectance spectra (380-900 nm) obtained by a UV-visible spectrophotometer, endowed with an integrating sphere, together with the CIELab parameters (L*, a*, b*) automatically obtained from these, were considered, and elaborated using multivariate statistical analysis (principal component analysis). From this preliminary study, blast chilling, together with the use of ascorbic acid, proved to be the best solution to better preserve the color of these products during their shelf-life.
Collapse
Affiliation(s)
- Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (E.F.); (R.L.); (F.G.); (V.O.); (R.B.)
| | | | | | | | | | | |
Collapse
|
5
|
Lopez P, van Sisseren M, De Marco S, Jekel A, de Nijs M, Mol HG. A straightforward method to determine flavouring substances in food by GC–MS. Food Chem 2015; 174:407-16. [DOI: 10.1016/j.foodchem.2014.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/17/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
|
6
|
Yang C, Wang J, Li D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 2013; 799:8-22. [PMID: 24091369 DOI: 10.1016/j.aca.2013.07.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants.
Collapse
Affiliation(s)
- Cui Yang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | | | | |
Collapse
|
7
|
BOGGIA RAFFAELLA, LEARDI RICCARDO, ZUNIN PAOLA, BOTTINO ALDO, CAPANNELLI GUSTAVO. DEHYDRATION OF PDO GENOVESE BASIL LEAVES (OCIMUM BASILICUM MAXIMUM
L. CV GENOVESE GIGANTE) BY DIRECT OSMOSIS. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00682.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Amadei G, Ross BM. Quantification of character-impacting compounds in Ocimum basilicum and 'Pesto alla Genovese' with selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:219-225. [PMID: 22223305 DOI: 10.1002/rcm.5293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Basil (Ocimum basilicum) is an important flavourant plant which constitutes the major ingredient of the pasta sauce 'Pesto alla Genovese'. The characteristic smell of basil stems mainly from a handful of terpenoids (methyl cinnamate, eucalyptol, linalool and estragole), the concentration of which varies according to basil cultivars. The simple and rapid analysis of the terpenoid constituents of basil would be useful as a means to optimise harvesting times and to act as a quality control process for basil-containing foodstuffs. Classical analytical techniques such as gas chromatography/mass spectrometry (GC/MS) are, however, slow, technically demanding and therefore less suitable for routine analysis. A new chemical ionisation technique which allows real-time quantification of traces gases, Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), was therefore utilised to determine its usefulness for the assay of terpenoid concentrations in basil and pesto sauce headspace. Trace gas analysis was performed using the NO(+) precursor ion which minimised interference from other compounds. Character-impacting compound concentration was measured in basil headspace with good reproducibility and statistically significant differences were observed between cultivars. Quantification of linalool in pesto sauce headspace proved more difficult due to the presence of interfering compounds. This was resolved by careful selection of reaction product ions which allowed us to detect differences between various commercial brands of pesto. We conclude that SIFT-MS may be a valid tool for the fast and reproducible analysis of flavourant terpenoids in basil and basil-derived foodstuffs.
Collapse
Affiliation(s)
- Gianluca Amadei
- Northern Ontario School of Medicine and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | | |
Collapse
|
9
|
Rodrigues C, Portugal F, Nogueira J. Static headspace analysis using polyurethane phases – Application to roasted coffee volatiles characterization. Talanta 2012; 89:521-5. [DOI: 10.1016/j.talanta.2011.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/25/2011] [Accepted: 12/04/2011] [Indexed: 11/26/2022]
|
10
|
Volatile distribution in garlic (Allium sativum L.) by solid phase microextraction (SPME) with different processing conditions. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0108-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|