1
|
Lokya V, Parmar S, Pandey AK, Sudini HK, Huai D, Ozias-Akins P, Foyer CH, Nwosu CV, Karpinska B, Baker A, Xu P, Liao B, Mir RR, Chen X, Guo B, Nguyen HT, Kumar R, Bera SK, Singam P, Kumar A, Varshney RK, Pandey MK. Prospects for developing allergen-depleted food crops. THE PLANT GENOME 2023; 16:e20375. [PMID: 37641460 DOI: 10.1002/tpg2.20375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.
Collapse
Affiliation(s)
- Vadthya Lokya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Arun K Pandey
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Peggy Ozias-Akins
- Horticulture Department, The University of Georgia Tifton Campus, Tifton, GA, USA
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | | | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pei Xu
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory for Crops Genetic Improvement, Crops Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Gulbarga, India
| | | | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Anirudh Kumar
- Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
2
|
Tan L, Xi Y, Zhou C, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Supplementation with Antimicrobial Peptides or a Tannic Acid Can Effectively Replace the Pharmacological Effects of Zinc Oxide in the Early Stages of Weaning Piglets. Animals (Basel) 2023; 13:1797. [PMID: 37889691 PMCID: PMC10251958 DOI: 10.3390/ani13111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
Zinc oxide (ZnO) harms the environment and can potentially increase the number of drug-resistant bacteria. Therefore, there is an urgent need to find safe and effective alternatives to improve gut health and reduce the incidence of diarrhea in weaned piglets. This study conducted an antibacterial test of ZnO, antibacterial peptides (AMPs), and tannic acid (TA) in vitro. Thirty piglets were randomly allotted to one of the following three dietary treatments: ZnO (2000 mg/kg ZnO diet), AMPs (700 mg/kg AMPs diet), and TA (1000 mg/kg TA diet). The results showed that the minimum inhibitory concentrations of ZnO and TA against Escherichia coli and Salmonella were lower than those of AMPs, and the minimum inhibitory concentrations of ZnO, AMPs, and TA against Staphylococcus aureus were the same. Compared to ZnO, AMPs increased the digestibility of dry, organic matter and the crude fat. Additionally, TA significantly (p < 0.05) increased the digestibility of dry and organic matter. On experimental day 14, the plasma interleukin-6 (IL-6) content of piglets supplemented with AMPs and TA was increased significantly (p < 0.05). On experimental day 28, alanine aminotransferase activity in the plasma of weaned piglets in the ZnO and TA groups was significantly (p < 0.05) higher than in piglets in the AMPs group. The levels of plasma IL-6 and immunoglobulin M (IgM) were significantly higher (p < 0.05) in the ZnO and AMPs groups than in the TA group. On experimental days 14 and 28, no significant differences were observed in the antioxidant capacity among the three experimental groups. Intestinal microbial diversity analysis showed that the Chao1 and ACE indices of piglets in the AMPs group were significantly higher (p < 0.05) than those in the ZnO and TA groups. At the genus level, the relative abundance of Treponema_2 was higher in the feces of piglets fed a diet supplemented with TA than in those fed diet supplemented with ZnO (p < 0.05). The relative abundance of Lachnospiraceae was higher in the feces of piglets fed a diet supplemented with AMPs than in those fed diet supplemented with ZnO or TA. Overall, AMPs and TA could be added to feed as substitutes for ZnO to reduce diarrhea, improve nutrient digestibility and immunity, and increase the abundance of beneficial intestinal bacteria in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.T.); (Y.X.); (C.Z.); (Y.X.); (J.P.); (X.P.)
| |
Collapse
|
3
|
Hsu FC, Lin WT, Hsieh KC, Cheng KC, Wu JSB, Ting Y. Mitigating the allergenicity of peanut allergen Ara h 1 by cold atmospheric pressure argon plasma jet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3017-3027. [PMID: 36646652 DOI: 10.1002/jsfa.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. RESULTS The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. CONCLUSION The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Wan-Ting Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - James Swi-Bea Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Characterization of the improved functionality in soybean protein-proanthocyanidins conjugates prepared by the alkali treatment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Pi X, Sun Y, Cheng J, Fu G, Guo M. A review on polyphenols and their potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2022; 63:10014-10031. [PMID: 35603705 DOI: 10.1080/10408398.2022.2078273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review summarized recent studies about the effects of polyphenols on the allergenicity of allergenic proteins, involving epigallocatechin gallate (EGCG), caffeic acid, chlorogenic acid, proanthocyanidins, quercetin, ferulic acid and rosmarinic acid, etc. Besides, the mechanism of polyphenols for reducing allergenicity was discussed and concluded. It was found that polyphenols could noncovalently (mainly hydrophobic interactions and hydrogen bonding) and covalently (mainly alkaline, free-radical grafting, and enzymatic method) react with allergens to induce the structural changes, resulting in the masking or/and destruction of epitopes and the reduction of allergenicity. Oral administration in murine models showed that the allergic reaction might be suppressed by regulating immune cell function, changing the levels of cytokines, suppressing of MAPK, NF-κb and allergens-presentation pathway and improving intestine function, etc. The outcome of reduced allergenicity and suppressed allergic reaction was affected by many factors such as polyphenol types, polyphenol concentration, allergen types, pH, oral timing and dosage. Moreover, the physicochemical and functional properties of allergenic proteins were improved after treatment with polyphenols. Therefore, polyphenols have the potential to produce hypoallergenic food. Further studies should focus on active concentrations and bioavailability of polyphenols, confirming optimal intake and hypoallergenic of polyphenols based on clinical trials.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Mingruo Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, United States
| |
Collapse
|
6
|
Xu T, Ma X, Zhou X, Qian M, Yang Z, Cao P, Han X. Coated tannin supplementation improves growth performance, nutrients digestibility, and intestinal function in weaned piglets. J Anim Sci 2022; 100:skac088. [PMID: 35298652 PMCID: PMC9109020 DOI: 10.1093/jas/skac088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
To explore the effect of coated tannin (CT) on the growth performance, nutrients digestibility, and intestinal function in weaned piglets, a total of 180 piglets Duroc × Landrace × Yorkshire (28 d old) weighing about 8.6 kg were randomly allotted to three treatments: 1) Con: basal diet (contains ZnSO4); 2) Tan: basal diet + 0.15% CT; and 3) ZnO: basal diet + ZnO (Zn content is 1,600 mg/kg). The results showed that 0.15% CT could highly increase the average daily gain and average daily feed intake of weaned piglets compared with the control group, especially decreasing diarrhea incidence significantly (P < 0.05). Compared with the control group, crude protein apparent digestibility and digestive enzyme activity of the piglets fed with 0.15% CT were enhanced obviously (P < 0.05). Meanwhile, the intestinal villi and microvilli arranged more densely, while the content of serum diamine oxidase was decreased, and the protein expressions of zonula occludens-1 (ZO-1) and claudin-1 were significantly upregulated (P < 0.05). In addition, CT altered the structure of intestinal microbiota and augmented some butyrate-producing bacteria such as Ruminococcaceae and Megasphaera. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis also showed that the abundances of pathways related to butyrate metabolism and tryptophan metabolism were increased; however, the function of lipopolysaccharide biosynthesis proteins was significantly decreased. The results demonstrated that 0.15% CT could improve growth performance, digestibility, and intestinal function of weaned piglets, and it had the potential to replace ZnO applied to farming.
Collapse
Affiliation(s)
- Tingting Xu
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Ma
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinchen Zhou
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, Hainan 572025, China
| | - Mengqi Qian
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiren Yang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, Hainan 572025, China
| | - Peiwen Cao
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyan Han
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, Hainan 572025, China
| |
Collapse
|
7
|
Izumi E, Tanahashi N, Kinugasa S, Hidaka S, Zaima N, Moriyama T. Co-Application with Tannic Acid Prevents Transdermal Sensitization to Ovalbumin in Mice. Int J Mol Sci 2022; 23:ijms23073933. [PMID: 35409304 PMCID: PMC8999826 DOI: 10.3390/ijms23073933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Transdermal sensitization to allergens is of great concern as a sensitization route for food allergies. This skin-mediated invasion and sensitization to allergens is involved in skin barrier breakdown and inflammation, followed by the production of several kinds of cytokines. Cytokines such as thymic stromal lymphopoietin and thymus and activation-regulated chemokine are also involved. In this study, we investigated the suppressive effect of tannic acid (TA) on transdermal sensitization using ovalbumin (OVA), a major egg-white allergen. We also analyzed the mechanisms associated with the inhibitory effects of TA. The results showed that the co-application with TA prevents transdermal sensitization to OVA. As possible mechanisms, its anti-inflammatory and astringent effect on the skin and binding ability with the protein were considered. These results indicate that TA could be applied to cosmetics and lotions, which could suppress the transdermal sensitization to allergens.
Collapse
Affiliation(s)
- Eri Izumi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan; (E.I.); (N.T.); (S.K.); (S.H.); (N.Z.)
| | - Nana Tanahashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan; (E.I.); (N.T.); (S.K.); (S.H.); (N.Z.)
| | - Serina Kinugasa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan; (E.I.); (N.T.); (S.K.); (S.H.); (N.Z.)
| | - Shota Hidaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan; (E.I.); (N.T.); (S.K.); (S.H.); (N.Z.)
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan; (E.I.); (N.T.); (S.K.); (S.H.); (N.Z.)
- Agricultural Technology and Innovation Research Institute (ATIRI), Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan; (E.I.); (N.T.); (S.K.); (S.H.); (N.Z.)
- Agricultural Technology and Innovation Research Institute (ATIRI), Kindai University, 3327-204, Naka-machi, Nara 631-8505, Japan
- Correspondence:
| |
Collapse
|
8
|
Sun F, Lv L, Huang C, Lin Q, He K, Ye L, Lin X, Wu X. Development of hypoallergenic ovalbumin with improving functional properties by AAPH and acrolein treatment. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Tannic acid is a gastroprotective that regulates inflammation and oxidative stress. Food Chem Toxicol 2021; 156:112482. [PMID: 34371106 DOI: 10.1016/j.fct.2021.112482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023]
Abstract
This study investigated the gastroprotective effect of TA against gastric ulcer in mice, and its possible mechanisms of action. The effects were investigated in a model of ethanol and ethanol/HCl induced ulcers, and physical barrier test. Quantification of oxidative stress mediators and inflammatory cytokines in gastric tissue was performed. The involvement of sulfhydryl compounds (-SH), nitric oxide (NO), prostaglandin E2 (PGE2), potassium channels (K +ATP) and opioid receptors in gastroprotection were investigated. Oral treatment with TA at a dose of 50 mg/kg resulted in 97.96% and 94.20% (reduction in gastric injury) of gastroprotection, against injuries caused by ethanol and ethanol/HCL, respectively, in addition to having a systematic effect. TA promotes increased levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH), as well as reduced levels of malondialdehyde (MDA) reaction to thiobarbituric acid and myeloperoxidase (MPO). In addition, there was reduction in levels of tumor necrosis factor alpha (TNF-α) and interleukins (IL) IL-1β and IL-6 and increased IL-10. The gastroprotective activity of TA involved K +ATP channels and the production of -SH, NO and PGE2, demonstrating multiple mechanisms of action. The results of the present study suggest that TA may be a gastroprotective agent counteracting oxidative and inflammatory stress.
Collapse
|
10
|
Gliadin Sequestration as a Novel Therapy for Celiac Disease: A Prospective Application for Polyphenols. Int J Mol Sci 2021; 22:ijms22020595. [PMID: 33435615 PMCID: PMC7826989 DOI: 10.3390/ijms22020595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Celiac disease is an autoimmune disorder characterized by a heightened immune response to gluten proteins in the diet, leading to gastrointestinal symptoms and mucosal damage localized to the small intestine. Despite its prevalence, the only treatment currently available for celiac disease is complete avoidance of gluten proteins in the diet. Ongoing clinical trials have focused on targeting the immune response or gluten proteins through methods such as immunosuppression, enhanced protein degradation and protein sequestration. Recent studies suggest that polyphenols may elicit protective effects within the celiac disease milieu by disrupting the enzymatic hydrolysis of gluten proteins, sequestering gluten proteins from recognition by critical receptors in pathogenesis and exerting anti-inflammatory effects on the system as a whole. This review highlights mechanisms by which polyphenols can protect against celiac disease, takes a critical look at recent works and outlines future applications for this potential treatment method.
Collapse
|
11
|
Girard AL, Awika JM. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr Rev Food Sci Food Saf 2020; 19:2164-2199. [PMID: 33337093 DOI: 10.1111/1541-4337.12572] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Expanding plant-based protein applications is increasingly popular. Polyphenol interactions with wheat gluten proteins can be exploited to create novel functional foods and food ingredients. Polyphenols are antioxidants, thus generally decrease gluten strength by reducing disulfide cross-linking. Monomeric polyphenols can be used to reduce dough mix time and improve flexibility of the gluten network, including to plasticize gluten films. However, high-molecular-weight polyphenols (tannins) cross-link gluten proteins, thereby increasing protein network density and strength. Tannin-gluten interactions can greatly increase gluten tensile strength in dough matrices, as well as batter viscosity and stability. This could be leveraged to reduce detrimental effects of healthful inclusions, like bran and fiber, to loaf breads and other wheat-based products. Further, the dual functions of tannins as an antioxidant and gluten cross-linker could help restructure gluten proteins and improve the texture of plant-based meat alternatives. Tannin-gluten interactions may also be used to reduce inflammatory effects of gluten experienced by those with gluten allergies and celiac disease. Other potential applications of tannin-gluten interactions include formation of food matrices to reduce starch digestibility; creation of novel biomaterials for edible films or medical second skin type bandages; or targeted distribution of micronutrients in the digestive tract. This review focuses on the effects of polyphenols on wheat gluten functionality and discusses emerging opportunities to employ polyphenol-gluten interactions.
Collapse
Affiliation(s)
- Audrey L Girard
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas
| | - Joseph M Awika
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| |
Collapse
|
12
|
Takahagi S, Harada N, Kamegashira A, Suzuki S, Shindo H, Kanatani H, Tanaka A, Mizuno H, Hide M. Randomized double‐blind cross‐over trial of bath additive containing tannic acid in patients with atopic dermatitis. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2020. [DOI: 10.1002/cia2.12112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shunsuke Takahagi
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Naoe Harada
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Akiko Kamegashira
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Shigeru Suzuki
- Products Development Department Bathclin Corporation Ibaraki Japan
| | - Hajime Shindo
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | | | - Akio Tanaka
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Hayato Mizuno
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Michihiro Hide
- Department of Dermatology Graduate school of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
13
|
Meng S, Tan Y, Chang S, Li J, Maleki S, Puppala N. Peanut allergen reduction and functional property improvement by means of enzymatic hydrolysis and transglutaminase crosslinking. Food Chem 2020; 302:125186. [DOI: 10.1016/j.foodchem.2019.125186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023]
|
14
|
|
15
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
16
|
Meng S, Li J, Chang S, Maleki SJ. Quantitative and kinetic analyses of peanut allergens as affected by food processing. FOOD CHEMISTRY-X 2019; 1:100004. [PMID: 31432004 PMCID: PMC6694862 DOI: 10.1016/j.fochx.2019.100004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/11/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023]
Abstract
Peanuts contain four major allergens with differences in allergenic potency. Thermal processing can influence the allergenic properties of peanuts. Until now, a kinetic model has not been reported to assess the changes of soluble allergen (extracted from processed peanuts) content as affected by various thermal processing methods. Our objective is to characterize the reaction kinetics of the thermal processing methods, including wet processing (boiling with/without high-pressure, steaming with/without high-pressure), deep-frying and dry processing (microwaving and roasting) using five time intervals. The relationships between processing time and extractable major allergen content could be explained by a simple linear regression kinetic model (except high-pressure steaming). Among all the methods with optimal processing point, frying for 6 min had a relatively lower IgE binding (linear epitopes) ratio, possibly due to the processing conditions, which caused break down, cross-linking and aggregation of Ara h 2, and a relatively lower solubility.
Collapse
Affiliation(s)
- Shi Meng
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA
| | - Sam Chang
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
- Coastal Research & Extension Center, 3411 Frederic Street, Pascagoula, MS 39567, USA
- Corresponding author at: Coastal Research & Extension Center, 3411 Frederic Street, Pascagoula, MS 39567, USA.
| | - Soheila J. Maleki
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| |
Collapse
|
17
|
Molecular mechanics of caffeic acid in food profilin allergens. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Zhang Y, Liu C, Su M, Roux KH, Sathe SK. Effect of phenolics on amandin immunoreactivity. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Lopes LCS, Brito LM, Bezerra TT, Gomes KN, Carvalho FADEA, Chaves MH, Cantanhêde W. Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. AN ACAD BRAS CIENC 2018; 90:2679-2689. [PMID: 30043906 DOI: 10.1590/0001-3765201820170598] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Gold (Au0) and silver (Ag0) nanoparticles were synthesized using tannic acid (TA) as both reducing and stabilizer. Nanoparticles formation, stability, and interaction with TA were compared to citrate-coated nanoparticles and monitored by UV-Vis, zeta potential, and transmission electron microscopy. TA coating resulted in a red-shift and broadening of bands compared to citrate-coated nanoparticles (NPs-Cit). AgNPs-TA and AuNPs-TA are negatively charged with mean surface charge of -29.4 mV and -29.6 mV, respectively. TEM images showed polydispersety of AuNPs-TA (6-42 nm) and aggregation of AgNPs-TA (12-71 nm). In vitro assays of Leishmania amazonensis promastigotes showed an increment of antileishmanial activity for AgNPs-TA in relation to AgNPs-Cit, while AuNPs-TA and AuNPs-Cit did not affect the protozoas at tested concentrations. CC50 value for AgNPs-TA suggested that TA attenuates nanosilver toxicity comparatively to its precursor (Ag+). This investigation can contribute to the development of new, green, and fast produced drugs aiming at leishmaniasis treatment.
Collapse
Affiliation(s)
- Lourdes C S Lopes
- Departamento de Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Lucas M Brito
- Departamento de Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Thayllan T Bezerra
- Departamento de Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Kleyton N Gomes
- Departamento de Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Fernando A DE A Carvalho
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil.,Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Mariana Helena Chaves
- Departamento de Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Welter Cantanhêde
- Departamento de Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
20
|
Li Y, Mattison CP. Polyphenol-rich pomegranate juice reduces IgE binding to cashew nut allergens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1632-1638. [PMID: 28842925 DOI: 10.1002/jsfa.8639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Food allergy negatively impacts quality of life and can be life-threatening. Cashew nuts can cause severe reactions in very small amounts, and they are included in a group of foods most commonly responsible for causing food allergy. Polyphenols and polyphenol-rich juices have been demonstrated to complex with peanut allergens. Here, the interaction between cashew nut allergens and polyphenol-rich juices is evaluated biochemically and immunologically. RESULTS Various juices, including pomegranate (POM), blueberry (BB), and concord grape (CG) juices, were evaluated for polyphenol content and formation of polyphenol-cashew allergen complexes. Among the various juices studied, POM juice showed a greater capacity to form complexes with cashew proteins. Dynamic light scattering (DLS) demonstrated a sharp increase in cashew protein extract particle size to around 3580 nm, and fewer cashew proteins were resolved by electrophoresis after treatment with POM juice. Immunoassays demonstrated reduced IgG and IgE binding to cashew allergens due to allergen precipitation by POM juice. These observations support the formation of complexes between polyphenol and cashew proteins that can prevent antibody recognition of cashew allergens through allergen precipitation. CONCLUSION POM juice treatment of cashew extract effectively reduces antibody binding through allergen precipitation, and these findings could be applied to the development of less allergenic cashew nut products and oral immunotherapy. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Yichen Li
- USDA-ARS, Southern Regional Research Center, FPSQ, New Orleans, LA, USA
| | | |
Collapse
|
21
|
Buitimea-Cantúa NE, Gutiérrez-Uribe JA, Serna-Saldívar SO. Phenolic–Protein Interactions: Effects on Food Properties and Health Benefits. J Med Food 2018; 21:188-198. [DOI: 10.1089/jmf.2017.0057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Nydia E. Buitimea-Cantúa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
22
|
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications of Syzygium cumini– a review. Food Funct 2018. [DOI: 10.1039/c8fo00654g pmid: 30379170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present review explores the nutritional, phytochemical and pharmacological potential as well as diverse food usages ofSyzygium cumini.
Collapse
Affiliation(s)
- Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Ravinder Kaur
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Sundeep Jaglan
- Division of Microbial Biotechnology
- Indian Institute of Integrative Medicine-CSIR
- India
| | | | - Yogesh Gat
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| |
Collapse
|
23
|
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications ofSyzygium cumini– a review. Food Funct 2018; 9:6096-6115. [DOI: 10.1039/c8fo00654g] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present review explores the nutritional, phytochemical and pharmacological potential as well as diverse food usages ofSyzygium cumini.
Collapse
Affiliation(s)
- Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Ravinder Kaur
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Sundeep Jaglan
- Division of Microbial Biotechnology
- Indian Institute of Integrative Medicine-CSIR
- India
| | | | - Yogesh Gat
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| |
Collapse
|
24
|
Chung SY, Mattison CP, Grimm CC, Reed S. Simple methods to reduce major allergens Ara h 1 and Ana o 1/2 in peanut and cashew extracts. Food Sci Nutr 2017; 5:1065-1071. [PMID: 29188033 PMCID: PMC5694884 DOI: 10.1002/fsn3.491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
Whole peanut or cashew extracts are usually used in immunotherapy. Reducing major allergen(s) in the extracts may lessen their side effects. Three methods were evaluated to reduce major allergens in peanut extracts: (1) p-aminobenzamidine; (2) magnetic agarose beads; and (3) extraction of a commercial peanut flour at pH 7, respectively. The first two methods were also used to reduce major allergens in cashew extracts. After treatments, samples were evaluated by SDS-PAGE. pABA-treated samples were also analyzed for IgE binding in western blot. We found that the methods resulted in peanut extracts lacking detectable Ara h 1 but containing Ara h 2/6 and cashew extract lacking Ana o 1/2, but containing Ana o 3. Consequently, reduced IgE binding was observed. We conclude that the methods are useful for producing peanut or cashew extract with little Ara h 1 or Ana o 1/2.
Collapse
Affiliation(s)
- Si-Yin Chung
- United States Department of Agriculture Agricultural Research Service Southern Regional Research Center New Orleans LA USA
| | - Christopher P Mattison
- United States Department of Agriculture Agricultural Research Service Southern Regional Research Center New Orleans LA USA
| | - Casey C Grimm
- United States Department of Agriculture Agricultural Research Service Southern Regional Research Center New Orleans LA USA
| | - Shawndrika Reed
- United States Department of Agriculture Agricultural Research Service Southern Regional Research Center New Orleans LA USA
| |
Collapse
|
25
|
Hiragun T, Hiragun M, Ishii K, Kan T, Hide M. Sweat allergy: Extrinsic or intrinsic? J Dermatol Sci 2017; 87:3-9. [DOI: 10.1016/j.jdermsci.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/15/2022]
|
26
|
Ghouas H, Haddou B, Kameche M, Canselier JP, Gourdon C. Removal of Tannic Acid From Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction. J SURFACTANTS DETERG 2015. [DOI: 10.1007/s11743-015-1764-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Chung SY, Mattison CP, Reed S, Wasserman RL, Desormeaux WA. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens. Food Chem 2015; 180:295-300. [PMID: 25766831 DOI: 10.1016/j.foodchem.2015.02.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 01/03/2023]
Abstract
Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as α-lactalbumin and β-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or cashew allergen (Ana o 2) was treated with or without 5mM sodium oleate at 70°C for 60 min (T1) or under the same conditions with an additional overnight incubation at 37°C (T2). After treatment, the samples were dialyzed and analyzed by SDS-PAGE and for OA content. IgE binding was evaluated by ELISA and western blot, using a pooled serum or plasma from individuals with peanut or cashew allergies. Results showed that OA at a concentration of 5mM reduced IgE binding to the allergens. Peanut sample T2 exhibited a lower IgE binding and a higher OA content (protein-bound) than T1. Cashew allergen T2 also showed a reduction in IgE binding. We conclude that OA reduces the allergenic properties of peanut extract and cashew allergen by binding to the allergens. Our findings indicate that OA in the form of sodium oleate may be potentially useful as a coating to reduce the allergenic properties of peanut and cashew allergens.
Collapse
Affiliation(s)
- Si-Yin Chung
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA.
| | | | - Shawndrika Reed
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Richard L Wasserman
- Allergy Immunology Research Center of North Texas, Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | |
Collapse
|
28
|
Chung SY, Reed S. IgE binding to peanut allergens is inhibited by combined d-aspartic and d-glutamic acids. Food Chem 2015; 166:248-253. [DOI: 10.1016/j.foodchem.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/05/2014] [Accepted: 06/03/2014] [Indexed: 01/11/2023]
|
29
|
Plundrich NJ, Kulis M, White BL, Grace MH, Guo R, Burks AW, Davis JP, Lila MA. Novel strategy to create hypoallergenic peanut protein-polyphenol edible matrices for oral immunotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7010-21. [PMID: 24758688 DOI: 10.1021/jf405773b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peanut allergy is an IgE-mediated hypersensitivity. Upon peanut consumption by an allergic individual, epitopes on peanut proteins bind and cross-link peanut-specific IgE on mast cell and basophil surfaces triggering the cells to release inflammatory mediators responsible for allergic reactions. Polyphenolic phytochemicals have high affinity to bind proteins and form soluble and insoluble complexes with unique functionality. This study investigated the allergenicity of polyphenol-fortified peanut matrices prepared by complexing various polyphenol-rich plant juices and extracts with peanut flour. Polyphenol-fortified peanut matrices reduced IgE binding to one or more peanut allergens (Ara h 1, Ara h 2, Ara h 3, and Ara h 6). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) suggested changes in secondary protein structure. Peanut protein-cranberry polyphenol fortified matrices triggered significantly less basophil degranulation than unmodified flour in an ex vivo assay using human blood and less mast cell degranulation when used to orally challenge peanut-allergic mice. Polyphenol fortification of peanut flour resulted in a hypoallergenic matrix with reduced IgE binding and degranulation capacity, likely due to changes in protein secondary structure or masking of epitopes, suggesting potential applications for oral immunotherapy.
Collapse
Affiliation(s)
- Nathalie J Plundrich
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhou Y, Wang JS, Yang XJ, Lin DH, Gao YF, Su YJ, Yang S, Zhang YJ, Zheng JJ. Peanut Allergy, Allergen Composition, and Methods of Reducing Allergenicity: A Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2013; 2013:909140. [PMID: 26904614 PMCID: PMC4745518 DOI: 10.1155/2013/909140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
Abstract
Peanut allergy affects 1-2% of the world's population. It is dangerous, and usually lifelong, and it greatly decreases the life quality of peanut-allergic individuals and their families. In a word, peanut allergy has become a major health concern worldwide. Thirteen peanut allergens are identified, and they are briefly introduced in this paper. Although there is no feasible solution to peanut allergy at present, many methods have shown great promise. This paper reviews methods of reducing peanut allergenicity, including physical methods (heat and pressure, PUV), chemical methods (tannic acid and magnetic beads), and biological methods (conventional breeding, irradiation breeding, genetic engineering, enzymatic treatment, and fermentation).
Collapse
Affiliation(s)
- Yang Zhou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jin-shui Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiao-jia Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Dan-hua Lin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yun-fang Gao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yin-jie Su
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Sen Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yan-jie Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-jing Zheng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
31
|
White BL, Gökce E, Nepomuceno AI, Muddiman DC, Sanders TH, Davis JP. Comparative proteomic analysis and IgE binding properties of peanut seed and testa (skin). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3957-3968. [PMID: 23534881 DOI: 10.1021/jf400184y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To investigate the protein composition and potential allergenicity of peanut testae or skins, proteome analysis was conducted using nanoLC-MS/MS sequencing. Initial amino acid analysis suggested differences in protein compositions between the blanched seed (skins removed) and skin. Phenolic compounds hindered analysis of proteins in skins when the conventional extraction method was used; therefore, phenol extraction of proteins was necessary. A total of 123 proteins were identified in blanched seed and skins, and 83 of the proteins were common between the two structures. The skins contained all of the known peanut allergens in addition to 38 proteins not identified in the seed. Multiple defense proteins with antifungal activity were identified in the skins. Western blotting using sera from peanut-allergic patients revealed that proteins extracted from both the blanched seed and skin bound significant levels of IgE. However, when phenolic compounds were present in the skin protein extract, no IgE binding was observed. These findings indicate that peanut skins contain potentially allergenic proteins; however, the presence of phenolic compounds may attenuate this effect.
Collapse
Affiliation(s)
- Brittany L White
- Market Quality and Handling Research Unit, Agricultural Research Service, U.S. Department of Agriculture , Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
32
|
Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chem 2013. [DOI: 10.1016/j.foodchem.2012.09.040] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Zhao W, Iyer V, Flores FP, Donhowe E, Kong F. Microencapsulation of tannic acid for oral administration to inhibit carbohydrate digestion in the gastrointestinal tract. Food Funct 2013; 4:899-905. [DOI: 10.1039/c3fo30374h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Verma AK, Kumar S, Das M, Dwivedi PD. Impact of thermal processing on legume allergens. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:430-441. [PMID: 23224442 DOI: 10.1007/s11130-012-0328-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Food induced allergic manifestations are reported from several parts of the world. Food proteins exert their allergenic potential by absorption through the gastrointestinal tract and can even induce life threatening anaphylaxis reactions. Among all food allergens, legume allergens play an important role in induction of allergy because legumes are a major source of protein for vegetarians. Most of the legumes are cooked either by boiling, roasting or frying before consumption, which can be considered a form of thermal treatment. Thermal processing may also include autoclaving, microwave heating, blanching, pasteurization, canning, or steaming. Thermal processing of legumes may reduce, eliminate or enhance the allergenic potential of a respective legume. In most of the cases, minimization of allergenic potential on thermal treatment has generally been reported. Thus, thermal processing can be considered an important tool by indirectly prevent allergenicity in susceptible individuals, thereby reducing treatment costs and reducing industry/office/school absence in case of working population/school going children. The present review attempts to explore various possibilities of reducing or eliminating allergenicity of leguminous food using different methods of thermal processing. Further, this review summarizes different methods of food processing, major legumes and their predominant allergenic proteins, thermal treatment and its relation with antigenicity, effect of thermal processing on legume allergens; also suggests a path that may be taken for future research to reduce the allergenicity using conventional/nonconventional methods.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, P.O. Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, U.P., India
| | | | | | | |
Collapse
|
35
|
Ma Y, Kerr WL, Cavender GA, Swanson RB, Hargrove JL, Pegg RB. Effect of Peanut Skin Incorporation on the Color, Texture and Total Phenolics Content of Peanut Butters. J FOOD PROCESS ENG 2012. [DOI: 10.1111/j.1745-4530.2012.00693.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanyuan Ma
- Department of Food Science & Technology; College of Agricultural and Environmental Sciences; The University of Georgia; 100 Cedar Street; Athens; GA; 30602
| | - William L. Kerr
- Department of Food Science & Technology; College of Agricultural and Environmental Sciences; The University of Georgia; 100 Cedar Street; Athens; GA; 30602
| | - George A. Cavender
- Department of Food Science & Technology; College of Agricultural and Environmental Sciences; The University of Georgia; 100 Cedar Street; Athens; GA; 30602
| | - Ruthann B. Swanson
- Department of Foods and Nutrition; College of Family and Consumer Sciences; The University of Georgia; Sanford Drive; Athens; GA
| | - James L. Hargrove
- Department of Foods and Nutrition; College of Family and Consumer Sciences; The University of Georgia; Sanford Drive; Athens; GA
| | - Ronald B. Pegg
- Department of Food Science & Technology; College of Agricultural and Environmental Sciences; The University of Georgia; 100 Cedar Street; Athens; GA; 30602
| |
Collapse
|