1
|
Wang A, Liu G, Zheng L, Wang S. A review: Mechanism and research progress of the effects of Astragalus polysaccharides on obesity. Int J Biol Macromol 2025; 311:143984. [PMID: 40339857 DOI: 10.1016/j.ijbiomac.2025.143984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
As living standards rise, health has become a top concern, and the issue of obesity has drawn extensive attention. Astragalus polysaccharides (APS), the key active component of Astragalus, have emerged as a promising subject in weight-loss research. Recent breakthroughs in APS studies-such as its dual regulatory effects on gut microbiota and metabolic pathways, novel insights into its anti-inflammatory mechanisms via TLR4/NF-κB signaling, and synergistic interactions with other herbal compounds-warrant an updated synthesis of current knowledge. Previous reviews on APS and obesity have predominantly focused on isolated mechanisms (e.g., lipid metabolism or inflammation), yet a comprehensive analysis integrating its multi-target effects, comparative advantages over conventional anti-obesity drugs, and clinical translation challenges remains lacking. This review uniquely consolidates advances in APS research over the past five years, emphasizing its holistic action on inflammation, insulin resistance, hepatic steatosis, and gut dysbiosis. By systematically comparing APS with pharmacological and nutritional interventions, we highlight its potential as a natural, low-toxicity alternative with multi-organ regulatory capabilities. Furthermore, we address critical gaps in bioavailability optimization and clinical validation, providing a roadmap for future research and therapeutic development.
Collapse
Affiliation(s)
- Anna Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410128, China; Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410128, China.
| | - Lin Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410128, China
| | - Shuangshuang Wang
- Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
2
|
Liang S, Guo Q, Li J, Zhao P, Ge C, Li S, Xiao Z. A Novel Polysaccharide Purified from Tricholoma matsutake: Structural Characterization and In Vitro Immunological Activity. Foods 2025; 14:1031. [PMID: 40232050 PMCID: PMC11941717 DOI: 10.3390/foods14061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tricholoma matsutake, as a rare wild edible mushroom, is popular due to its unique flavor and taste, as well as high nutritional and economic value. Investigating the relationship between the complex structure and in vitro immunological activity of TMP-2a, a novel polysaccharide isolated from T. matsutake, was the aim of this study. The results showed that TMP-2a consisted of six monosaccharides, fucose, glucosamine hydrochloride, galactose, glucose, mannose, and glucuronic acid, with molar ratios of 8.8:0.6:23.4:48.1:15.1:4.0 and a molecular weight of 27,749 Da. Furthermore, TMP-2a was mainly composed of →6)-β-Glcp-(1→ with →3)-β-D-Glcp-(1→ forming the main chain, with a small amount of →2,6)-α-D-Manp-(1→ and →6)-α-D-Galp-(1→ structural units attached, and the branched chain was mainly composed of β-Glcp-(1→ or a small amount of α-L-Fucp-(1→ as a telosaccharide attached at the O-6 position of →3,6)-β-D-Glcp-(1→. TMP-2a enhanced the proliferation and phagocytic activity of mouse macrophage RAW264.7, as well as the secretion of NO and cytokines (TNF-α, IL-6, IL-1β) to a considerable degree, maybe attributable to its glucan structure and the elevated presence of (1→3)-β-D-Glcp glycosidic bonds. This study establishes a basis for the structural identification and comprehensive investigation of the functional activities of T. matsutake polysaccharides while also offering a theoretical framework for the creation of T. matsutake-related food products.
Collapse
Affiliation(s)
- Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Ping Zhao
- Yunnan Agricultural University, Kunming 650201, China;
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
| | - Shijun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Gao W, Wang Y, Lu F, Liu F. Ultrasound-Assisted Enzymatic Extraction of Polysaccharides from Tricholoma matsutake: Optimization, Structural Characterization, and Inhibition of α-Synuclein Aggregation. Foods 2024; 13:4150. [PMID: 39767092 PMCID: PMC11675543 DOI: 10.3390/foods13244150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study optimized ultrasound-assisted enzymatic (UAE) extraction of TMP (Tricholoma matsutake polysaccharide) through response surface methodology. The optimal conditions included complex enzyme comprising 1.15% cellulase, 0.60% pectinase, and 0.95% dispase, with ultrasound for 24 min at 84.5 °C and enzyme hydrolysis at pH 5.0. This process yielded 19.74 ± 0.51% TMP, exceeding traditional hot water extraction by over four times. Fourier transform infrared spectroscopy (FT-IR) confirmed that UAE did not alter the structure of TMP. In vitro experiments indicated that TMP-UAE demonstrated enhanced antioxidant properties. Further purification through DEAE-52 and Sephadex G-100 chromatography resulted in a homogenous polysaccharide fraction (TMP). Characterization indicated that TMP has an average molecular weight of 2.79 × 104 Da, composed of fucose, galactose, glucose and mannose in a 2.00:9.44:86.29:2.28 molar ratio. FT-IR indicated the presence of C-O-C glycosidic bonds and pyranyl-type sugar rings. Scanning electron microscopy displayed loose lamellar structures with small pores. Finally, TMP exhibited therapeutic potential against C. elegans in Parkinson's disease, including reducing α-synuclein aggregation, protecting dopaminergic neurons, and prolonging lifespan. This study provides an efficient extraction method for TMP and an insight into its neuroprotective effect in PD C.elegans.
Collapse
Affiliation(s)
| | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (W.G.); (Y.W.); (F.L.)
| |
Collapse
|
4
|
Wang B, Lin C, Duan C, Li J, Chen H, Xu J, Zeng J, Gao W, Wei W. Physicochemical characterization of bioactive polysaccharides from three seaweed and application of functional fruit packaging films. Int J Biol Macromol 2024; 282:136765. [PMID: 39442836 DOI: 10.1016/j.ijbiomac.2024.136765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Seaweed polysaccharides show tremendous research and application value because of their significant and unique biological activities. However, reports on seaweed polysaccharides usually focus on in-depth studies of a specific biological activity, which severely limits their further development. Herein, three seaweed polysaccharides were isolated from Undaria pinnatifida (UPPS), Sargassum pallidum (SPPS), and Ulva lactuca (ULPS), respectively. The physicochemical properties, structure, rheological properties, antioxidant activities, antibacterial activities, and anti-glycation activities of UPPS, ULPS, and SPPS were comprehensively studied. It was first demonstrated that SPPS and UPPS had triple prominent biological activities. SPPS exhibited the best biological activities in antioxidation (IC50 in the ABTS test: 0.4616 ± 0.0134 mg/mL), antibacterial effect, and anti-glycation activity (inhibitory rate: 84.74 ± 0.07 %). Additionally, UPPS films (UPPSF) demonstrated superior ultraviolet shielding performance, lower water vapor permeability (1.78 ± 0.01 g/m·s·Pa × 10-11), higher hydrophobicity (water contact angle: 96.91 ± 2.52°), and higher antioxidant activity compared to ULPS films (ULPSF). UPPSF and ULPSF effectively prolonged the shelf life of strawberries to six days, and UPPSF showed better preservation properties. This work provides novel theoretical insights into the use of polysaccharides as medicinal nutraceuticals, bioactive agents, and food packaging films.
Collapse
Affiliation(s)
- Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changhui Lin
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenguang Wei
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 257335, China.
| |
Collapse
|
5
|
Ibrahim MIA, Ibrahim HAH, Haga T, Ishida A, Nehira T, Matsuo K, Gad AM. Potential Bioactivities, Chemical Composition, and Conformation Studies of Exopolysaccharide-Derived Aspergillus sp. Strain GAD7. J Fungi (Basel) 2024; 10:659. [PMID: 39330418 PMCID: PMC11432975 DOI: 10.3390/jof10090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain GAD7 (EPS-AG7) being the most potent, yielding ~5.19 ± 0.017 g/L. EPS-AG7 was characterized using UV-Vis and FTIR analyses, revealing high carbohydrate (87.5%) and sulfate (24%) contents. HPLC and GC-MS analyses determined that EPS-AG7 is a heterogeneous acidic polysaccharide with an average molecular weight (Mw¯) of ~7.34 × 103 Da, composed of mannose, glucose, arabinose, galacturonic acid, galactose, and lyxose in a molar ratio of 6.6:3.9:1.8:1.3:1.1:1.0, linked through α- and β-glycosidic linkages as confirmed by NMR analysis. EPS-AG7 adopted a triple helix-like conformation, as evidenced by UV-Vis (Congo Red experiment) and circular dichroism (CD) studies. This helical arrangement demonstrated stability under various experimental conditions, including concentration, ionic strength, temperature, and lipid interactions. EPS-AG7 exhibited significant anticoagulant activity, doubling blood coagulation time at a concentration of 3.0 mg/mL, and showed significant antioxidant activity, with scavenging activities reaching up to 85.90% and 58.64% in DPPH and ABTS+ assays at 5.0 mg/mL, and EC50 values of 1.40 mg/mL and 3.80 mg/mL, respectively. These findings highlight the potential of EPS-AG7 for therapeutic applications due to its potent biological activities.
Collapse
Affiliation(s)
- Mohamed I A Ibrahim
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Tatsuki Haga
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Koichi Matsuo
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| | - Ahmed M Gad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| |
Collapse
|
6
|
El Awady ME, Mohamed SS, Abo Elsoud MM, Mahmoud MG, Anwar MM, Ahmed MM, Eltaher A, Magdeldin S, Attallah A, Elhagry AE, Abdelhamid SA. Insight into antioxidant and anti-inflammatory effects of marine bacterial natural exopolysaccharide (EPSSM) using carrageenan-induced paw edema in rats. Sci Rep 2024; 14:5113. [PMID: 38429312 PMCID: PMC10907693 DOI: 10.1038/s41598-024-53502-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Inflammation is a part of the body's intricate biological reaction to noxious stimuli and defensive reactions. So, the aim of this investigation was to study the anti-inflammatory activity of exopolysaccharide (EPSSM) using carrageenan-induced paw edema in rats. A halophilic bacterial strain was isolated from marine sediments in the Red Sea in Egypt. The isolate has been visually and physiologically recognized, as well as by analyzing its 16S rRNA gene, which confirms Kocuria sp. clone Asker4. This particular isolate can be referenced using the accession number OL798051.1. EPSSM was subjected to purification and fractionation by a DEAE-cellulose column. Preliminary chemical analysis of EPSSM indicated that the monosaccharides were fructose, glucuronic acid, and xylose, with 2.0, 0.5, and 1.0, respectively. The antioxidant potential of EPSSM was investigated, and it was discovered that the level of activity increased independently of the concentrations, reaching a maximum threshold of 94.13% at 100 µg/mL of EPSSM for 120 min. Also, EPSSM at 50 mg/kg orally produced a significant anti-inflammatory effect on the carrageenan model at 2, 3, and 4 intervals. The EPSSM intervention resulted in reductions in the levels of catalase and superoxide dismutase enzymes, as well as a decrease in glutathione. Furthermore, the levels of nitric oxide, lipid peroxidation, and reactive oxygen species resulting from carrageenan-induced edema showed a significant reduction subsequent to the administration of EPSSM. Moreover, the findings indicated that the protein expression levels of cyclooxygenase-2 and interleukin-6 were reduced following treatment with EPSSM, resulting in a reduction of paw edema.
Collapse
Affiliation(s)
- Mohamed E El Awady
- Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33 Dokki, Cairo, Egypt
| | - Sahar S Mohamed
- Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33 Dokki, Cairo, Egypt.
| | - Mostafa M Abo Elsoud
- Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33 Dokki, Cairo, Egypt
| | - Manal G Mahmoud
- Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33 Dokki, Cairo, Egypt
| | - Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Mahgoub M Ahmed
- Molecular Drug Evaluation Department, National Organization for Drug Control and Research (NODCAR), Cairo, 12553, Egypt
| | - Ashraf Eltaher
- Senior research associate at 57357 hospital Master of life science informatics at Bonn university, Bachelor of pharmaceutical sciences, Cairo University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ashraf Attallah
- Microbial Genetics Department, National Research Center, El-Buhouth St. 33 Dokki, Cairo, Egypt
| | - Ali E Elhagry
- Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Sayeda A Abdelhamid
- Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33 Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
El-Ghoul Y, Alsamani S. Highly Efficient Biosorption of Cationic Dyes via Biopolymeric Adsorbent-Material-Based Pectin Extract Polysaccharide and Carrageenan Grafted to Cellulosic Nonwoven Textile. Polymers (Basel) 2024; 16:585. [PMID: 38475270 DOI: 10.3390/polym16050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Water scarcity and contamination have emerged as critical global challenges, requiring the development of effective and sustainable solutions for the treatment of contaminated water. Recently, functionalized polymer biomaterials have garnered significant interest because of their potential for a wide range of water treatment applications. Accordingly, this paper highlights the design of a new adsorbent material based on a cellulosic nonwoven textile grafted with two extracted biopolymers. The layer-by-layer grafting technique was used for the polyelectrolyte multi-layer (PEM) biosorbent production. Firstly, we extracted a Suaeda fruticosa polysaccharide (SFP) and confirmed its pectin-like polysaccharide structure via SEC, NMR spectroscopy, and chemical composition analyses. Afterward, the grafting was designed via an alternating multi-deposition of layers of SFP polymer and carrageenan crosslinked with 1,2,3,4-butanetetracarboxylic acid (BTCA). FT-IR and SEM were used to characterize the chemical and morphological characteristics of the designed material. Chemical grafting via polyesterification reactions of the PEM biosorbent was confirmed through FT-IR analysis. SEM revealed the total filling of material microspaces with layers of grafted biopolymers and a rougher surface morphology. The assessment of the swelling behavior revealed a significant increase in the hydrophilicity of the produced adsorbent system, a required property for efficient sorption potential. The evaluation of the adsorption capabilities using the methylene blue (MB) as cationic dye was conducted in various experimental settings, changing factors such as the pH, time, temperature, and initial concentration of dye. For the untreated and grafted materials, the greatest adsorbed amounts of MB were 130.6 mg/g and 802.6 mg/g, respectively (pH = 4, T = 22 C, duration = 120 min, and dye concentration = 600 mg/L). The high adsorption performance, compared to other reported materials, was due to the presence of a large number of hydroxyl, sulfonate, and carboxylic functional groups in the biosorbent polymeric system. The adsorption process fitted well with the pseudo-first-order kinetic model and Langmuir/Temkin adsorption isotherms. This newly developed multi-layered biosorbent shows promise as an excellent adsorption resultant and cheap-cost/easy preparation alternative for treating industrial wastewater.
Collapse
Affiliation(s)
- Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Salman Alsamani
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
8
|
Liang M, Wang M, Zhou M, Nie S, Xu Y, Yang X, Yuan E, Ren J. Effect of walnut peptide‐ZnO nanocomposites on the colon adhesion behavior of Lactobacillus rhamnosus LRa05. FOOD FRONTIERS 2023; 4:1946-1957. [DOI: 10.1002/fft2.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025] Open
Abstract
AbstractWhen the nanoparticles (NPs) in food contact materials are exposed, they may be ingested with the food matrix, resulting in unknown impacts. Here, the biological response of the nanocomposites of nano zinc oxide (nZnO) and walnut protein‐derived peptides (i.e., PW5, WN5, AE6, and WE7) on the Lactobacillus rhamnosus LRa05 growth and adhesion was studied. In an in vitro mouse intestinal adhesion model, we first spotted that the probiotics LRa05 primarily adhered to and colonized the colonic segment. nZnO effectively inhibited the growth and adhesion properties of LRa05 at high concentrations (≥ 1000 μg/mL). Fortunately, when compared to the individual nZnO, the nZnO‐walnut‐derived peptides nanocomposites significantly increased the growth of LRa05. It was found that the alterations in the adhesion ability of LRa05 after treatment with various substances (nZnO and nanocomposites of nZnO‐walnut peptides) were related to the auto‐aggregating property on the LRa05 surface. These results shed light on the effect of food matrices on the safety of nanomaterials in food, and they may have far‐reaching implications for the use of nanomaterials in the food industry.
Collapse
Affiliation(s)
- Ming Liang
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Min Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Miao Zhou
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Shiying Nie
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Yongzhao Xu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xinquan Yang
- Kashi Guanghua Modern Agriculture Co. Kashi China
| | - Erdong Yuan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
9
|
Yuan E, Zhou M, Liang Z, Amakye WK, Hou C, Ren J. Effect of sturgeon protein in promoting the adhesion of Lactobacillus plantarum and Lactobacillus rhamnosus. FOOD BIOSCI 2023; 54:102863. [DOI: 10.1016/j.fbio.2023.102863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
10
|
Selim MS, Mohamed SS, Asker MS, Ibrahim AY, El-Newary SA, El Awady ME. Characterization and in-vitro Alzheimer's properties of exopolysaccharide from Bacillus maritimus MSM1. Sci Rep 2023; 13:11399. [PMID: 37452077 PMCID: PMC10349148 DOI: 10.1038/s41598-023-38172-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Four bacterial isolates were obtained from marine sediments collected from Sahl Hashish, Hurghada Red Sea, Egypt. This study was designed to search for promising anti-Alzheimer natural polysaccharide; therefore, four isolates were screened for exopolysaccharides (EPSs) production and acetylcholinesterase inhibition. The isolate S16 provided the highest EPS yield (7.51 g/L) and acetylcholinesterase inhibition. It was identified morphologically and genetically using 16S rRNA gene sequence analysis as Bacillus maritimus. A Physicochemical analysis of S16 exopolysaccharide (BMEPS) was estimated, which pointed to the presence of uronic acid and sulfate (24.7% and 18.3%, respectively). HPLC analysis indicated that mannuronic acid, glucuronic acid, glucose, and mannose are presented in a molar ratio of 0.8:1.0:2.8:2.3, respectively. Furthermore, FT-IR revealed an abundance of β-configurations. The GPC estimated the average molecular weight (Mw) as 4.31 × 104 g/mol. BMEPS inhibited AChE (IC50; 691.77 ± 8.65 μg/ ml), BChE (IC50; 288.27 ± 10.50 μg/ ml), and tyrosinase (IC50; 3.34 ± 0.09, 14.00 ± 0.14, and 22.96 ± 1.23 μg/ ml during incubation durations of 10, 20, and 40 min). It also demonstrated a selective anti-inflammatory action against COX-2 rather than COX-1. Moreover, BMEPS exhibited antioxidant capabilities as free radical and oxygen reactive species (ROS) scavenger, metal chelator, reductant agent, and lipid peroxidation suppressor. These activities are due to the distinct chemical composition. The findings of this study indicate that BMEPS could be considered as promising anti-disease Alzheimer's (AD) material in an in-vitro model, which qualifies it for advanced in-vivo studies in the discovery of alternative Alzheimer's treatment.
Collapse
Affiliation(s)
- Manal S Selim
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt
| | - Sahar S Mohamed
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt
| | - Mohsen S Asker
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt
| | - Abeer Y Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Samah A El-Newary
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Mohamed E El Awady
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
11
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
12
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
13
|
Mohamed SS, Ibrahim GS, Ghoneim MAM, Hassan AI. Evaluating the role of polysaccharide extracted from Pleurotus columbinus on cisplatin-induced oxidative renal injury. Sci Rep 2023; 13:835. [PMID: 36646729 PMCID: PMC9842759 DOI: 10.1038/s41598-022-27081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
This research aimed to examine the antioxidant polysaccharide activity (PsPc-3) derived from Pleurotus columbinus (P. columbinus) on oxidative renal injury (ORI) induced by cisplatin (CP). The principal components of crude polysaccharide were assessed. We studied the preventive impact of polysaccharide on cisplatin-induced renal damage in this study. For 21 days, we employed the CP-induced ORI rat model and divided the rats into four groups: control, CP alone, polysaccharide post CP (100 mg/kg) orally, and CP + polysaccharide (pre and post). The chemical characterization of the polysaccharide fraction PsPc-3 stated that protein was not present. PsPc-3 contained 7.2% uronic acid as assessed as 0% sulfate. PsPc-3 hydrolysate structured of Galacturonic:Glucose:Xylose and their molar proportions were 1:4:5, respectively. The average molecular weight (Mw) and molecular mass (Mn) per molecule of PsPc-3 were 5.49 × 104 g/mol and Mn of 4.95 × 104 g/mol respectively. DPPH radical scavenging activity was demonstrated by the polysaccharide of 65.21-95.51% at 10 mg/ml with IC50 less than 10 mg/ml. CP increased serum urea to 92.0 mg/dl and creatinine up to 1.0 mg/dl, with a concurrent decrease in the levels of total protein to 4.0 mg/dl. Besides, Also, CP-induced ORI raised levels of malondialdehyde (MDA), alkaline phosphatase (ALP), and renal hormones (renin and aldosterone), with a decline in antioxidants compared to control rats. In addition, in the presence of CP, interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) levels increased. PsPc-3 decreased these changes dramatically. PsPc-3 improves pathological renal damage caused by CP and decreases tubular apoptosis measured by DNA ladder formation and cleaved caspase- 3. These findings showed that PsPc-3 isolated from P. columbinus protects and inhibits tubular apoptosis in cisplatin-induced ORI. Furthermore, PsPc-3 has no influence on the anticancer efficacy of CP in rats. Thus, PsPc-3 derived from P. columbinus might provide a novel therapy method for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sahar S Mohamed
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada S Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A M Ghoneim
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
14
|
Luo D, Wang Z. Study on extraction optimization, structure features, and bioactivities of an Oudemansiella raphanipies polysaccharide. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Zhang Y, Li X, Hu A, Wang L. Effects of Hericium erinaceus Hedgehog mushroom on the endophytic microbial community of the host plant. J Basic Microbiol 2023; 63:92-103. [PMID: 36316246 DOI: 10.1002/jobm.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 01/03/2023]
Abstract
Hedgehog mushroom is a Hericium erinaceus associated with fagaceae and pinaceae trees in the northern hemisphere. It is still unknown whether this symbiotic relationship will affect the endophytic microbial community of the host plants. In this study, the endophytic microbial communities of different Quercus aliena tissues (root, stem, and leaf) with or without H. erinaceus partner were analyzed by bar-coded pyrosequencing. About 29,000 clean reads were obtained per sample representing 28 phyla of bacteria and 6 phyla of fungi. A total of 26,838 operational taxonomic units (OTUs) of bacteria and 4323 OTUs of fungi were observed at a 97% similarity level. Three bacterial phyla, Proteobacteria, Cyanobacteria and Bacteroidetes, and fungal phylum Ascomycota were dominant in all tissues. The relative abundance of these dominant communities showed significantly differences between Q. aliena tissues with or without H. erinaceus. Bacterial genus Pseudomonas and fungal genus Cryptosporiopsis were species-rich in Q. aliena root infected by H. erinaceus hyphae. This study demonstrated that the endophytic microbial community structure and dominant species varied in Q. aliena mycorrhized with H. erinaceus.
Collapse
Affiliation(s)
- Yizhe Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Li
- Luohe Medical College, Luohe, Henan, China
| | - Anxin Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Landi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Wang Z, Luo D. Extraction optimization, structure features, and bioactivities of two polysaccharides from Corydalis decumbens. PLoS One 2023; 18:e0284413. [PMID: 37053219 PMCID: PMC10101462 DOI: 10.1371/journal.pone.0284413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Two polysaccharides (CPS1 and CPW2) from Corydalis decumbens were obtained to develop insights into natural medical resources. Optimal extraction conditions of total sugars were researched using the method of response surface methodology, polysaccharides were purified using a combination of ethanol precipitation and anion-exchange chromatography, and structure features were analyzed by scanning electron microscopy, transmission electron microscopy, and Congo-red assay. The bioactivities were estimated in terms of antioxidant and anti-inflammatory effects. Total sugars were extracted with an experimental yield of 32.74% under optimum conditions. CPS1 and CPW2 were purified with yields of 12.01% and 8.23%, respectively. CPS1 was a unique polysaccharide with a molecular weight (Mw) of 360 kDa and consisted of glucose, galactose, mannose, and arabinose in a ratio of 4.9:2.0:1:1.9, and CPW2 was composed of glucose with the Mw of 550 kDa. CPS1 possessed a four-helix conformation, and CPW2 was identified as a linear molecule without branched and entangled chains. The mRNA expressions of TNF-α (71.80%), IL-1β (56.55%), IL-6 (43.98%), and COX-2 (91.88%) in LPS-stimulated RAW 264.7 cells were significantly inhibited by 75 μg/mL CPS1 (P < 0.0001), while CPW2 showed lower inhibitory effects than CPS1. Compared with CPW2, CPS1 showed stronger scavenging abilities for hydroxyl (EC50 = 520.46 μg/mL), ABTS (EC50 = 533.99 μg/mL), and superoxide (EC50 = 1512.06 μg/mL) radicals. CPS1 with four-helix conformation exhibited more outstanding bioactivities than CPW2 without entangled chains.
Collapse
Affiliation(s)
- Zhaojing Wang
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People's Republic of China
| | - Dianhui Luo
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
17
|
A polysaccharide from mycelia of Metarhizium taii: Structural characterization, inhibition on α-glucosidase and improvement of insulin resistance in HepG2 cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232314807. [PMID: 36499132 PMCID: PMC9737215 DOI: 10.3390/ijms232314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Wild mushrooms have gained great importance for being a source of biologically active compounds. In this work, we evaluate the anticancer and antioxidant activity of a water-soluble crude polysaccharide extract isolated from the fruiting bodies of the Ganoderma aff. australe (GACP). This mushroom was collected in San Mateo (Boyacá, Colombia) and identified based on macroscopic and microscopic characterization. GACP was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, high-performance liquid chromatography-diode array detector, and nuclear magnetic resonance. The antiradical and antioxidant activity were evaluated by different methods and its anticancer activity was verified in the osteosarcoma MG-63 human cell line. Chemical and spectroscopic analysis indicated that GACP consisted of β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and α-D-Glcp-(1→ residues. The results of the biological activity showed that GACP exhibited high antioxidant activity in the different methods and models studied. Moreover, the results showed that GACP impaired cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and cell proliferation (clonogenic assay) in a dose-response manner on MG-63 cells. The findings of this work promote the use of mushroom-derived compounds as anticancer and antioxidant agents for potential use in the pharmaceutical and food industries.
Collapse
|
19
|
Tan M, Zhao Q, Wang X, Zhao B. Study on extraction, isolation and biological activity of saponins from quinoa bran. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University,Dalian 116034
| | - Qingsheng Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Xiaodong Wang
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| | - Bing Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| |
Collapse
|
20
|
Zhang X, Liu T, Wang X, Zhou L, Qi J, An S. Structural characterization, antioxidant activity and anti-inflammatory of the phosphorylated polysaccharide from Pholiota nameko. Front Nutr 2022; 9:976552. [PMID: 36118783 PMCID: PMC9471013 DOI: 10.3389/fnut.2022.976552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel polysaccharide (SPN) was extracted by high-temperature pressure method and purified by a DEAE-52 column and a Sephadx G-100 gel column. PPN was obtained after phosphorylation of SPN. The differences of structural features, antioxidant activity, and anti-inflammatory effect of the two polysaccharides were investigated by chemical methods and RAW 264.7 cell model. SPN (Mw = 15.8 kDa) and PPN (Mw = 27.7 kDa) are an acidic polysaccharide with β-pyranose configuration, mainly containing rhamnose, mannose, glucose, arabinose, and galacose. FI-IR, NMR, and SEM spectra showed phosphorylation of SPN changed its structure. In methylation analysis, the major chains of SPN and PPN were 1,4-linked Glcp, 1,6-linked Galp, 1,2-linked Rhap, and 1.6-linked Manp with terminals of t-linked Glcp, t-linked Araf. The side chain of SPN was 1,4,6-linked Galp, 1,2,5-linked Araf, while the side chain of PPN was 1,4,6-linked Galp, 1,2,4-linked Glcp. In antioxidant activity experiments, the free radical scavenging rate of PPN was stronger than that of SPN. Also, PPN always has better anti-inflammatory on RAW 264.7 cells induced by LPS than that of SPN in same concentration, and it plays an anti-inflammatory role by inhibiting PI3K/AKT/mTOR pathway. The results indicated polysaccharide could significantly improve its antioxidant and anti-inflammatory function after phosphorylation. This study provides a potentially antioxidant and anti-inflammatory health food and drug.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Tingting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lanying Zhou
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Ji Qi
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Siyu An
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| |
Collapse
|
21
|
Wang GL, Li JY, Wang Y, Chen Y, Wen QL. Extraction, Structure and Bioactivity of Polysaccharides from Tricholoma matsutake (S. Ito et Imai) Singer (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Cao S, Yang Y, Liu S, Shao Z, Chu X, Mao W. Immunomodulatory Activity In Vitro and In Vivo of a Sulfated Polysaccharide with Novel Structure from the Green Alga Ulvaconglobata Kjellman. Mar Drugs 2022; 20:md20070447. [PMID: 35877740 PMCID: PMC9320874 DOI: 10.3390/md20070447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.
Collapse
Affiliation(s)
- Sujian Cao
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China;
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
- Correspondence: ; Tel.: +86-532-8203-1560
| |
Collapse
|
23
|
Sakr EA. Structural characterization and health benefits of a novel fructan produced by fermentation of an Asparagus sprengeri extract by Lactobacillus plantarum DMS 20174. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
da Silva Milhorini S, de Lima Bellan D, Zavadinack M, Simas FF, Smiderle FR, de Santana-Filho AP, Sassaki GL, Iacomini M. Antimelanoma effect of a fucoxylomannan isolated from Ganoderma lucidum fruiting bodies. Carbohydr Polym 2022; 294:119823. [DOI: 10.1016/j.carbpol.2022.119823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023]
|
25
|
Gadhoumi H, Hayouni ELA, Martinez-Rojas E, Yeddes W, Tounsi MS. Biochemical composition, antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid bacteria. Arch Microbiol 2022; 204:374. [PMID: 35674987 DOI: 10.1007/s00203-022-02985-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
To prevent foodborne diseases and extend shelf life, antimicrobial agents may be used in food to inhibit the growth of undesired microorganisms. The present study was aimed to determine the antimicrobial and antifungal activities of the fermented medicinal plants extract using Lactobacillus acidophilus ATCC 4356. The fermentation kinetic parameters, biochemical composition and the volatile compounds of the fermented plant extract were assessed. The results showed that, the fermented plants extract exhibited high content in polyphenols, flavonoids, and tannins (152.7 mg AGE/L; 93.6 mg RE/L; and 62.1 mg CE/L, respectively) comparing to non-fermented the extract. The GC-MS headspace analyses showed the presence of 24 interesting volatile compounds. The richness of the fermented plants extracts in polyphenols and bioactive compound, such as Eucalyptol, Camphene, α-Phellandrene, α-Terpinene, improves their biological activity. In addition, the fermented plants extract exhibited a high antimicrobial potential against pathogenic bacteria and fungi determined by different methods. The maximum inhibition showed in the fermented plants extract against Escherichia coli 25922/3, Pseudomonas aeruginosa 27853 ATCC, Staphylococcus aureus 29213 ATCC, Enterococcus aerogenes 13048 ATCC, Phytophthora infestans P3 4/91 R + , P. infestans P4 20/01 R, P. infestans (GL-1). The obtained results support the hypothesis of using lactic fermentation as a functional ingredient to improve food preservation. The bioprocesses of fermentation technology enhance antimicrobial and antifungal activities which could be used in different industrial applications.
Collapse
Affiliation(s)
- Hamza Gadhoumi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, 2092, Tunis, Tunisia.
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - E L Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Enriqueta Martinez-Rojas
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Walid Yeddes
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
26
|
Astragalus Shiitake—A Novel Functional Food with High Polysaccharide Content and Anti-Proliferative Activity in a Colorectal Carcinoma Cell Line. Nutrients 2022; 14:nu14112333. [PMID: 35684133 PMCID: PMC9182587 DOI: 10.3390/nu14112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
The chemical and nutritional constituents of mushrooms can alter significantly when grown on different substrates. Based on this fact, an approach was made to cultivate a new type of mushroom, Hengshan Astragalus Shiitake, by growing Shiitake mushrooms on beds supplemented with the roots of an edible herbal plant, Astragalus membranaceus. In this study, three green extraction techniques, including microwave-enzyme assisted (MEA), ultrasound-enzyme assisted (UEA) and microwave-ultrasound-enzyme assisted (MUEA) extractions, were used to compare both the yield and antiproliferative activity of the polysaccharide-rich extracts (PREs) from HAS in human colorectal carcinoma cells (HCT 116). Both HAS-A and HAS-B extracts contain significantly higher amounts of polysaccharides when compared to the control (Shiitake extract), regardless of the extraction methods. The PREs from HAS-B have significantly higher anti-proliferative activity in HCT 116 compared to the control when using the UEA extraction method. Our findings demonstrate that HAS-B can become a novel functional food with anti-proliferative activities and the optimization of UEA extraction would help to develop new active extract-based health products.
Collapse
|
27
|
A novel exopolysaccharide produced by Zygosaccharomyces rouxii with cryoprotective and freeze-drying protective activities. Food Chem 2022; 392:133304. [PMID: 35636192 DOI: 10.1016/j.foodchem.2022.133304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 02/08/2023]
Abstract
In the present work, a novel exopolysaccharide EPS-3791 was extracted and purified from a salt-tolerant yeast, Zygosaccharomyces rouxii. Structural analyses showed that EPS-3791 was composed of galactose, glucose and mannose in a molar ration of 1.00: 4.25: 13.30 with a molecular weight of 64.412 kDa. Fourier transform infrared spectroscopy manifested the main functional groups, α- and β- configurations. Methylated analysis indicated T-Manp-(1→, →2)-Glcp-(1 → and → 2,6)-Manp-(1 → were the main linkages. 800 MHz nuclear magnetic resonance spectroscopy demonstrated the EPS-3791 structure of a novel main chain and branched chain. Atomic force microscope and scanning electron microscope revealed a homogeneous and uniform porous structure. In addition, EPS-3791 was proven to have cryoprotective and freeze-drying protective effects on Lactococcus lactis, and exhibited better protective performance than that of trelahose during freeze-drying of L. lactis, suggesting that EPS-3791 could be developed into cryoprotectant or lyoprotectant applied in food industry.
Collapse
|
28
|
Zhang WN, Gong LL, Zhou ZB, Sun M, Li YY, Sun JW, Chen Y. Structural characterization and immunomodulatory activity of a mannan from Helvella leucopus. Int J Biol Macromol 2022; 212:495-507. [PMID: 35618090 DOI: 10.1016/j.ijbiomac.2022.05.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022]
Abstract
A new polysaccharide fraction HLP-1 (2.55 × 105 Da) was obtained from the fruiting bodies of Helvella leucopus. Structural characterization of HLP-1 was elucidated by infrared spectroscopy, monosaccharide composition analysis, methylation analysis, nuclear magnetic resonance spectroscopy, scanning electron microscopy and Congo red assay. HLP-1 was a mannan with a backbone of →6)-α-D-Manp(1 → 4)- α-D-Manp(1 → 6)-α-D-Manp(1 → 3)-α-D-Manp(1 → 4)-α-D-Manp(1 → 3)-α-D-Manp(1→, which branched at the O-6 position and terminated with T-β-D-Manp. Moreover, HLP-1 could significantly improve the proliferation and neutral red phagocytosis of RAW264.7. Besides, HLP-1 could stimulate the production of nitric oxide (NO), ROS, tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). HLP-1 induced macrophage activation via NF-κB signal pathway. These findings indicated that HLP-1 was a potential immune enhancement agent applied in functional foods.
Collapse
Affiliation(s)
- Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Modern Biomanufacturing of Anhui Province, Hefei 230601, Anhui, China
| | - Li-Li Gong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Min Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Wen Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Modern Biomanufacturing of Anhui Province, Hefei 230601, Anhui, China.
| |
Collapse
|
29
|
Balan V, Zhu W, Krishnamoorthy H, Benhaddou D, Mowrer J, Husain H, Eskandari A. Challenges and opportunities in producing high-quality edible mushrooms from lignocellulosic biomass in a small scale. Appl Microbiol Biotechnol 2022; 106:1355-1374. [PMID: 35098331 DOI: 10.1007/s00253-021-11749-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/02/2022]
Abstract
Mushrooms are high-value products that can be produced from lignocellulosic biomass. Mushrooms are the fruiting body of fungi and are domestically cultivated using lignocellulosic biomass obtained from agricultural byproducts and woody biomass. A handful of edible mushroom species are commercially cultivated at small, medium, and large scales for culinary and medicinal use. Details about different lignocellulosic biomass and their composition that are commonly used to produce mushrooms are outlined in this review. In addition, discussions on four major processing steps (i) producing solid and liquid spawn, (ii) conventional and mechanized processing lignocellulosic biomass substrates to produce mushroom beds, (iii) maintaining growth conditions in climate-controlled rooms, and (iv) energy requirements and managements to produce mushrooms are also provided. The new processing methods and technology outlined in this review may allow mushrooms to be economically and sustainably produced at a small scale to satisfy the growing food needs and create rural jobs. KEY POINTS: • Some of the challenges faced by small-scale mushroom growers are presented. This review is expected to stimulate more research to address the challenges.
Collapse
Affiliation(s)
- Venkatesh Balan
- Biotechnology Program, Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, 77479, USA.
| | - Weihang Zhu
- Mechanical Engineering Technology Program, Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, 77204, USA
| | - Harish Krishnamoorthy
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Driss Benhaddou
- Computer Engineering Technology Program, Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, 77204, USA
| | - Jake Mowrer
- Department of Soil and Crop Sciences, Texas A&M AgriLife Extension, College Station, TX, 77843, USA
| | - Hasan Husain
- Biotechnology Program, Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, 77479, USA
| | - Artin Eskandari
- Biotechnology Program, Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, 77479, USA
| |
Collapse
|
30
|
Zhou Y, El-Seedi HR, Xu B. Insights into health promoting effects and myochemical profiles of pine mushroom Tricholoma matsutake. Crit Rev Food Sci Nutr 2022; 63:5698-5723. [PMID: 34985354 DOI: 10.1080/10408398.2021.2023857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tricholoma matsutake (TM) is a valuable edible mushroom that has attracted increasing attention due to its potential medicinal values and functional uses. However, the chemical composition and molecular mechanisms behinds TM are not specifically summarized yet. Hence, this review aims to systematically analyze the research progress on the characterization of chemical compositions and the reported health effects of TM in the last 20 years. The myochemical profiles of TM consist of proteins with amino acids, fatty acids, nucleic acids with their derivatives, polysaccharides, minerals, volatile components, phenolic compounds, and steroids. The bioactive substances in TM exert their health effects mainly by regulating body immunity and restoring the balance of the redox system. NF-κB signaling pathway and its downstream cytokines such as TNF-α and IL-6 are the key molecular mechanisms. In addition, MAPK, PI3K-Akt, and JAK-STAT are also involved. NF-κB, MAPK, and PI3K-Akt are also highly related to cancer regulation and thus TM has great anticancer potential. Considering that most studies have only investigated the dosage and inhibition rate of TM on cancer cell lines, more extensive studies need to focus on the specific molecular mechanisms behind these anticancer effects in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- BNU-HKBU United International College, Food Science and Technology Program, Zhuhai, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Baojun Xu
- BNU-HKBU United International College, Food Science and Technology Program, Zhuhai, China
| |
Collapse
|
31
|
LI M, ZHANG Y, LU Q, GAO Y, YE T, WANG C, XING D. Structure, bioactivities and applications of the polysaccharides from Tricholoma Matsutake: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.44922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Mengjiao LI
- Cancer Institute, China; Qingdao Cancer Institute, China; Qingdao University, China
| | - Yukun ZHANG
- Cancer Institute, China; Qingdao Cancer Institute, China; Qingdao University, China
| | - Qi LU
- Cancer Institute, China; Qingdao Cancer Institute, China; Qingdao University, China
| | - Yuanzhen GAO
- Cancer Institute, China; Qingdao Cancer Institute, China; Qingdao University, China
| | - Ting YE
- Cancer Institute, China; Qingdao Cancer Institute, China; Qingdao University, China
| | - Chao WANG
- Cancer Institute, China; Qingdao Cancer Institute, China; Qingdao University, China
| | - Dongming XING
- Cancer Institute, China; Qingdao Cancer Institute, China; Tsinghua University, China
| |
Collapse
|
32
|
Yang HR, Chen LH, Zeng YJ. Structure, Antioxidant Activity and In Vitro Hypoglycemic Activity of a Polysaccharide Purified from Tricholoma matsutake. Foods 2021; 10:2184. [PMID: 34574294 PMCID: PMC8465006 DOI: 10.3390/foods10092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
The structure, antioxidant activity and hypoglycemic activity in vitro of a novel homogeneous polysaccharide from Tricholoma matsutake (Tmp) were investigated. Structural features suggested that Tmp was consisted of arabinose (Ara), mannose (Man), glucose (Glc) and galactose (Gal) with a molar ratio of 1.9:13.6:42.7:28.3, respectively, with a molecular weight of 72.14 kDa. The structural chain of Tmp was confirmed to contain →2,5)-α-l-Arabinofuranose (Araf)-(1→, →3,5)-α-l-Araf-(1→, β-d-Glucopyranose (Glcp)-(1→, α-d-Mannopyranose (Manp)-(1→, α-d-Galacopyranose (Galp)-(1→, →4)-β-d-Galp-(1→, →3)-β-d-Glcp-(1→, →3)-α-d-Manp-(1→, →6)-3-O-Methyl (Me)-α-d-Manp-(1→, →6)-α-d-Galp-(1→, →3,6)-β-d-Glcp-(1→, →6)-α-d-Manp-(1→ residues. Furthermore, Tmp possessed strong antioxidant activity and showed the strong inhibitory effect on α-glucosidase and α-amylase activities. Then, a further evaluation found that there was a dramatic improvement in the glucose consumption, glycogen synthesis and the activities of pyruvate kinase and hexokinase when the insulin-resistant-human hepatoma cell line (IR-HepG2) was treated with Tmp. The above results indicated that Tmp had good hypoglycemic activity and also exhibited great potentials in in terms of dealing with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Ying-Jie Zeng
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China; (H.-R.Y.); (L.-H.C.)
| |
Collapse
|
33
|
Design of a New Fermented Beverage from Medicinal Plants and Organic Sugarcane Molasses via Lactic Fermentation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional beverages obtained using medicinal plants and fermented with lactic acid bacteria are gaining much interest from the scientific community, driven by the growing demand for food and beverages with beneficial properties. In this work, three different batches of medicinal plants and organic sugarcane molasses, named FB-lc, FB-sp and FB-lcsp, were prepared and fermented by using Lactobacillus acidophilus ATCC 43121, Bifidobacterium breve B632 and a mix of both strains’ culture, respectively. The three fermented beverages revealed a high level of polyphenols (expressed as gallic acid equivalent), ranging from 182.50 to 315.62 µg/mL. The highest content of flavonoids (152.13 µg quercetin equivalent/mL) and tannins (93.602 µg catechin equivalent/mL) was detected in FB-lcsp trial. The IR spectroscopy analysis showed a decrease in sugar (pyranose forms, D-glucopyranose and rhamnosides). In addition, the aromatic compounds of the fermented beverages, detected by GC-MS headspace analysis, showed twenty-four interesting volatile compounds, which could give positive aroma attributes to the flavor of the beverages. The highest antioxidant activity was observed in the beverage obtained by the mix culture strains. Accordingly, the production of these beverages can be further investigated for considering their well-being effects on human health.
Collapse
|
34
|
Yang K, Jin Y, Cai M, He P, Tian B, Guan R, Yu G, Sun P. Separation, characterization and hypoglycemic activity in vitro evaluation of a low molecular weight heteropolysaccharide from the fruiting body of Phellinus pini. Food Funct 2021; 12:3493-3503. [PMID: 33900340 DOI: 10.1039/d1fo00297j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Edible mushrooms have potential in anti-diabetic phytotherapy. They are rich in natural compounds such as polysaccharides, which have been known to have antihyperlipidemic effects since ancient times. A polysaccharide fraction of PP80 and a contained low molecular-weight (Mw), water-soluble polysaccharide (PPW-1, Mw: 3.2 kDa) were isolated from the fruiting body of Phellinus pini. Both PP80 and PPW-1 possess α-glucosidase inhibition and glucose consumption amelioration in an insulin-resistant HepG2 cell model. The α-glucosidase inhibitory activity of PPW-1 (IC50 = 2.2 ± 0.1 mg mL-1) is significantly (P < 0.01) higher than those of PP80 (IC50 = 13.1 ± 0.5 mg mL-1) and acarbose (IC50 = 4.3 ± 0.2 mg mL-1), behaving in a non-competitive inhibition manner. The structural characterization results indicated that PPW-1 is a homogeneous heteropolysaccharide composed of d-glucose, d-mannose, d-galactose and l-rhamnose. The major backbone of PPW-1 is primarily comprised of 1,6-linked glucopyranose, every third residue of which is branched at the O-3 position by a side chain consisting of 1,3-linked and terminal glucopyranose. In addition, small amounts of 1,2-linked-α-d-Manp, 1,6-linked-3-O-Me-α-d-Galp and rhamnose exist in PPW-1. In summary, PPW-1 is a novel heteropolysaccharide with potent in vitro hypoglycemic activity, and it may be a potential dietary component for improving glucose homeostasis.
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuezhong Jin
- Zhejiang Yangzhikang Bio-technology Co., Ltd, Huzhou 313200, P. R. China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Pengfei He
- Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, P. R. China.
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Genrong Yu
- Hangzhou Meiyuan Food Co. Ltd, Huzhou 311106, P. R. China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
35
|
Wang H, Xu X, Yin Z, Wang M, Wang B, Ma C, Wang J, Kang W. Activation of RAW264.7 cells by PCp-I, a polysaccharide from Psoralea corylifolia L, through NF- κB/MAPK signalling pathway. Int J Immunopathol Pharmacol 2021; 35:20587384211010058. [PMID: 33855900 PMCID: PMC8058790 DOI: 10.1177/20587384211010058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PCp-I is a polysaccharide isolated and identified from the Psoralea corylifolia L. by our research group. In this study, the immunomodulatory effects of PCp-I on RAW264.7 cells was evaluated. PCp-I could enhance the level of NO along with up-regulation of iNOS mRNA in RAW264.7 cells. The PCp-I could significantly up-regulate the mRNA expression of TNF-α and IL-6 in RAW264.7 cells, and then the expression of TNF-α, IL-6, ROS and the phagocytic activity were increased. Additionally, PCp-I could significantly up-regulate the phosphorylation level of p65, p38, ERK and JNK proteins, which proved that PCp-I could activate the macrophages by MAPKs and NF-κB signalling pathway and the TLR4 may be one of the receptors of PCp-I regulate the RAW264.7 cells.
Collapse
Affiliation(s)
- Honglin Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| | - Xiaoqing Xu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| | - Zhenhua Yin
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Zhengzhou City Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, China
| | - Mengke Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng, China
| | - Baoguang Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| |
Collapse
|
36
|
Deng M, Wang J, Li YL, Chen HX, Tai M, Deng L, Che B, Du ZY, Dong CZ, Lin L. The impact of polyphenols extracted from Tricholoma matsutake on UVB-induced photoaging in mouse skin. J Cosmet Dermatol 2021; 21:781-793. [PMID: 33811801 DOI: 10.1111/jocd.14127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite Tricholoma matsutake has been used as natural health products with multiple medicinal properties, detailed information about its polyphenolic composition as sources of anti-photoaging agents remains to be determined. OBJECTIVE To investigate the impact of polyphenols extracted from Tricholoma matsutake (TME) on Ultraviolet B (UVB)-induced skin photoaging. MATERIALS AND METHODS Various factors of oxidative stress and inflammation as well as histological and immunohistochemical analysis in the mouse dorsal skin were determined after UVB radiation. RESULTS Topical administration with TME suppressed the UVB-induced skin thickness, wrinkles and erythema, and increased skin collagen content. Furthermore, TME decreased reactive oxygen species (ROS) level, upregulated glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and glucose-6-phosphate dehydrogenase (G6PDH) activities and inhibited the expression of IL-1, IL-6, IL-8 and TNF-α in mice irradiated with UVB. TME could reduce UVB-induced p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation and effectively inhibited the activity of the transcriptional factor nuclear factor-kappa B (NF-κB), thereby reducing the cyclooxygenase-2 (COX-2) expression, which is an important mediator of inflammatory cascade leading to the inflammatory response. CONCLUSION Our data demonstrated that TME had various beneficial effects on UVB-induced skin photoaging due to its antioxidant and anti-inflammatory activities, and it might be exploited as a promising natural product in skin care, anti-photoaging and the therapeutic intervention of skin disorders related to both oxidative stress and inflammation.
Collapse
Affiliation(s)
- Minggao Deng
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, P. R. China
| | - Jing Wang
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yong-Liang Li
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, P. R. China
| | - Hui-Xiong Chen
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, P. R. China.,Chemistry of RNA, nucleosides, peptides and heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, Paris Cedex, France
| | - Meiling Tai
- Infinitus (China) Co. Ltd, Guangzhou, P. R. China
| | - Lili Deng
- Infinitus (China) Co. Ltd, Guangzhou, P. R. China
| | - Biao Che
- Infinitus (China) Co. Ltd, Guangzhou, P. R. China
| | - Zhi-Yun Du
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, P. R. China
| | - Chang-Zhi Dong
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, P. R. China.,Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 75013, Paris, France
| | - Li Lin
- Foshan Conney Allan Biotechnology Co. Ltd, Foshan, CN, China
| |
Collapse
|
37
|
Lin C, Zhu X, Jin Q, Sui A, Li J, Shen L. Effects of Holothurian Glycosaminoglycan on the Sensitivity of Lung Cancer to Chemotherapy. Integr Cancer Ther 2021; 19:1534735420911430. [PMID: 32202167 PMCID: PMC7092648 DOI: 10.1177/1534735420911430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sea cucumber is a kind of food. Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber. Administration of hGAG and cisplatin (DDP) together to treat lung cancer was investigated. Lung adenocarcinoma A549 cells were cultured and divided into 4 groups: control group, hGAG 100 µg/mL group, DDP 3 µg/mL group, and hGAG 100 µg/mL + DDP 3 µg/mL group. Cell inhibition and apoptosis was evaluated by CCK8 and Hoechst33258 staining. Cell cycle was tested by Annexin V-FITC/PI (propidium iodide) double-staining and flow cytometry. The expression of mRNA and protein of Bcl-2, Bax, caspase-3, and survivin were detected by reverse transcriptase-polymerase chain reaction and Western blot, respectively. The results showed that hGAG combined with DDP enhanced the inhibitory effect of DDP on A549 lung cells through apoptosis pathway. The mechanism of apoptosis may be related to the reduction of Bcl-2 and survivin, as well as the ascension of Bax and caspase-3. hGAG could promote A549 cell cycle arrest in G1 and G2 phase and improve the DDP chemotherapy effects on A549 cells.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Pulmonary Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xinhong Zhu
- Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Qing Jin
- Department of Intensive Care Unit, The 903rd Hospital of People's Liberation Army, Hangzhou, Zhejiang, China
| | - Aihua Sui
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinfeng Li
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liyan Shen
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
38
|
Flavor Changes of Tricholoma matsutake Singer under Different Processing Conditions by Using HS-GC-IMS. Foods 2021; 10:foods10030531. [PMID: 33806370 PMCID: PMC8000925 DOI: 10.3390/foods10030531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to analyze the changes to volatile compounds in fried Tricholoma matsutake Singer under different heating temperatures and times. A total of 40 signals that corresponded to 24 compounds were identified through this approach. Differences in volatile compounds of T. matsutake samples were shown in topographic plots and fingerprints. The heating temperatures were more important than the heating times in affecting the volatile compounds. Moreover, changes to the main volatile compounds in T. matsutake under different processing conditions were based on the thermal decomposition and a series of chemical reactions of C8 compounds. Principal component analysis (PCA) results showed that samples under different processing conditions could be effectively distinguished. Hence, the combination of HS-GC-IMS and PCA can identify and classify the volatile compounds of T. matsutake quickly and sensitively. This study provides a new supplementary analytical method for the rapid identification of T. matsutake. The above results can provide a theoretical basis for the quality control and change mechanism of flavor in the processing of traditional edible fungi products.
Collapse
|
39
|
Wang J, Salem DR, Sani RK. Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: Characterization and bioactivities. N Biotechnol 2020; 61:29-39. [PMID: 33188978 DOI: 10.1016/j.nbt.2020.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
The production, characterization and bioactivities of exopolysaccharides (EPSs) from a thermophilic bacterium Geobacillus sp. strain WSUCF1 were investigated. Using glucose as a carbon source 525.7 mg/L of exoproduct were produced in a 40-L bioreactor at 60 °C. Two purified EPSs were obtained: EPS-1 was a glucomannan containing mannose and glucose in a molar ratio of 1:0.21, while EPS-2 was composed of mannan only. The molecular weights of both EPSs were estimated to be approximately 1000 kDa, their FTIR and NMR spectra indicated the presence of α-type glycosidic bonds in a linear structure, and XRD analysis indicated a low degree of crystallinity of 0.11 (EPS-1) and 0.27 (EPS-2). EPS-1 and EPS-2 demonstrated high degradation temperatures of 319 °C and 314 °C, respectively, and non-cytotoxicity to HEK-293 cells at 2 and 3 mg/mL, respectively. In addition, both showed antioxidant activities. EPSs from strain WSUCF1 may expand the applications of microorganisms isolated from extreme environments and provide a valuable resource for exploitation in biomedical fields such as drug delivery carriers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
40
|
Ma N, Tao H, Du H, Zhao L, Hu Q, Xiao H. Antifatigue effect of functional cookies fortified with mushroom powder (Tricholoma Matsutake) in mice. J Food Sci 2020; 85:4389-4395. [PMID: 33159467 DOI: 10.1111/1750-3841.15510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/01/2022]
Abstract
Bakery products made by cereal and edible fungi powder have a unique flavor and health benefits, dramatically enhancing the nutritional value of the products. In this study, we investigated the antifatigue effect of a novel Tricholoma matsutake cookie (TMC) by the exhaustive swimming test. Male Kunming ICR mice were randomly divided into seven groups (each group, n = 10), fed with saline, ordinary cookies (4, 8, 16 g/kg B.W./day), and TMC (4, 8, 16 g/kg B.W./day) by gavage. After 30-day administration, the weight-loaded swimming test was carried out on the mice to evaluate the antifatigue effect of TMC. In comparison with the effect of ordinary cookies, the intake of TMC significantly prolonged the exhaustive swimming time of mice and increased the level of muscle glycogen and liver glycogen, accompanied by the reduction of lactic acid and urea nitrogen level in serum. Additionally, TMC dramatically improved the activity of superoxide dismutase and glutathione peroxidase in serum and largely decreased the level of malondialdehyde. All in all, TMC could enforce exhaustive swimming tolerance, accelerate the decomposition of sports-related metabolites such as lactic acid and urea nitrogen, and increase the activity of the antioxidant enzyme, thereby improving sports-related energy storage and relieving fatigue. Our findings broadened the application of T. matsutake in the processing of bakery products and provided the theoretical basis and technical support for the development of antifatigue products. PRACTICAL APPLICATION: In this study, we investigated the antifatigue effect of a novel Tricholoma matsutake cookie by the exhaustive swimming test. Collectively, the results of the present study suggested that the cookies fortified with T. matsutake could be considered as an antifatigue bakery product. Furthermore, our findings broadened the application of T. matsutake in the processing of bakery products and provided the theoretical basis and technical support for the development of antifatigue products.
Collapse
Affiliation(s)
- Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Hongling Tao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
41
|
Do MH, Lee HB, Oh MJ, Jhun H, Choi SY, Park HY. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity. Food Chem 2020; 343:128395. [PMID: 33268179 DOI: 10.1016/j.foodchem.2020.128395] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 01/07/2023]
Abstract
Radish (Raphanus sativus) greens are commonly used as a vegetable in Korea; however, their anti-obesity effect has not been reported yet. We prepared the polysaccharide fraction of radish greens (PRG) and assessed its anti-obesity activity in high fat diet (HFD)-induced obese C57BL/6J mice. Supplementation with 4 mg/kg PRG reduced weight gain and body fat percentage, and regulated serum biomarkers against HFD-induced obesity. Moreover, PRG treatment improved gut permeability by increasing tight junction protein expression and colon length shortening. HFD intake increased the proportion of Firmicutes and decreased the proportion of Bacteroidetes and Verrucomicrobia; however, PRG supplementation maintained gut microbial composition to normal diet condition. Moreover, PRG reduced HFD-induced increase of lipid metabolism-related protein expression, along with adipocyte size in white adipose tissue. These results indicated that PRG as a potential prebiotic, has anti-obesity properties by improving gut barrier function, modulating gut microbiota and regulating lipid metabolism.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hye-Bin Lee
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Mi-Jin Oh
- Technical Assistance Center, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Sang Yoon Choi
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
42
|
Yılmaz T, Şimşek Ö. Potential Health Benefits of Ropy Exopolysaccharides Produced by Lactobacillus plantarum. Molecules 2020; 25:molecules25143293. [PMID: 32698491 PMCID: PMC7396996 DOI: 10.3390/molecules25143293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 01/31/2023] Open
Abstract
The ability of Lactobacillus plantarum to produce exopolysaccharides (EPS) of various structures and properties is effective in showing both starter and probiotic culture qualification. In this study, the potential health promoting functions of the ropy EPS produced by Lactobacillus plantarum strains isolated from tarhana were tested. A stimulation of the pro-inflammatory IL-12 and TNF-α cytokines was observed in the presence of the ropy EPS suggesting an in vitro immune modulation. Similarly, the tested EPS demonstrated promoted the growth of the probiotic strains in fermentation medium. A medium level of radical scavenging activities of ropy EPS was observed whereas the superoxide and hydroxyl scavenging activities were more effective. The ropy EPS also showed α-glucosidase inhibition and cholesterol removal characteristics depending on their concentration. These findings revealed the potential health-promoting functions of ropy EPS from L. plantarum strains and EPS from L. plantarum PFC311 and PFC310 strains demonstrated multiple health-improving effects that can be further evaluated in food and other industries.
Collapse
|
43
|
Lee HB, Oh MJ, Do MH, Kim YS, Park HY. Molokhia leaf extract prevents gut inflammation and obesity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112866. [PMID: 32302714 DOI: 10.1016/j.jep.2020.112866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Molokhia is highly consumed in Egypt as edible and medicinal plants, and its leaves are used for the treatment of pain, fever, and inflammation. AIM OF THE STUDY High-fat diet (HFD) induces gut dysbiosis, which is closely linked to metabolic diseases including obesity and leaky gut. The effects of molokhia (Corchorus olitorius L.) on anti-obesity and gut health were investigated in this study. MATERIALS AND METHODS The effects of a water-soluble extract from molokhia leaves (WM) on lipid accumulation in 3T3-L1 adipocytes and on body weight, gut permeability, hormone levels, fecal enzyme activity of the intestinal microflora, and gut microbiota in HFD-induced C57BL/6J mice were examined. RESULTS WM treatment significantly inhibited lipid accumulation in 3T3-L1 adipocytes. Mice treated with 100 mg/kg WM had 13.1, 52.4, and 17.4% significantly lower body weights, gut permeability, and hepatic lipid accumulation than those in the HFD group, respectively. In addition, WM influenced gut health by inhibiting metabolic endotoxemia and colonic inflammation. It also altered the composition of the gut microbiota; in particular, it increased the abundance of Lactobacillus and decreased that of Desulfovibrio. CONCLUSION Our results extend our understanding of the beneficial effects of WM consumption, including the prevention of gut dysbiosis and obesity.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Mi-Jin Oh
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
| | - Moon Ho Do
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
| | - Young-Soo Kim
- Department of Food Science and Technology, Chonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Ho-Young Park
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
44
|
Tang X, Ding X, Hou YL. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies. Food Sci Biotechnol 2020; 29:939-951. [PMID: 32582456 DOI: 10.1007/s10068-020-00732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
The purpose of the study is to investigate the molecular mechanisms of development of Tricholoma matsutake fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the Spn2 and Eef1a1 gene were the key genes in the primordial stage of T. matsutake by regulating cytokinesis, protein synthesis, and cell growth. And the Ubc, Atp6, Cytb, and Pth2 gene were the key genes in the mature stage of T. matsutake by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that Cdc28, Rad53, Dun1, Pho85 and Pho81 were the key DEGs regulating cell cycle genes of T. matsutake from primordial stage to intermediate stage. And APC, Cyr1, Cdc45, Spo11 and Rec8 genes were the key DEGs for the meiosis and sporogenesis of T. matsutake from the intermediate stage to the mature stage.
Collapse
Affiliation(s)
- Xian Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Yi-Ling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| |
Collapse
|
45
|
Zhang Y, Zeng Y, Cui Y, Liu H, Dong C, Sun Y. Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley. Carbohydr Polym 2020; 235:115969. [DOI: 10.1016/j.carbpol.2020.115969] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
46
|
Nazeam JA, El-Hefnawy HM, Singab ANB. Structural Characterization and In Vitro Cytokines Modulation Effect of New Acetylated Galactomannans from Aloe arborescens. J Med Food 2020; 23:1093-1101. [PMID: 32286896 DOI: 10.1089/jmf.2019.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three new galactomannan components designed as AANP-1, AANP-3, and AAAP-7 were isolated from previously purified Aloe arborescence polysaccharide fractions, using ion-exchange, gel filtration, and preparative chromatographic techniques. Based on Fourier transform-infrared, one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy, the main backbone of AANP-1 elucidated as (1 → 4)-linked_α-d-deoxyGalp, (1 → 4) d-Manp, and β-d-2-glup. The sugar residue sequence of AANP-3 was (1 → 4)-linked β-d-NHAC-GAlp with β-d-AcManp side chain that attached to O-4 position. The AAAP-7 repeated units were (1 → 4) d-Manp linked with (1 → 4) d-Galp interspersed with (1 → 3)-α-Manp. The results of high performance size-exclusion chromatography indicated that the approximate molecular weights of AANP-1, AANP-3, and AAAP-7 were 4.2, 2.4, and 2.5 kDa, respectively. The cytokine modulation assay revealed that the isolated components promoted a remarkable release of interleukin (IL)-12 and tumor necrosis factor alpha in comparison with the negative control group, whereas potent significant induction of IL-2 and interferon gamma was detected more than the positive control phytohemagglutinin (P < .05). This is the first report for isolation galactomannans from Aloe arborescence. Moreover, this finding could provide new insights for exploring the biological modifier mechanism in correlation with the knowledge of structural configuration.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Pharmacognosy Department, Faculty of Pharmacy, October 6th University, Cairo, Egypt
| | - Hala M El-Hefnawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdel-Naser B Singab
- Pharmacognosy Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| |
Collapse
|
47
|
Mahdhi A, Chakroun I, Espinosa-Ruiz C, Messina CM, Arena R, Majdoub H, Santulli A, Mzoughi R, Esteban MA. Dietary administration effects of exopolysaccharide from potential probiotic strains on immune and antioxidant status and nutritional value of European sea bass (Dicentrarchus labrax L.). Res Vet Sci 2020; 131:51-58. [PMID: 32302865 DOI: 10.1016/j.rvsc.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
The use of biological immunostimulants is considered a valuable practice to improve culture conditions in aquaculture sector that may help to increase production and maintain healthy environment. We undertook this study in order to evaluate the potential effect of the administration of two exopolysaccharides (EPS) "EPLB" and "EPB" derived from potential probiotic strains on immune and antioxidant status of European sea bass (Dicentrarchus labrax L.) larvae. In order to find out if the EPSs have an effect on the biochemical composition during the trial period, the nutritional value has been evaluated. The results revealed that expression levels of immune-relevant genes (infg, Il1b, Il8, Il6 and tcr-β) in the gut and head kidney and the scavenging enzymes (cat, sod, gr) genes in the liver were modulated. In fact, the dietary supplementation with the tested EPSs, significantly enhances the expression of immune-associated genes in the head-kidney, particularly infg and tcrβ, as well as catalase gene in liver. During the period of study, EPSs administration did not affect the fatty acid profiles of larvae, which is balanced. This is confirmed by the Docosahexaenoic acid / Eicosapentaenoic acid ratio and demonstrates that EPLB and EPB can be administrated without any negative effect on biochemical composition of European sea bass. The present findings provided evidence that the tested EPSs with antibacterial and antioxidant activities can enhance immune response without negative effect on the biochemical composition. The used EPSs can be considered as a good source of natural functional aquafeed ingredients for European sea bass.
Collapse
Affiliation(s)
- Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the envirOnment and Products. Faculty of Pharmacy, University of Monastir, Tunisia.
| | - Ibtissem Chakroun
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the envirOnment and Products. Faculty of Pharmacy, University of Monastir, Tunisia
| | - Cristóbal Espinosa-Ruiz
- Immunobiology for aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; University of Palermo, Department of Earth and Sea Science, Marine Biochemistry and Ecotoxicology Laboratory, (Trapani), via Barlotta 4, 91100, Italy
| | - Concetta Maria Messina
- University of Palermo, Department of Earth and Sea Science, Marine Biochemistry and Ecotoxicology Laboratory, (Trapani), via Barlotta 4, 91100, Italy
| | - Rosaria Arena
- University of Palermo, Department of Earth and Sea Science, Marine Biochemistry and Ecotoxicology Laboratory, (Trapani), via Barlotta 4, 91100, Italy
| | - Hatem Majdoub
- Laboratory of Analysis, Treatment and Valorization of the Polluants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Andrea Santulli
- University of Palermo, Department of Earth and Sea Science, Marine Biochemistry and Ecotoxicology Laboratory, (Trapani), via Barlotta 4, 91100, Italy
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the envirOnment and Products. Faculty of Pharmacy, University of Monastir, Tunisia
| | - Maria Angeles Esteban
- Immunobiology for aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
48
|
Nazeam JA, El-Hefnawy HM, Singab ANB. Structural Elucidation of Immunomodulators, Acetylated Heteroglycan and Galactosamine, Isolated from Aloe arborescens Leaves. J Med Food 2020; 23:895-901. [PMID: 31976801 DOI: 10.1089/jmf.2019.0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plant polysaccharides gained extended scientific attention for their immunomodulatory effect. However, few scientific studies structurally defined polysaccharides in relation to their biological modifier response. Therefore, the study explored the effect of structurally identified isolated macromolecules from Aloe arborescens against cytokine modulation (interferon [IFN-γ], interleukins [IL-2 and IL-12], and tumor necrosis factor [TNF-α]) in vitro. The structures were elucidated by GC, GPC, FT-IR spectroscopy, 1D NMR, COSY, HMBC, and HSQC. Two acetylated glucomannans (AANP4 and AAAP6), one deoxy-glucogalactan (AANP5), and one deoxy-N-acetyl-[1-4]-galactosamine (AANP2) were isolated. The results showed significant induction for all cytokines and the most potent component was AAAP6; acetylated phenolic glucomannan with a (1 → 3)-linked glucose-mannose and (1 → 4)-linked mannose backbone, which stimulated IL-12 by more than 10-fold compared with phytohemagglutinin (positive control). In conclusion, A. arborescens polysaccharides could be a landmark for development of effective immunotherapeutics against cancer and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Pharmacognosy Department, Faculty of Pharmacy, October 6th University, Cairo, Egypt
| | - Hala M El-Hefnawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdel-Naser B Singab
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Udchumpisai W, Bangyeekhun E. Purification, Structural Characterization, and Biological Activity of Polysaccharides from Lentinus velutinus. MYCOBIOLOGY 2020; 48:51-57. [PMID: 32158606 PMCID: PMC7048199 DOI: 10.1080/12298093.2019.1693482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
A polysaccharide (LVP) was purified from fruiting body of Lentinus velutinus by ethanol precipitation fractionation and DEAE and Sephadex G-100 column chromatography. The yield of purified polysaccharide was 0.025%. Molecular characteristics of LVP were determined by gel permeation chromatography, FT-IR spectroscopy, and thin-layer chromatography. Our results revealed that LVP is a polysaccharide composed of only glucose units, and has a molecular weight of 336 kDa. Biological activity assays indicated that LVP exhibits both cytotoxic and antioxidant activity. LVP showed specific cytotoxicity against cancer cells (HeLa and HepG2 cells), and alterations in cancer cell morphology were found after LVP treatment.
Collapse
Affiliation(s)
- Wascharin Udchumpisai
- Department of Microbiology, Faculty of Science, Silpakorn University, Mueang, Nakhon Pathom, Thailand
| | - Eakaphun Bangyeekhun
- Department of Microbiology, Faculty of Science, Silpakorn University, Mueang, Nakhon Pathom, Thailand
- CONTACT Eakaphun Bangyeekhun
| |
Collapse
|
50
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|