1
|
Lozano-Bilbao E, Jurado-Ruzafa A, Hardisson A, Lorenzo JM, González JA, González-Weller D, Paz S, Rubio C, Techetach M, Guillén F, Gutiérrez ÁJ. Tracing metals in Mediterranean and Atlantic Sardina pilchardus: Unveiling impacts on food safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178042. [PMID: 39674159 DOI: 10.1016/j.scitotenv.2024.178042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
This study evaluates the concentration of metals and trace elements (Al, Cd, Cu, Fe, Li, Pb, Zn) in the muscle tissue of Sardina pilchardus from three northeast Atlantic localities (Lisbon, Canary Islands, Rabat) and two western Mediterranean sites (Málaga, Cartagena) to assess food safety and environmental impact. A total of 100 sardines were sampled between January and June 2019, with specimens collected, homogenized by size and weight, and analyzed for metal content using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results show significant geographical variation in metal concentrations, with Cartagena exhibiting the highest levels due to industrial and urban activities, while the Canary Islands had the lowest, likely influenced by geographical isolation and stringent environmental regulations. Intermediate levels were observed in Lisbon, Rabat, and Málaga, with Rabat ranking second highest. Importantly, none of the samples exceeded EU safety limits for lead (0.3 mg/kg) or cadmium (0.25 mg/kg), confirming their suitability for human consumption regarding metal content. These findings emphasize the role of local environmental and industrial factors in influencing metal bioaccumulation in marine ecosystems. Genetic and ecological dynamics, such as the Almería-Oran Front and the Canary Islands' isolation, likely contribute to these patterns. The study underscores the importance of continuous monitoring to safeguard food safety and marine ecosystem health. Despite Cartagena's elevated contamination levels, which pose a higher potential risk if sardine consumption is frequent, sardines from all locations remain within safety limits. Moving forward, research should prioritize long-term monitoring and explore genetic and ecological factors influencing bioaccumulation trends, contributing to sustainable management and effective pollution control measures. This highlights the interconnectedness of environmental health and human dietary safety, emphasizing the need for a proactive approach to monitoring marine contamination.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain.
| | - Alba Jurado-Ruzafa
- Spanish Institute of Oceanography, Oceanographic Center of the Canary Islands (IEO, CSIC), Santa Cruz de Tenerife 38180, Spain
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - José M Lorenzo
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - José A González
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Servicio Público Canario de Salud, Laboratorio Central, Santa Cruz de Tenerife, 38006 Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Mohamed Techetach
- Environmental and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Morocco
| | - Fernando Guillén
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Wu M, Tan G, Shi R, Chen D, Qin Y, Han J. In vitro bioaccessibility of inorganic and organic copper in different diets. Poult Sci 2024; 103:104206. [PMID: 39214055 PMCID: PMC11402034 DOI: 10.1016/j.psj.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
In poultry diets, copper is an essential nutrient that is critical for various physiological functions. Although copper sulfate is commonly used due to its cost-effectiveness, organic copper sources are gaining popularity because of their superior production outcomes and environmental benefits. Nevertheless, understanding the distinct bioaccessibility of inorganic and organic copper in diverse dietary setting remains limited. This study investigated the bioaccessibility of copper sulfate, copper amino acid chelate, and copper proteinate in the intestine via in vitro digestion and in situ dialysis. The results showed significant differences in the molecular size distribution of compounds formed by different copper salts within the intestinal environment, thereby leading to varying bioaccessibility. Copper sulfate has a bioaccessibility of 47 % ± 4%, which is significantly lower than copper amino acid chelate and copper proteinate (63% ± 5%, and 60% ± 4%, respectively) in purified diet systems. Similarly, in whey protein systems, sulfate records 54% ± 10% bioaccessibility compared to 78% ± 9% and 76% ± 5% for copper amino acid chelate and copper proteinate. Coexisting feed ingredients have a significant impact on copper bioaccessibility. Copper sulfate forms precipitates, reducing its bioaccessibility to 34% ± 1% in sodium nitrate solution. The addition of digestive enzyme increases the bioaccessibility of copper sulfate to 81% ± 2% by providing organic ligands. Digestive enzyme also enhanced the bioaccessibility of copper proteinate from 36% ± 4% to 81% ± 4% by degrading its ligands. However, feed ingredients may decrease copper bioaccessibility by forming macromolecular complexes with copper, as all the organic ligands can competitively bind with copper in the intestine. These findings emphasize the importance of considering copper salt types and diet composition in animal nutrition practices.
Collapse
Affiliation(s)
- Min Wu
- Institute of Ecology & Health , Hangzhou Vocational & Technical College, Hangzhou 310018, China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Guofeng Tan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Ruirui Shi
- Institute of Chemical Product Inspection, Zhejiang Fangyuan Test Group Co., LTD, Hangzhou 310013, China
| | - Dewen Chen
- Institute of Ecology & Health , Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| |
Collapse
|
3
|
Al-Soufi S, Miranda M, García J, Muíños A, Cegarra E, Nicodemus N, Herrero-Latorre C, López-Alonso M. Elements in Serum, Muscle, Liver, and Kidney of Rabbits Fed Macroalgae-Supplemented Diets. Mar Drugs 2024; 22:263. [PMID: 38921574 PMCID: PMC11204605 DOI: 10.3390/md22060263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The addition of marine macroalgae to animal feed has garnered interest due to the demonstrated benefits of gut health in many livestock species. Most macroalgae have a higher mineral content than terrestrial vegetables, making them an attractive, sustainable source of minerals. However, some macroalgae contain elevated concentrations of iodine and arsenic, which may be transferred to the meat of livestock fed with macroalgae. This study evaluated the mineral profile of rabbit serum, muscle, liver, and kidney of rabbits fed diets supplemented with different marine macroalgae, with the goal of improving post-weaning gut health and reducing reliance on antibiotics. We found increased deposition of iodine in muscle, liver, and kidney due to macroalgae supplementation, which is particularly promising for regions with low iodine endemicity. Higher, though relatively low arsenic concentrations, compared to those in other animal meats and food sources, were also detected in the muscle, liver, and kidney of macroalgae-fed rabbits. The absence of apparent interactions with other micronutrients, particularly selenium, suggests that the inclusion of macroalgae in rabbit diets will not affect the overall mineral content. Enhanced bioavailability of elements such as phosphorus and iron may provide additional benefits, potentially reducing the need for mineral supplementation.
Collapse
Affiliation(s)
- Sabela Al-Soufi
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.A.-S.); (M.L.-A.)
| | - Marta Miranda
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Javier García
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.G.); (N.N.)
| | | | | | - Nuria Nicodemus
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.G.); (N.N.)
| | - Carlos Herrero-Latorre
- Departamento de Química Analítica, Nutrición e Bromatoloxía, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Marta López-Alonso
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.A.-S.); (M.L.-A.)
| |
Collapse
|
4
|
Bawiec P, Sawicki J, Łasińska-Pracuta P, Czop M, Sowa I, Helon P, Pietrzak K, Koch W. In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market. Nutrients 2024; 16:1022. [PMID: 38613055 PMCID: PMC11013223 DOI: 10.3390/nu16071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Only some of the nutrients consumed with food are able to be absorbed from the gastrointestinal (GI) tract and enter the systemic circulation (blood). Because some elements are essential minerals for humans, their beneficial effect on the body depends significantly on their bioavailable amount (the fraction that can be absorbed and used by the organism). The term bioavailability, which is very often used to describe the part of nutrients that is able to be absorbed, is influenced by various factors of exogenous and endogenous origin. The main purpose of the study was to assess the relative bioavailability of Cr from selected dietary supplements in the presence of various types of diets, which significantly influence the level of bioavailability. The research was performed using a previously developed and optimized two-stage in vitro digestion model using cellulose dialysis tubes of food rations with the addition of pharmaceutical products. Cr was determined using the ICP-OES and GF-AAS methods, depending on its concentration in particular fractions. The determined relative bioavailability ranged between 2.97 and 3.70%. The results of the study revealed that the type of diet, the chemical form of the molecule, and the pharmaceutical form of preparations have a significant influence on the bioavailability of Cr.
Collapse
Affiliation(s)
- Piotr Bawiec
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Paulina Łasińska-Pracuta
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11 Str., 20-080 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Schinzla 13a Str., 27-600 Sandomierz, Poland;
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| |
Collapse
|
5
|
Lozano-Bilbao E, Jurado-Ruzafa A, Hardisson A, González-Weller D, Paz S, Techetach M, Gutiérrez ÁJ. Metal content in Sardina pilchardus during the period 2014-2022 in the Canary Islands (Atlantic EC, Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16066-16075. [PMID: 38236572 DOI: 10.1007/s11356-024-32010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The contamination present in an organism varies depending on biological and oceanographic conditions, so monitoring the same species is of great importance to understand the state of the ecosystem. Fifteen specimens in Sardina pilchardus between 12 and 15 cm in total length were collected during the second half of January of each of the study years (2014, 2016, 2018, 2020 and 2022). Samples were analyzed with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to measure metals (Al, Cd, Cu, Fe, Li, Ni, Pb and Zn) in mg/Kg. There was a progressive decrease in Pb content over the period, with the highest concentration being obtained in 2014 (0.086 ± 0.065 mg/kg). Locally important oceanic-atmospheric events may occur in the study period that strongly impact the tissue composition of marine organisms. In this case, discontinuous trends were evident in some of the metal concentrations analyzed in the muscle of European sardine in the Canary Islands.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain.
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (I-UNAT), Universidad de Las Palmas de Gran Canaria. Campus de Tafira, Las Palmas de Gran Canaria, 35017, Las Palmas, Spain.
| | - Alba Jurado-Ruzafa
- Spanish Institute of Oceanography, Oceanographic Center of the Canary Islands (IEO, CSIC), 38180, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Servicio Público Canario de Salud, Laboratorio Central. Santa Cruz de Tenerife, 38006, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Mohamed Techetach
- Environmental and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, Morocco
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| |
Collapse
|
6
|
Zagórska J, Pietrzak K, Kukula-Koch W, Czop M, Laszuk J, Koch W. Influence of Diet on the Bioavailability of Active Components from Zingiber officinale Using an In Vitro Digestion Model. Foods 2023; 12:3897. [PMID: 37959015 PMCID: PMC10648287 DOI: 10.3390/foods12213897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Ginger (Zingiber officinale Rosc.) is a plant known all over the world that is used as a spice and as an ingredient in drinks, dietary supplements, and cosmetics. The growing availability of its fresh rhizomes makes it even more likely to be used in the diet, mainly due to its beneficial health properties and high content of polyphenols (gingerols and shogaols). The main goal and motivation of the authors was to assess the bioavailability of active substances contained in the extract from ginger rhizomes in the presence of various types of diets using the in vitro digestion method, enabling simulation of the processes occurring during the digestion and absorption of metabolites in the small intestine. For the qualitative and quantitative analyses, the HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) and HPLC (High Performance Liquid Chromatography) techniques were used, respectively. Based on the obtained results, it was found that the best bioavailability of the selected ginger polyphenols (6-gingerol, 8-gingerdione, 8-shogaol, and 10-gingerdione) was estimated for a high-fiber diet, while the weakest results were obtained for standard and basic diets. In the case of the high-fiber diet, the bioavailability of the mentioned compounds was estimated as 33.3, 21.4, 6.73, and 21.0%, while for the basic diet, it was only 21.3, 5.3, 2.0, and 1.0%, respectively.
Collapse
Affiliation(s)
- Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (J.L.)
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (J.L.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland;
| | - Julia Laszuk
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (J.L.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (J.L.)
| |
Collapse
|
7
|
Baghel RS, Choudhary B, Pandey S, Pathak PK, Patel MK, Mishra A. Rehashing Our Insight of Seaweeds as a Potential Source of Foods, Nutraceuticals, and Pharmaceuticals. Foods 2023; 12:3642. [PMID: 37835294 PMCID: PMC10573080 DOI: 10.3390/foods12193642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In a few Southeast Asian nations, seaweeds have been a staple of the cuisine since prehistoric times. Seaweeds are currently becoming more and more popular around the world due to their superior nutritional value and medicinal properties. This is because of rising seaweed production on a global scale and substantial research on their composition and bioactivities over the past 20 years. By reviewing several articles in the literature, this review aimed to provide comprehensive information about the primary and secondary metabolites and various classes of bioactive compounds, such as polysaccharides, polyphenols, proteins, and essential fatty acids, along with their bioactivities, in a single article. This review also highlights the potential of seaweeds in the development of nutraceuticals, with a particular focus on their ability to enhance human health and overall well-being. In addition, we discuss the challenges and potential opportunities associated with the advancement of pharmaceuticals and nutraceuticals derived from seaweeds, as well as their incorporation into different industrial sectors. Furthermore, we find that many bioactive constituents found in seaweeds have demonstrated potential in terms of different therapeutic attributes, including antioxidative, anti-inflammatory, anticancer, and other properties. In conclusion, seaweed-based bioactive compounds have a huge potential to play an important role in the food, nutraceutical, and pharmaceutical sectors. However, future research should pay more attention to developing efficient techniques for the extraction and purification of compounds as well as their toxicity analysis, clinical efficacy, mode of action, and interactions with regular diets.
Collapse
Affiliation(s)
- Ravi S. Baghel
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji 403004, Goa, India;
| | - Babita Choudhary
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sonika Pandey
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7528809, Israel;
| | - Pradeep Kumar Pathak
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Oura M, Papry RI, Kato Y, Nakamura Y, Kosugi C, Hong WK, Mashio AS, Hasegawa H. A new evaluation system of iron bioavailability in seaweed. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105947. [PMID: 36934509 DOI: 10.1016/j.marenvres.2023.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
In marine ecosystems, the avid binding of iron (Fe) to organic ligands influences Fe bioavailability in seaweed. This study aimed to elucidate Fe's biological availability to seaweed and develop a simple and rapid bioassay method as a new evaluation system. Undaria pinnatifida was used as a model seaweed species and the actual seaweed samples were collected using the 0.5 m × 0.5 m quadrat from the Mashike Bay area of Hokkaido, Japan. Chlorophyll fluorescence measurements were utilized as an index to evaluate the biological -effectiveness of Fe and compared with the results of culture tests based on growth. The effect of Fe content on media, pre-culture, concentrations and types of chelating and reducing agents in clearing solutions, cleaning time, Fe removal effect, and resistance to seaweed were systematically optimized to obtain the maximum efficacy of the washing solution. A bioassay was developed to evaluate the Fe environment by combining chlorophyll fluorescence measurements. The findings suggest that the tolerance of seaweeds to the wash solution is strongly influenced by the concentrations of the chelating and reducing agents than their types. Washing with 0.02 M Ti-Citrate/EDTA solution for 80 s was the most effective in terms of maximum Fe removal with minimum cell damage. The application of pre-culture and chemical pre-treatment methods under Fe deficiency to the culture strain confirmed the maximum reproducibility in the culture test. Finally, the developed method was applied to actual seaweed samples and was found to be applicable to many seaweed species. However, the method was less robust for some seaweed species and depended on the seaweed growth stage.
Collapse
Affiliation(s)
- Masahiro Oura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Rimana Islam Papry
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan; Department of Environmental Science, College of Agricultural Sciences, IUBAT- International University of Business Agriculture and Technology, Sector 10, Uttara, Dhaka, 1230, Bangladesh.
| | - Yusuke Kato
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Yuki Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Chika Kosugi
- Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu City, Chiba, 293-8511, Japan
| | - Wong Kuo Hong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Asami Suzuki Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
9
|
Bawiec P, Sawicki J, Łasińska-Pracuta P, Czop M, Sowa I, Iłowiecka K, Koch W. In Vitro Evaluation of Bioavailability of Se from Daily Food Rations and Dietary Supplements. Nutrients 2023; 15:nu15061511. [PMID: 36986241 PMCID: PMC10058741 DOI: 10.3390/nu15061511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bioavailability refers to a fraction of a substance that is potentially absorbed from the gastrointestinal tract and enters the systemic circulation (blood). This term is related to various substances, including minerals, that are present in a complex matrix of food which is consumed every day as natural products and pharmaceutical preparations, e.g., dietary supplements. The purpose of the study was to assess the bioavailability of Se from selected dietary supplements, with the simultaneous assessment of the effect the diet type (standard, basic and high-residue diets) has on relative bioavailability. The research included a two-stage in vitro model of digestion using cellulose dialysis tubes of the food rations with the addition of dietary supplements. Se was determined using the ICP-OES method. The bioavailability of Se from dietary supplements, in the presence of food matrix, was determined to be within the range of 19.31-66.10%. Sodium selenate was characterized by the highest value of this parameter, followed by organic forms and sodium selenite. The basic diet, characterized by moderate protein and high carbohydrate and fiber contents, positively influenced the bioavailability of Se. The bioavailability of Se was also influenced by the pharmaceutical form of the product-the highest was for tablets, followed by capsules and coated tablets.
Collapse
Affiliation(s)
- Piotr Bawiec
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Paulina Łasińska-Pracuta
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11 Str., 20-080 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Katarzyna Iłowiecka
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| |
Collapse
|
10
|
Effects of Marine Bioactive Compounds on Gut Ecology Based on In Vitro Digestion and Colonic Fermentation Models. Nutrients 2022; 14:nu14163307. [PMID: 36014813 PMCID: PMC9412687 DOI: 10.3390/nu14163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Digestion and the absorption of food compounds are necessary steps before nutrients can exert a role in human health. The absorption and utilization of nutrients in the diet is an extremely complex dynamic process. Accurately grasping the digestion and absorption mechanisms of different nutrients or bioactive compounds can provide a better understanding regarding the relationship between health and nutrition. Several in vitro models for simulating human gastrointestinal digestion and colonic fermentation have been established to obtain more accurate data for further understanding of the metabolism of dietary components. Marine media is rich in a wide variety of nutrients that are essential for humans and is gaining increased attention as a research topic. This review summarizes some of the most explored in vitro digestion and colonic fermentation models. It also summarizes the research progress on the digestion and absorption of nutrients and bioactive compounds from marine substrates when subjected to these in vitro models. Additionally, an overview of the changes imparted by the digestion process on these bioactive compounds is provided, in order to support those marine resources that can be utilized for developing new healthy foods.
Collapse
|
11
|
Toxic and Trace Elements in Seaweeds from a North Atlantic Ocean Region (Tenerife, Canary Islands). SUSTAINABILITY 2022. [DOI: 10.3390/su14105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canary Islands is a North Atlantic Ocean archipelago in the Macaronesian region that stand out for its great algae diversity and its climatic conditions. However, even in this low industrialised area, human activities tend to increase the marine pollution. Asparagopsis spp. and Liagora spp. algae are red algae frequent in the Canary Islands’ coasts. Therefore, they could be used as bio-indicators of marine pollution for trace elements. A total of 30 samples of both algae’s species from Tenerife’s southern coast, specifically in Playa Grande, Porís de Abona, in Arico (Tenerife, Spain) were used to determine trace element content (Mn, B, Ba, Cu, Cd, Co, Fe, Li, Mo, Ni, Pb, Sr, V, Zn, Al, Cr) through inductively coupled plasma atomic emission spectroscopy (ICP—OES). Highest Fe concentrations were found in Liagora spp. concentrations (1190 ± 1545 mg/kg dw) and Al (288 ± 157 mg/kg dw) was more significant in Asparagopsis spp. High concentrations of B were also registered in both species 80.2 ± 34.2 mg/kg dw and 77.9 ± 34.2 mg/kg dw, respectively. The recorded concentrations show a high contamination scenario in the collected area. Porís is known by its marine diversity and by its higher pollution levels, compared with other locations of Tenerife, due to the currents present on the Canary Island and its singular north orientation, actions must be taken to reduce pollution.
Collapse
|
12
|
Wu M, Zhi M, Liu Y, Han J, Qin Y. In situ analysis of copper speciation during in vitro digestion: Differences between copper in drinking water and food. Food Chem 2022; 371:131388. [PMID: 34808779 DOI: 10.1016/j.foodchem.2021.131388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022]
Abstract
In recent years, the safety of copper in drinking water has increasingly been questioned. Copper speciation is an important factor that affects its bioavailability and toxicity; thus, it is critical to investigate the speciation of copper that is ingested from food and drinking water during in vitro digestion. After digestion, water- and food-derived copper formed 60 ± 4% 0.1-1 kDa and 49 ± 6% 10-1,000 kDa copper complexes, respectively. Under simulated fasting drinking water conditions, up to 90 ± 2% 0.1-1 kDa copper complexes formed. In addition, using ion selective electrode analysis, water-derived copper was detected that contained higher Cu2+ concentrations after digestion than those of food-derived copper. These results indicate that water-derived copper forms smaller-sized species and exhibits higher Cu2+ concentrations during digestion than those of food-derived copper, thereby highlighting the importance of reassessing the safety limit for copper in drinking water.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational & Technical College, Ecology and Health Institute. Hangzhou 310018, PR China; Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Mingyu Zhi
- Hangzhou Vocational & Technical College, Ecology and Health Institute. Hangzhou 310018, PR China
| | - Ying Liu
- Hangzhou Vocational & Technical College, Ecology and Health Institute. Hangzhou 310018, PR China
| | - Jianzhong Han
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Yumei Qin
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, PR China.
| |
Collapse
|
13
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Wu M, Ke L, Zhi M, Qin Y, Han J. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice. Food Sci Nutr 2021; 9:5174-5182. [PMID: 34532026 PMCID: PMC8441336 DOI: 10.1002/fsn3.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Speciation can provide knowledge about absorption, reactivity to binding sites, bioavailability, toxicity, and excretion of elements. In this study, the speciation of copper in different model solutions under the influence of gastrointestinal (GI) pH was studied by ion selective electrode (ISE) and inductively coupled plasma optical emission spectrometry (ICP OES). It was found that the electrode response (mV) against Cu2+ decreased with the increase in pH and dropped to the lowest point at pH 7.5 in all model solutions. When amino acids and organic acids were present, the ratio of filtered copper (0.45 μm, pH 7.5) was more than 90%. When casein was present, whey protein, pancreatin, and starch were added, and the ratio of filtered copper was 85.6 ± 0.3, 56.7 ± 8.8, 38.5 ± 5.1, and 1.0 ± 0.3%, respectively. When there is not enough organic ligand, excessive copper will form copper hydroxide precipitation with the increase in pH, but it got the highest electrode response (mV) against Cu2+. From this study, it can be concluded that the speciation of copper in GI tract is strongly influenced by the pH and the composition of food. When there are few ligands coexisting in the GI tract, the concentration of copper ion may be relatively high.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Leqin Ke
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Mingyu Zhi
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Yumei Qin
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|
15
|
In vitro assessment of major and trace element bioaccessibility in tea samples. Talanta 2021; 225:122083. [PMID: 33592795 DOI: 10.1016/j.talanta.2021.122083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022]
Abstract
Bioaccessibility of trace elements (Li, Be, Ti, Ga, Cu, Ag, Hg, Cd, Cs, Pt, Tl, Pb, As, Cr, Co, Ni, V, Se, Sn and Sb) and major elements (Rb, Ba, Al, Fe, Zn, Si, Ca, Mg, Mn, Mo, Sr, P and K) in tea infusions has been assessed using an in vitro dialyzability protocol. Gastric simulation (using pepsin solution) and intestinal simulation (using pancreatin and bile salts) were used to perform the in vitro digestion. ICP-MS, ICP-OES and FAES were used for elements determination in digested tea leaves, their infusions and the dialyzate fractions from tea infusions. Microwaves assisted acid digestion was used for the total element determination in tea leaves, while tea infusions were prepared by brewing tea leaves for 5 min in boiling water. The LODs for elements determined in tea leaves were in the range of 0.11-656 ng g-1 and 0.02-145.6 μg g-1 for trace and major elements, respectively. For elements' determination in tea infusions, the LODs were ranged between 0.23 and 399.9 ng L-1 for trace elements and 0.2-1248 μg L-1 for major elements. The LODs for the elements in the dialyzable fraction varied from 0.018 to 142 μg L-1. The accuracy of the total element determination was evaluated using certified reference materials (Tea Leaves INCT-TL-1 and Rye Grass). The analytical recoveries were also assessed for analyzed elements in digested tea leaves (95-114%) and their infusions (92-115%), showing good recoveries. Among the studied elements, K was the most abundant element in tea leaves and tea infusions in almost all samples, followed by Ca, Mg, and P. Zn, Cs, and K showed the highest dialyzability percentages up to 84%, 76%, and 54%, respectively, followed by Si and Ca and K that show moderate to high dialyzability percentages. The accuracy of the dialysis process was evaluated using a mass-balance study.
Collapse
|
16
|
Lozano-Bilbao E, Lozano G, Jiménez S, Jurado-Ruzafa A, Hardisson A, Rubio C, Weller DG, Paz S, Gutiérrez ÁJ. Seasonal and ontogenic variations of metal content in the European pilchard (Sardina pilchardus) in northwestern African waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115113. [PMID: 32622005 DOI: 10.1016/j.envpol.2020.115113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Marine fishes are exposed to great human-induced alterations due to the indiscriminate discharges into the sea, increasing marine pollution. For this study, 324 specimens of Sardina pilchardus from the Canary Islands were analized during a period of 2 years (June 2016 to May 2018). The concentration of 11 metals and trace elements (Al, B, Cd, Cr, Cu, Fe, Li, Ni, Pb, V and Zn) was determined in each individual using the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) technique. Statistical analyses were carried out considering the following factors: oceanographic season, maturity of the gonads in the seasons, size of the specimens. Sardina pilchardus specimens captured in the hot season presented higher Ni, Li and Pb levels than the specimens caught in the cold season. Immature specimens had higher concentration in more metals than the mature specimens. This fact may be due to the fact that these specimens require a much higher metabolic rate due to their growth and do not detoxify like mature specimens. Significant differences were found in the concentration of metals in all the analyzes performed.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain.
| | - Gonzalo Lozano
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastián Jiménez
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Dársena Pesquera S/n, 38180, Santa Cruz de Tenerife, Spain
| | - Alba Jurado-Ruzafa
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Dársena Pesquera S/n, 38180, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Soraya Paz
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
17
|
Chen SC, Lin HC, Chen WY. Risks of consuming cadmium-contaminated shellfish under seawater acidification scenario: Estimates of PBPK and benchmark dose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110763. [PMID: 32505759 DOI: 10.1016/j.ecoenv.2020.110763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We aim to assess the risks of renal dysfunction and osteoporosis that is attributed to the seawater acidification caused cadmium (Cd) level increase in human consumed shellfish. A physiology-based pharmacokinetic model was used to estimate Cd concentrations in urine and blood among shellfish-only consumers and among the general population. We used the benchmark dose (BMD) method to determine the threshold limits of Cd in urine for renal dysfunction and in blood for osteoporosis for assessing the human health risk. Our results revealed that seawater acidification could increase the Cd accumulation in shellfish by 10-13% compared to the situations under current pH levels. Under the lower seawater pH level, the daily intake of Cd could increase by 21%-67% among shellfish-only consumers, and by 13%-17% among the general population. Our findings indicated that seawater acidification would lead to a marginal increase in Cd intake among humans in shellfish-only consumers. The results of BMDs of urinary Cd showed that the threshold limits for renal dysfunction at 5% were 3.00 μg g-1 in males and 12.35 μg g-1 in females. For osteoporosis, the estimated BMDs of blood Cd were 7.95 μg L-1 in males and 1.23 μg L-1 in females. These results of the risk of Cd intake showed that the consumption of Cd-contaminated shellfish in the general population is largely unaffected by changes in seawater pH levels. Notably, the potential impact of seawater acidification on renal dysfunction for males in shellfish-only consumers face a 14% increase of risk.
Collapse
Affiliation(s)
- Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40242, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, 40242, Taiwan
| | - Hsing-Chieh Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
18
|
Seaweed Potential in the Animal Feed: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8080559] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seaweed (known as marine algae) has a tradition of being part of the animal feed in the coastal areas, from ancient times. Seaweeds, are mixed with animal feed, because when consumed alone can have negative impact on animals. Thus, seaweeds are very rich in useful metabolites (pigments, carotenoids, phlorotannins, polyunsaturated fatty acids, agar, alginate and carrageenan) and minerals (iodine, zinc, sodium, calcium, manganese, iron, selenium), being considered as a natural source of additives that can substitute the antibiotic usage in various animals. In this review, we describe the nutritional values of seaweeds and the seaweed effects in the seaweed-based animal feed/supplements.
Collapse
|
19
|
Xu X, Huo Q, Dong Y, Zhang S, Yang Z, Xian J, Yang Y, Cheng Z. Bioaccumulation and health risk assessment of trace metals in fish from freshwater polyculture ponds in Chengdu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33466-33477. [PMID: 31522399 DOI: 10.1007/s11356-019-06412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The freshwater polyculture pond culturing occupied an important position in the aquaculture industry. Accumulation of trace metals was investigated in water, sediments, and fish (Carassius auratus, Cyprinus carpio, Ctenopharyngodon idellus) from typical polyculture ponds in Chengdu, China. The results showed most of the pond water in Chengdu were safe for fish cultivation. The Cd and Cr concentrations in sediment samples from sites S3, S4, and S9 which were near the industrial park and road with a high traffic volume were higher than those of the other sites. Cu, Cr, Fe, Zn, Mn, Ni, and Pb in sediments were unpolluted, while Cd was unpolluted to moderately polluted due to anthropogenic activities. Cu, Cd, and Pb in fish pond sediment of Chengdu had higher potential mobility under normal environmental circumstances. The trace metal concentrations in liver of three fish species were all higher than those in muscle tissues. The order of bioaccumulation factor (BAF) values for trace metals was Cr > Cu > Pb > Zn > Cd > Ni > 20. The concentrations of Cu, Cd, Pb, Zn, and Cr in the muscle of three fish species were all below the local and international maximum permissible levels. The target hazard quotient (THQ) and hazard index (HI) of trace metals in aquaculture fish ponds in Chengdu were lower than 1, which indicated that the consumption of grass, crucian, and common carp cultivated in the aquaculture ponds of Chengdu pose no health risk to the residents.
Collapse
Affiliation(s)
- Xiaoxun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Huo
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan Dong
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanbiao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junren Xian
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiang Yang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
20
|
Wang P, Yin N, Cai X, Du H, Li Z, Sun G, Cui Y. Nutritional status affects the bioaccessibility and speciation of arsenic from soils in a simulator of the human intestinal microbial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:815-821. [PMID: 29990930 DOI: 10.1016/j.scitotenv.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in food and soil. In this study, we investigated the effects of four nutritional states (including a fed state with vitamin C, a fed state with protein powder, a fed state with glucose and a fasted state) on the variability of soil As bioaccessibility and biotransformation using the physiologically based extraction test (PBET) combined with a simulator of the human intestinal microbial ecosystem model (SHIME). The results indicated that the vitamin C and protein powder increased As bioaccessibility in gastric digests. In the colon phase, As bioaccessibility was observably enhanced by protein powder, and it varied under the vitamin C and glucose conditions. Additionally, the order of As methylation percentages in the four nutritional states was protein powder > vitamin C > fasted state > glucose (except S2); As bioaccessibility increased 1.3-13.7% and 15.8-35.4% in treatments of the vitamin C and protein powder, respectively. Meanwhile, large amounts of monomethylarsonic acid (MMAV) were observed in the colon digest in the protein powder condition. In contrast, As methylation was significantly decreased with the addition of glucose, with a decline of 25.9-45.5%. Additionally, glucose enhanced the reduction of As(V). Therefore, nutritional status is a crucial parameter for the prediction of bioaccessibility and speciation of As when assessing health risks from As following oral exposure.
Collapse
Affiliation(s)
- Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zejiao Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoxin Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
21
|
|
22
|
Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs 2018; 16:md16110400. [PMID: 30360515 PMCID: PMC6266857 DOI: 10.3390/md16110400] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/31/2023] Open
Abstract
Seaweeds are well-known for their exceptional capacity to accumulate essential minerals and trace elements needed for human nutrition, although their levels are commonly very variable depending on their morphological features, environmental conditions, and geographic location. Despite this variability, accumulation of Mg, and especially Fe, seems to be prevalent in Chlorophyta, while Rhodophyta and Phaeophyta accumulate higher concentrations of Mn and I, respectively. Both red and brown seaweeds also tend to accumulate higher concentrations of Na, K, and Zn than green seaweeds. Their valuable mineral content grants them great potential for application in the food industry as new ingredients for the development of numerous functional food products. Indeed, many studies have already shown that seaweeds can be used as NaCl replacers in common foods while increasing their content in elements that are oftentimes deficient in European population. In turn, high concentrations of some elements, such as I, need to be carefully addressed when evaluating seaweed consumption, since excessive intake of this element was proven to have negative impacts on health. In this regard, studies point out that although very bioaccessible, I bioavailability seems to be low, contrarily to other elements, such as Na, K, and Fe. Another weakness of seaweed consumption is their capacity to accumulate several toxic metals, which can pose some health risks. Therefore, considering the current great expansion of seaweed consumption by the Western population, specific regulations on this subject should be laid down. This review presents an overview of the mineral content of prevalent edible European macroalgae, highlighting the main factors interfering in their accumulation. Furthermore, the impact of using these marine vegetables as functional ingredients or NaCl replacers in foods will be discussed. Finally, the relationship between macroalgae’s toxic metals content and the lack of European legislation to regulate them will be addressed.
Collapse
Affiliation(s)
- Ana R Circuncisão
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
23
|
Ortiz ML, Cámara-Martos F. Bioaccessibility and total content of iron, zinc, copper, and manganese in rice varieties (Oryza sativa
L.): A probabilistic assessment to evaluate their contribution to dietary reference intake. Cereal Chem 2018. [DOI: 10.1002/cche.10094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- María Laura Ortiz
- Departamento de Ciencias Básicas; Facultad de Ciencias Veterinarias; Universidad Nacional del Nordeste; Corrientes Argentina
| | - Fernando Cámara-Martos
- Departamento de Bromatología y Tecnología de los Alimentos; Universidad de Córdoba; Córdoba España
| |
Collapse
|
24
|
Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-017-3031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Latorre M, Peña-Farfal C, Neira Y, Herbello-Hermelo P, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. In vitro human bioavailability of major, trace and ultra-trace elements in Chilean ‘natural’ wines from Itata Valley. Food Funct 2018; 9:5381-5389. [DOI: 10.1039/c8fo01333k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vitro human bioavailability of elements in ‘natural’ wines from Chile's Itata Valley has been assessed using an in vitro dialyzability approach.
Collapse
Affiliation(s)
- Mónica Latorre
- Department of Instrumental Analysis
- Faculty of Pharmacy
- University of Concepción
- 4070043 – Concepción
- Chile
| | - Carlos Peña-Farfal
- Department of Analytical and Inorganic Chemistry
- Faculty of Chemical Sciences
- University of Concepción
- Concepción
- Chile
| | - Yamil Neira
- Department of Instrumental Analysis
- Faculty of Pharmacy
- University of Concepción
- 4070043 – Concepción
- Chile
| | - Paloma Herbello-Hermelo
- Group of Trace Elements
- Spectroscopy
- and Speciation (GETEE)
- Health Research Institute of Santiago de Compostela (IDIS)
- Department of Analytical Chemistry
| | - Raquel Domínguez-González
- Group of Trace Elements
- Spectroscopy
- and Speciation (GETEE)
- Health Research Institute of Santiago de Compostela (IDIS)
- Department of Analytical Chemistry
| | - Pilar Bermejo-Barrera
- Group of Trace Elements
- Spectroscopy
- and Speciation (GETEE)
- Health Research Institute of Santiago de Compostela (IDIS)
- Department of Analytical Chemistry
| | - Antonio Moreda-Piñeiro
- Group of Trace Elements
- Spectroscopy
- and Speciation (GETEE)
- Health Research Institute of Santiago de Compostela (IDIS)
- Department of Analytical Chemistry
| |
Collapse
|
26
|
Alves RN, Maulvault AL, Barbosa VL, Fernandez-Tejedor M, Tediosi A, Kotterman M, van den Heuvel FHM, Robbens J, Fernandes JO, Romme Rasmussen R, Sloth JJ, Marques A. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chem 2017; 267:15-27. [PMID: 29934150 DOI: 10.1016/j.foodchem.2017.11.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
The oral bioaccessibility of several essential and toxic elements was investigated in raw and cooked commercially available seafood species from European markets. Bioaccessibility varied between seafood species and elements. Methylmercury bioaccessibility varied between 10 (octopus) and 60% (monkfish). Arsenic (>64%) was the toxic element showing the highest bioaccessibility. Concerning essential elements bioaccessibility in raw seafood, selenium (73%) and iodine (71%) revealed the highest percentages. The bioaccessibility of elements in steamed products increased or decreased according to species. For example, methylmercury bioaccessibility decreased significantly after steaming in all species, while zinc bioaccessibility increased in fish (tuna and plaice) but decreased in molluscs (mussel and octopus). Together with human exposure assessment and risk characterization, this study could contribute to the establishment of new maximum permissible concentrations for toxic elements in seafood by the European food safety authorities, as well as recommended intakes for essential elements.
Collapse
Affiliation(s)
- Ricardo N Alves
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA I.P.), Lisbon, Portugal.
| | - Ana L Maulvault
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon (FCUL), Lisboa, Portugal.
| | - Vera L Barbosa
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA I.P.), Lisbon, Portugal.
| | - Margarita Fernandez-Tejedor
- Marine Monitoring, Institute of Agriculture and Food Research & Technology (IRTA), Sant Carles de la Ràpita, Tarragona, Spain.
| | | | | | | | - Johan Robbens
- Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium.
| | - José O Fernandes
- LAQV-REQUIMT, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | | | - Jens J Sloth
- National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal.
| |
Collapse
|
27
|
Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem 2017; 229:172-177. [DOI: 10.1016/j.foodchem.2017.02.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/04/2016] [Accepted: 02/16/2017] [Indexed: 11/21/2022]
|
28
|
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. JOURNAL OF APPLIED PHYCOLOGY 2016; 29:949-982. [PMID: 28458464 PMCID: PMC5387034 DOI: 10.1007/s10811-016-0974-5] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.
Collapse
Affiliation(s)
- Mark L. Wells
- School of Marine Sciences, University of Maine, Orono, ME 04469 USA
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique Roscoff, CNRS-Université Pierre et Marie Curie, Place Georges Teissier, 29680 Roscoff, France
| | - James S. Craigie
- National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - John A. Raven
- Division of Plant Sciences, University of Dundee (James Hutton Inst), Invergowrie, Dundee, DD2 5DA Scotland UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Sabeeha S. Merchant
- Department of Chemistry & Biochemistry, University of California-Los Angeles, 607 Charles E. Young Dr., East, Los Angeles, CA 90095-1569 USA
| | - Katherine E. Helliwell
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA UK
- Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA UK
| | - Mary Ellen Camire
- School of Food and Agriculture, University of Maine, Orono, ME 04469 USA
| | - Susan H. Brawley
- School of Marine Sciences, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
29
|
Moreda-Piñeiro J, Herbello-Hermelo P, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Bioavailability assessment of essential and toxic metals in edible nuts and seeds. Food Chem 2016; 205:146-54. [DOI: 10.1016/j.foodchem.2016.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/05/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
|
30
|
Cheng Z, Lam CL, Mo WY, Nie XP, Choi WM, Man YB, Wong MH. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7195-7203. [PMID: 27002811 DOI: 10.1007/s11356-016-6484-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.
Collapse
Affiliation(s)
- Zhang Cheng
- College of Resources and Environment, Sichuan Agricultural University, Chengdu, China
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, China
| | - Cheung-Lung Lam
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, China
| | - Wing-Yin Mo
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, China
| | - Xiang-Ping Nie
- Institute of the Hydrobiology, Jinan University, Guangzhou, China
| | - Wai-Ming Choi
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, China
| | - Yu-Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, China
| | - Ming-Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, China.
- College of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
31
|
Trace metal determination as it relates to metallosis of orthopaedic implants: Evolution and current status. Clin Biochem 2016; 49:617-35. [PMID: 26794632 DOI: 10.1016/j.clinbiochem.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/01/2016] [Accepted: 01/02/2016] [Indexed: 01/22/2023]
Abstract
In utilising metal surfaces that are in constant contact with each other, metal-on-metal (MoM) surgical implants present a unique challenge, in the sense that their necessity is accompanied by the potential risk of wear particle generation, metal ion release and subsequent patient toxicity. This is especially true of orthopaedic devices that are faulty and subject to failure, where the metal surfaces undergo atypical degradation and release even more unwanted byproducts, as was highlighted by the recent recall of orthopaedic surgical implants. The aim of this review is to examine the area of metallosis arising from the wear of MoM articulations in orthopaedic devices, including how the surgical procedures and detection methods have advanced to meet growing performance and analytical needs, respectively.
Collapse
|
32
|
Flores SR, Dobbs J, Dunn MA. Mineral nutrient content and iron bioavailability in common and Hawaiian seaweeds assessed by an in vitro digestion/Caco-2 cell model. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Erdemir US, Gucer S. Characterization of Copper Bioavailability in Wheat Flour by Chemical Fractionation and Inductively Coupled Plasma–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1065878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Olivares Arias V, Valverde Som L, Quiros Rodríguez V, García Romero R, Muñoz N, Navarro Alarcón M, Cabrera Vique C. Níquel en alimentos y factores influyentes en sus niveles, ingesta, biodisponibilidad y toxicidad: una revisión. CYTA - JOURNAL OF FOOD 2014. [DOI: 10.1080/19476337.2014.917383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Barciela-Alonso M, Plata-García V, Rouco-López A, Moreda-Piñeiro A, Bermejo-Barrera P. Ionic imprinted polymer based solid phase extraction for cadmium and lead pre-concentration/determination in seafood. Microchem J 2014. [DOI: 10.1016/j.microc.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Capelli C, Foppiano D, Venturelli G, Carlini E, Magi E, Ianni C. Determination of Arsenic, Cadmium, Cobalt, Chromium, Nickel, and Lead in Cosmetic Face-Powders: Optimization of Extraction and Validation. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.865207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Cheng Z, Nie XP, Wang HS, Wong MH. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption. ENVIRONMENT INTERNATIONAL 2013; 57-58:75-80. [PMID: 23688402 DOI: 10.1016/j.envint.2013.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
The bioaccessibility of phthalate esters in 20 fish species collected from Hong Kong market was evaluated using an in vitro gastrointestinal model. The ∑phthalate ester concentration detected in fresh water fish ranged from 1.66 to 3.14μg/g wet weight (ww) and in marine fish ranged from 1.57 to 7.10μg/g ww, respectively. di-2-Ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DBP) were the predominant compounds in both freshwater fish and marine fish. The digestible concentrations of phthalate esters ranged from 0.20 to 1.23μg/g ww (mean 0.35μg/g ww), and account for 2.44 to 45.5% (mean 16.8%) for raw concentrations of phthalate esters. In the present study, the accumulation ratio Rnn value of all phthalate esters was greater than 1 except for diisobutyl phthalate (DIBP), DBP and di-n-hexyl phthalate (DHP), suggesting that these phthalate esters could be accumulated during gastrointestinal digestion. Based on this health risk assessment, most of fish species were considered safe for consumption, however Hong Kong residents should take caution when consuming Mud carp and Bighead carp.
Collapse
Affiliation(s)
- Zhang Cheng
- State Key Laboratory on Marine Pollution, Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | | | | | | |
Collapse
|
38
|
Laird BD, Chan HM. Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada. Food Chem Toxicol 2013; 58:381-7. [PMID: 23665408 DOI: 10.1016/j.fct.2013.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/26/2013] [Accepted: 04/15/2013] [Indexed: 11/17/2022]
Abstract
Fish, shellfish, wild game, and seaweed are important traditional foods that are essential to the physical and cultural well-being of Indigenous peoples in Canada. The goal of this study was to measure the concentration and bioaccessibility of As, Cd, Hg, Se, Cu and Mn in 45 commonly consumed traditional foods collected by harvested by the First Nations Food, Nutrition, and Environment Study (FNFNES) from 21 First Nations communities in British Columbia, Canada, in 2008-2009. A significant and negative correlation was observed between Hg concentration and Hg bioaccessibility. Metal bioaccessibility tended to be high; median values ranging between 52% (Mn) and 83% (Cu). The notable exceptions were observed for As in wild game organs (7-19%) and rabbit meat (4%) as well as Hg in salmon eggs (10%). Results of Principal Components Analysis confirmed the unique pattern of bioaccessibility of As and Hg in traditional foods, suggesting that, unlike other metals, As and Hg bioaccessibility are not simply controlled by food digestibility under the operating conditions of the in vitro model. These data provide useful information for dietary contaminant risk assessment and intake assessments of essential trace elements.
Collapse
Affiliation(s)
- Brian D Laird
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | | |
Collapse
|
39
|
García-Sartal C, Barciela-Alonso MDC, Moreda-Piñeiro A, Bermejo-Barrera P. Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem J 2013. [DOI: 10.1016/j.microc.2012.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Romarís-Hortas V, Bermejo-Barrera P, Moreda-Piñeiro J, Moreda-Piñeiro A. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Anal Chim Acta 2012; 745:24-32. [DOI: 10.1016/j.aca.2012.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|