1
|
Iwasaki Y, Nakatogawa M, Shimizu A, Sato Y, Shigemura Y. Comparison of gelatin and low-molecular weight gelatin hydrolysate ingestion on hydroxyproline (Hyp), Pro-Hyp and Hyp-Gly concentrations in human blood. Food Chem 2022; 369:130869. [PMID: 34461513 DOI: 10.1016/j.foodchem.2021.130869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023]
Abstract
This study showed that gelatin ingestion significantly increased prolyl-hydroxyproline (Pro-Hyp) levels in plasma of 9 subjects, with maximum concentrations of 15.5 ± 3.0 nmol/mL 2 h post-ingestion. Hydroxyprolyl-glycine (Hyp-Gly) concentrations were significantly increased and reached a maximal level of 2.3 ± 0.5 nmol/mL 1 h post-ingestion of gelatin. A low molecular weight gelatin hydrolysate (LMW-GH) significantly enhanced concentrations of both peptides, while gelatin hydrolysate ingestion did not significantly enhance the maximum concentration and area under the plasma concentration-time curve (AUC) of Hyp-Gly relative to gelatin. The absorption of free Hyp following gelatin ingestion (94.4 ± 16.4 nmol/mL) was significantly lower relative to GH (150.9 ± 15.3 nmol/mL) and LMW-GH (169.1 ± 32.5 nmol/mL). The present study is the first report demonstrating that Hyp-containing peptides are elevated to μM levels in human plasma after gelatin ingestion. These results suggested that gelatin is useful as a functional food as effectively as GH.
Collapse
Affiliation(s)
- Yu Iwasaki
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Mizuho Nakatogawa
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Ayaka Shimizu
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Yoshio Sato
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Yasutaka Shigemura
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| |
Collapse
|
2
|
Matsui T. Polyphenols-absorption and occurrence in the body system. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduated School of Kyushu University
| |
Collapse
|
3
|
Theaflavins prevent the onset of diabetes through ameliorating glucose tolerance mediated by promoted incretin secretion in spontaneous diabetic Torii rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Nakao R, Shen W, Shimajiri Y, Kainou K, Sato Y, Ulla A, Ohnishi K, Ninomiya M, Ohno A, Uchida T, Tanaka M, Akama K, Matsui T, Nikawa T. Oral intake of rice overexpressing ubiquitin ligase inhibitory pentapeptide prevents atrophy in denervated skeletal muscle. NPJ Sci Food 2021; 5:25. [PMID: 34504092 PMCID: PMC8429733 DOI: 10.1038/s41538-021-00108-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
We previously reported that intramuscular injections of ubiquitin ligase CBLB inhibitory pentapeptide (Cblin; Asp-Gly-pTyr-Met-Pro) restored lost muscle mass caused by sciatic denervation. Here, we detected Cblin on the basolateral side of Caco-2 cells after being placed on the apical side, and found that cytochalasin D, a tight junction opener, enhanced Cblin transport. Orally administered Cblin was found in rat plasma, indicating that intact Cblin was absorbed in vitro and in vivo. Furthermore, transgenic Cblin peptide-enriched rice (CbR) prevented the denervation-induced loss of muscle mass and the upregulation of muscle atrophy-related ubiquitin ligases in mice. These findings indicated that CbR could serve as an alternative treatment for muscle atrophy.
Collapse
Affiliation(s)
- Reiko Nakao
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Weilin Shen
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yasuka Shimajiri
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan ,EditForce, Fukuoka, Japan
| | - Kumiko Kainou
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan
| | - Yuki Sato
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Anayt Ulla
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohta Ohnishi
- grid.267335.60000 0001 1092 3579Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Miyuki Ninomiya
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ayako Ohno
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuru Tanaka
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kazuhito Akama
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan
| | - Toshiro Matsui
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Takeshi Nikawa
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
5
|
Wu Q, Chen Y, Ouyang Y, He Y, Xiao J, Zhang L, Feng N. Effect of catechin on dietary AGEs absorption and cytotoxicity in Caco-2 cells. Food Chem 2021; 355:129574. [PMID: 33799251 DOI: 10.1016/j.foodchem.2021.129574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
Maillard reaction produces advanced glycation end products (AGEs) that endanger human health. This study investigated the protective effect of (+)-catechin (CC) on different types of dietary AGEs absorption and cytotoxicity in Caco-2 cells. Our results showed that CC had higher inhibitory rate on peptide bound-AGEs absorption than free Nɛ-carboxymethyl lysine (CML), which dropped to 36.24% and 32.21% when treated with 20 and 50 μM CC. The reasons might be that CC could repair the loose tight junction (ZO-1) and down-regulation of protein-coupling peptide carrier 1 (PEPT-1) expression in Caco-2 cells which were in accordance with molecular docking results. Additionally, CC could remarkably decreased the protein levels of receptor of AGEs (RAGE), mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) that detected by western blotting and immunohistochemical staining method. Taken together, these findings demonstrated that CC may inhibit AGEs absorption and protected Caco-2 cells against RAGE-MAPK-NF-κB signaling suppression.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Chang jiang West Road, Hefei, 230036 Anhui, China.
| | - Yuanyuan Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Yu Ouyang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Yi He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Juan Xiao
- College of Food Science and Engineering, Hainan University Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Chang jiang West Road, Hefei, 230036 Anhui, China.
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
6
|
Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Theaflavins inhibit glucose transport across Caco-2 cells through the downregulation of the Ca2+/AMP-activated protein kinase-mediated glucose transporter SGLT1. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
9
|
Guha S, Paul C, Alvarez S, Mine Y, Majumder K. Dietary γ-Glutamyl Valine Ameliorates TNF-α-Induced Vascular Inflammation via Endothelial Calcium-Sensing Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9139-9149. [PMID: 32786865 PMCID: PMC8012099 DOI: 10.1021/acs.jafc.0c04526] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
γ-Glutamyl valine (γ-EV), commonly found in edible beans, was shown to reduce gastrointestinal inflammation via activation of calcium-sensing receptors (CaSRs). The present study aimed to evaluate the efficacy of γ-EV in modulating the tumor necrosis factor-α-induced inflammatory responses in endothelial cells (ECs) via CaSR-mediated pathways. Human aortic ECs (HAoECs) were pretreated (2 h) with γ-EV (0.01, 0.1, and 1 mM). 1 mM pretreatment of γ-EV significantly reduced the upregulation of inflammatory adhesion molecules, VCAM-1 and E-selectin, by 44.56 and 57.41%, respectively. The production of cytokines IL-8 and IL-6 was significantly reduced by 40 and 51%, respectively, with 1 mM pretreatment of γ-EV. Similarly, there was a significant reduction in chemokine MCP-1 from a positive control of 9.70 ± 0.52 to 6.6 ± 0.43 ng/mL, after γ-EV treatment. The anti-inflammatory effect of γ-EV was attenuated by the treatment of the CaSR-specific inhibitor, NPS-2143, suggesting the involvement of CaSR-mediated pathways. Further studies identified the critical role of key modulators, such as β-arrestin2 and cyclic adenosine monophosphate response element-binding protein, in mediating the CaSR-dependent anti-inflammatory effect of γ-EV. Finally, the transport efficiency of γ-EV was evaluated through a monolayer of intestinal epithelial cells (Caco-2), and the apparent permeability (Papp) of the peptide was found to be 1.56 × 10-6 cm/s.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Catherine Paul
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph N1G2W1, Ontario, Canada
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
10
|
Iftikhar M, Iftikhar A, Zhang H, Gong L, Wang J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Res Int 2020; 136:109240. [PMID: 32846508 DOI: 10.1016/j.foodres.2020.109240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Caco-2, a human intestinal carcinoma cell line, has been used to test the absorption and transport mechanism of functional foods and drugs across the intestinal epithelium in order to study their antioxidant, anticancer and anti-inflammatory activities. Caco-2 cells represent the morphological and functional characteristics of small intestinal cells and capable of expressing brush borders, tight junctions, intestinal efflux and uptake transporters which regulate permeation of drugs and functional food extracts from intestinal lumen to systemic circulation. The integrity of the Caco-2 monolayer is controlled by establishing the TEER between 200 and 1000 O per cm2. FFEs affect intestinal permeability by adjusting the tight junction proteins between the cells in order to maintain the epithelial barrier function. Because of the side effects of medicines, there is an increased interest in functional food extracts (FFEs) as drug substitutes. Functional foods undergo intricate transport processes and biotransformation after oral administration. Metabolism and transport studies of FFEs in Caco-2 cells are very important for determining their bioavailability. Functional foods and their constituents produce anti-proliferative and anti-cancer effects through apoptosis, cell cycle arrest and inhibition of various signal transduction pathways across Caco-2 cell lines. The current review has summarized the anti-inflammation, anticancer, antioxidant and cholesterol lowering potential of FFEs using Caco-2 cells through reducing local inflammatory signals, production of ROS and lipid accumulation. The transport, bioavailability, metabolism, mechanisms of actions, cellular pathways adopted by FFEs across Caco-2 cell lines are predominantly affected by their molecular weight, structures and physicochemical properties. These studies are beneficial for investigating the different mechanisms of action of FFEs in the human body.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad (TUF), Faisalabad 38000, Pakistan
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Sun X, Acquah C, Aluko RE, Udenigwe CC. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103680] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Shen Z, Chen Q, Jin T, Wang M, Ying H, Lu J, Wang M, Zhang W, Qiu F, Jin C, Zhao Y, Fu G. Theaflavin 3,3'-digallate reverses the downregulation of connexin 43 and autophagy induced by high glucose via AMPK activation in cardiomyocytes. J Cell Physiol 2019; 234:17999-18016. [PMID: 30847932 DOI: 10.1002/jcp.28432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Theaflavin 3,3'-digallate (TF3), is reported to protect cardiomyocytes from lipotoxicity and reperfusion injury. However, the role of TF3 in the protection of high-glucose injury is still poorly understood. This study investigated the protective effects of TF3 on gap junctions and autophagy in neonatal cardiomyocytes (NRCMs). NRCMs preincubated with high glucose were coincubated with TF3. The expression of connexins and autophagy-related proteins was determined. The functioning of gap-junctional intercellular communication (GJIC) was measured by a dye transfer assay. Adenosine monophosphate-activated protein kinase (AMPK) activity was determined by western blot. Moreover, AMPK was activated with aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or inhibited by AMPKα small interfering RNA (siRNA) to explore the role of AMPK in the modulation of connexin 43 (Cx43) and autophagy. Meanwhile, autophagy was activated or blocked to observe the change in Cx43 expression. It was found that the protein expression of Cx43 and autophagy-related proteins was increased in a TF3 dose- and time-dependent manner under high glucose. TF3 also recovered the reduced GJIC function induced by high glucose concentrations. TF3 activated phosphorylated AMPK in a time-dependent way. AMPKα siRNA abrogated the protection of TF3, while AICAR showed similar results compared to the TF3 treatment. Meanwhile, autophagy activation caused decreased Cx43, while cotreatment with baf A1 enhanced Cx43 expression further compared with the TF3 treatment alone under high glucose. We concluded that TF3 partly reversed the inhibition of Cx43 expression and autophagy induced by high glucose in NRCMs, partly by restoring AMPK activity. Inhibition of autophagy might be protective by preserving Cx43 expression in NRCMs stimulated by high glucose.
Collapse
Affiliation(s)
- Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meihui Wang
- Department of Cardiology Basic Research, Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hangying Ying
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chongying Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Nolasco E, Guha S, Majumder K. Bioactive Egg Proteins. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nutritional excellence of chicken egg is derived from its task as a life-giving medium, supplying the necessary nutrients to the hen's embryo while protecting it from external threats. Additionally, egg proteins possess unique biological activities above and beyond their known functional and nutritional roles. In the last few decades, extensive research has been done to evaluate the various biological activities of egg proteins and protein-derived peptides. Egg proteins and protein-derived peptides have been attributed to diverse biological activities, the most well-known being their antimicrobial properties. However, egg proteins and peptides have been shown to have other biological activities, such as antihypertensive, antioxidant, anticancer, immunomodulatory, and protease inhibitory activity. Egg-derived bioactive proteins have had a relevant scientific impact and exhibit promising applicability as an ingredient for the development of functional foods and nutraceuticals. However, it is critical to understand the effects of these proteins in signaling pathways to delineate their molecular mechanisms of action. Further studies are required to fill the current knowledge gaps. Therefore, the purpose of the chapter is to illustrate the present knowledge of the bioactivity of different egg proteins and their physiological effects.
Collapse
Affiliation(s)
- Emerson Nolasco
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Snigdha Guha
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Kaustav Majumder
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| |
Collapse
|
14
|
Wang Y, Zuo Y, Deng S, Zhu F, Liu Q, Wang R, Li T, Cai H, Wan X, Xie Z, Xie Z, Li D. Using Caffeine and Free Amino Acids To Enhance the Transepithelial Transport of Catechins in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5477-5485. [PMID: 30983343 DOI: 10.1021/acs.jafc.9b01701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catechins are well-known to possess health-promoting functions. The interaction of the catechins with other components in tea could alter their absorption and efflux. This study investigated whether the absorption of catechins is affected by caffeine and amino acids using the Caco-2 monolayer cell model. We found that (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC) were all actively effluxed. Co-transportation of EGCG, ECG, or EC with caffeine, theanine, serine, or glycine increased their apparent permeability coefficient [ Papp(AP-BL)] value by 3.42-5.40- fold, 1.19-5.75-fold, and 1.55-8.01-fold, respectively. Meanwhile, their efflux ratio values were significantly decreased. Moreover, the expression of multi-drug resistance protein 2 (MRP2) after 3 h of incubation with either 50 μM EGCG or 50 μM EC was elevated by 1.58- and 2.98-fold, respectively, while 50 μM ECG had no significantly effects. In addition, the expression of P-glycoprotein (P-gp) after treatment with either 50 μM EGCG, 50 μM ECG, or 50 μM EC was enhanced by 1.53-, 1.63-, and 1.80-fold, respectively. The addition of either caffeine or any one of the three amino acids decreased the expression of both MRP2 and P-gp induced by EGCG, and the expression of P-gp induced by ECG or EC also decreased. In contrast, only glycine decreased the expression of MRP2 induced by EC. Taken together, our data indicated that caffeine and theanine, glycine, or serine in tea might increase the absorption of catechins by the selectively suppressed expression of the efflux transporters induced by catechins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zijian Xie
- Marshall Institute for Interdisciplinary Research , Marshall University , 1 John Marshall Drive , Huntington , West Virginia 25755 , United States
| | | | | |
Collapse
|
15
|
Novel in situ visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging. Sci Rep 2019; 9:3166. [PMID: 30816166 PMCID: PMC6395804 DOI: 10.1038/s41598-019-39405-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is presently used in physiological evaluations for visualisation of targets in organs. In the present study, MALDI-MSI was used as a visualisation technique to investigate the intestinal absorption of polyphenols. Nifedipine/phytic acid-aided MALDI-MSI was performed to visualise theaflavin-3′-O-gallate (TF3′G) and epicatechin-3-O-gallate (ECG) in the rat jejunum for 50-µM, 60-min transport experiments. Non-absorbable TF3′G was successfully visualised at the apical region, whereas absorbable ECG was detected throughout the rat jejunum. MALDI-MSI was also performed to determine the transport routes of the target metabolites. Signals corresponding to TF3′G and ECG in the membranes were diminished following treatment with inhibitors targeting the monocarboxylic acid transporter and organic anion transporting polypeptides. Enhanced visualisation of TF3′G was achieved by inhibiting efflux routes. Our findings demonstrated that the present MALDI-MSI can provide critical spatial informations on intestinal absorption of targets, by which TF3′G and ECG were incorporated into intestinal tissues, followed by efflux back to the apical compartment. In addition, MALDI-MSI analyses suggested that TF3′G was resistant to phase II metabolism during the influx/efflux processes, whereas ECG was susceptible to methylation and sulphation reactions. In conclusion, inhibitor-aided MALDI-MSI could serve as a powerful in situ visualisation technique for verifying intestinal transport routes and investigating the metabolism of penetrants.
Collapse
|
16
|
Affiliation(s)
- Weilin Shen
- Division of Bioscience and Biotechnology Faculty of Agriculture Graduate School of Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan
| | - Toshiro Matsui
- Division of Bioscience and Biotechnology Faculty of Agriculture Graduate School of Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan
| |
Collapse
|
17
|
Shen W, Matsui T. Current knowledge of intestinal absorption of bioactive peptides. Food Funct 2018; 8:4306-4314. [PMID: 29139513 DOI: 10.1039/c7fo01185g] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptides have been demonstrated as potentially beneficial compounds against several life-style related diseases such as hypertension, hypercholesterolemia, and atherosclerosis, among others. However, limited research has been carried out on peptide absorption, resulting in a lack of understanding and control of this process. Therefore, this review discusses the recent insights gathered on in vitro and in vivo absorption of peptides across intestinal membranes, into blood circulation. Briefly, some di-/tripeptides permeate through intestinal membranes in their intact forms via peptide transporter systems, while others are vulnerable to protease degradation. Oligopeptides (>tetrapeptides) show a lower transport ability than di-/tripeptides, possibly due to the presence of paracellular tight junctions. The hydrophobicity of peptides (log P) does not seem to influence absorption, while peptide length and degradation of peptides (and peptide sequences) by intestinal proteases may be determinant factors of the absorption process.
Collapse
Affiliation(s)
- Weilin Shen
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
18
|
Xing L, Liu R, Tang C, Pereira J, Zhou G, Zhang W. The antioxidant activity and transcellular pathway ofAsp-Leu-Glu-Gluin a Caco-2 cell monolayer. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Rui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Changbo Tang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Jailson Pereira
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
19
|
Shigemura Y, Suzuki A, Kurokawa M, Sato Y, Sato K. Changes in composition and content of food-derived peptide in human blood after daily ingestion of collagen hydrolysate for 4 weeks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1944-1950. [PMID: 28914450 DOI: 10.1002/jsfa.8677] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Daily ingestion of collagen hydrolysate for a long period improves skin and joint conditions. It has been speculated that the beneficial effects are exerted by food-derived hydroxyproline (Hyp) peptides, which are detected in human blood after single ingestions. In the present study, to investigate the effect of long-term ingestion of collagen hydrolysate on Hyp peptides profile in blood, the concentrations of Hyp-peptides in human blood before and after daily ingestion for a long period were examined. RESULTS Hyp-peptides increased to a maximum level at 1 h after ingestion and reverted to their initial levels within 24 h during experimental period. Pro-Gly and Hyp-peptides such as Pro-Hyp-Gly, Pro-Hyp, Ile-Hyp, Leu-Hyp, Hyp-Gly, Glu-Hyp and Ala-Hyp were identified in the blood after ingestion of collagen hydrolysate at 4.5 g day-1 for 4 weeks. For the whole period, Pro-Hyp was the leading compound. The compositional rate of Hyp-Gly showed a tendency to increase, while that of Pro-Hyp tended to decrease after daily ingestion. CONCLUSION The present results indicate that daily ingestion of collagen hydrolysate for a long period can change compositional rate of Hyp peptides in human blood. This fact suggests that long-term ingestion of collagen hydrolysate might change exo- or endo-type protease activity in the digestive tract, which may consequently promote beneficial effects. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yasutaka Shigemura
- Department of Nutrition, Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
| | | | | | - Yoshio Sato
- Department of Nutrition, Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Li B, Terazono Y, Hirasaki N, Tatemichi Y, Kinoshita E, Obata A, Matsui T. Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1428-1434. [PMID: 29355315 DOI: 10.1021/acs.jafc.7b06078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p < 0.05) suppressed the expression of glucose transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.
Collapse
Affiliation(s)
- Baorui Li
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Graduated School of Kyushu University , 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yusuke Terazono
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Graduated School of Kyushu University , 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Naoto Hirasaki
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Graduated School of Kyushu University , 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yuki Tatemichi
- Research & Development Division, Kikkoman Co. , 399 Noda, Chiba 278-0037, Japan
| | - Emiko Kinoshita
- Research & Development Division, Kikkoman Co. , 399 Noda, Chiba 278-0037, Japan
| | - Akio Obata
- Research & Development Division, Kikkoman Co. , 399 Noda, Chiba 278-0037, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Graduated School of Kyushu University , 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
21
|
Sun X, Zhu MJ. AMP-activated protein kinase: a therapeutic target in intestinal diseases. Open Biol 2017; 7:170104. [PMID: 28835570 PMCID: PMC5577448 DOI: 10.1098/rsob.170104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a highly conserved energy sensor, has a crucial role in cardiovascular, neurodegenerative and inflammatory diseases, as well as in cancer and metabolic disorders. Accumulating studies have demonstrated that AMPK activation enhances paracellular junctions, nutrient transporters, autophagy and apoptosis, and suppresses inflammation and carcinogenesis in the intestine, indicating an essential role of AMPK in intestinal health. AMPK inactivation is an aetiological factor in intestinal dysfunctions. This review summarizes the favourable outcomes of AMPK activation on intestinal health, and discusses AMPK as a potential therapeutic target for intestinal diseases.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- School of Food Science, University of Idaho, Moscow, ID 83844, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- School of Food Science, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
22
|
Hanh VT, Shen W, Tanaka M, Siltari A, Korpela R, Matsui T. Effect of Aging on the Absorption of Small Peptides in Spontaneously Hypertensive Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5935-5943. [PMID: 28594555 DOI: 10.1021/acs.jafc.7b01727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, we aimed to evaluate the effect of aging on the absorption of small peptides in spontaneously hypertensive rats (SHRs). Three kinds of dipeptides, glycyl-sarcosine (Gly-Sar), Trp-His, and captopril (a dipeptidomimetic drug), a Gly-Sar-Sar tripeptide, a Gly-Sar-Sar-Sar tetrapeptide, and a Gly-Sar-Sar-Sar-Sar pentapeptide were administered at doses of 10 mg/kg each to 8- and 40-week-old SHRs. The peptides were all detected in their intact forms in the blood. There was a significantly promoted absorption of di/tripeptides in aged SHRs compared with young SHRs. In contrast, the absorption of tetra/pentapeptides was not affected by aging. PepT1 expression in the mid-jejunum was significantly increased in 40-week-old SHRs compared with 8-week-old SHRs, whereas aging did not alter the expression of claudin-1, a tight junction related protein. Thus, the present results suggest that SHR aging may enhance the absorption of di/tripeptides through the enhanced PepT1 transport route, although oligopeptides may be absorbed in an age-independent manner.
Collapse
Affiliation(s)
- Vu Thi Hanh
- Faculty of Agriculture, Graduate School of Kyushu University , Fukuoka 812-8581, Japan
| | - Weilin Shen
- Faculty of Agriculture, Graduate School of Kyushu University , Fukuoka 812-8581, Japan
| | - Mitsuru Tanaka
- Faculty of Agriculture, Graduate School of Kyushu University , Fukuoka 812-8581, Japan
| | - Aino Siltari
- Pharmacology, Faculty of Medicine, University of Helsinki , P.O. Box 63, 00014 University of Helsinki, Finland
| | - Riita Korpela
- Pharmacology, Faculty of Medicine, University of Helsinki , P.O. Box 63, 00014 University of Helsinki, Finland
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University , Fukuoka 812-8581, Japan
| |
Collapse
|
23
|
Hong SM, Tanaka M, Koyanagi R, Shen W, Matsui T. Structural Design of Oligopeptides for Intestinal Transport Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2072-2079. [PMID: 26924013 DOI: 10.1021/acs.jafc.6b00279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p < 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.
Collapse
Affiliation(s)
- Seong-Min Hong
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Mitsuru Tanaka
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Riho Koyanagi
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Weilin Shen
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiro Matsui
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
24
|
Ushida Y, Boonyapichest C, Suganuma H, Tanaka M, Matsui T. Paracellular Transport of Sulforaphane across Caco-2 Cell Monolayers. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Chutinan Boonyapichest
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenviromental Sciences, Faculty of Agriculture, Graduate School of Kyushu University
| | | | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenviromental Sciences, Faculty of Agriculture, Graduate School of Kyushu University
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Division of Bioresource and Bioenviromental Sciences, Faculty of Agriculture, Graduate School of Kyushu University
| |
Collapse
|
25
|
Matsui T. Condensed catechins and their potential health-benefits. Eur J Pharmacol 2015; 765:495-502. [PMID: 26386288 DOI: 10.1016/j.ejphar.2015.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 01/05/2023]
Abstract
Condensed catechins are commonly present in fermented tea, and are produced by the oxidation of monomeric catechins. Due to their auto-oxidation, catechins have diverse structural features, including different binding modes and degrees of polymerization. Because of their structural complexity, their physiological functions and possible health-benefits have not yet been fully investigated. This review focuses on the physiological potentials of dimeric and trimeric catechins in the intestine (regulation of absorption across the intestinal membrane), blood vessels (vasorelaxation in vessel regulation), and muscle organs (promotion of glucose uptake resulting in an anti-diabetic effect). Furthermore, the roles of non-absorbable theaflavins (dimeric catechins), absorbable theasinensins (dimeric catechins), and absorbable procyanidins (dimeric and trimeric catechins) on target organs are discussed.
Collapse
Affiliation(s)
- Toshiro Matsui
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| |
Collapse
|
26
|
Ichinose T, Moriyasu K, Nakahata A, Tanaka M, Matsui T, Furuya S. Orally administrated dipeptide Ser-Tyr efficiently stimulates noradrenergic turnover in the mouse brain. Biosci Biotechnol Biochem 2015; 79:1542-7. [DOI: 10.1080/09168451.2015.1044932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
In this study, we examined the effect of orally administrated dipeptides containing Tyr (Y) on the metabolism of catecholamines in mouse brains. We found that among eight synthetic dipeptides whose sequences are present frequently in soy proteins, Ser-Tyr (SY), Ile-Tyr, and Tyr-Pro had the highest apparent permeability coefficients in monolayers of human intestinal epithelial Caco-2 cells. When administrated orally, SY markedly increased tyrosine content in the cerebral cortex compared to the vehicle control, Ile-Tyr, Tyr-Pro, and Y alone. The oral administration of SY more effectively increased 3-methoxy-4-hydroxyphenylethyleneglycol, the principal metabolite of noradrenaline, in the cerebral cortex and hippocampus than did Ile-Tyr, Tyr-Pro, or Y alone. Central noradrenergic turnover was also markedly stimulated by SY administration. These in vivo observations strongly suggest that SY is more potent in boosting central catecholamine transmission, particularly the noradrenergic system, than Y alone or other dipeptides that include Y.
Collapse
Affiliation(s)
- Takashi Ichinose
- Laboratory of Functional Genomics and Metabolism, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Moriyasu
- Laboratory of Functional Genomics and Metabolism, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Nakahata
- Laboratory of Functional Genomics and Metabolism, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Tanaka
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Matsui
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Furuya
- Laboratory of Functional Genomics and Metabolism, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Bio-Architecture Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Sesamol suppresses the inflammatory response by inhibiting NF-κB/MAPK activation and upregulating AMP kinase signaling in RAW 264.7 macrophages. Inflamm Res 2015; 64:577-88. [PMID: 26059394 DOI: 10.1007/s00011-015-0836-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES AND DESIGN Sesamol is a lignan isolated from sesame seed oil. In recent years, it was found that sesamol could decrease lung inflammation and lipopolysaccharide (LPS)-induced lung injury in rats. In this study, we investigated whether sesamol exhibited anti-inflammatory activity in LPS-stimulated macrophages. MATERIALS AND METHODS RAW 264.7 cells were treated with sesamol, then treated with LPS to induce inflammation. The levels of proinflammatory cytokines were analyzed with ELISA. The gene and protein expression of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), and nuclear factor erythroid-2-related factor 2 (Nrf2) were evaluated with real-time PCR and Western blots, respectively. We also examined inflammatory signaling pathways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. RESULTS Sesamol inhibited production of nitric oxide, prostaglandin E2 (PGE2), and proinflammatory cytokines. Sesamol markedly suppressed mRNA and protein expression of iNOS and COX-2. Sesamol enhanced the protective antioxidant pathway represented by Nrf2 and HO-1. Moreover, sesamol suppressed NF-κB transport into the nucleus and decreased MAPK activation, but it promoted adenosine monophosphate-activated protein kinase (AMPK) activation. CONCLUSIONS These data suggested that sesamol ameliorated inflammatory and oxidative damage by upregulating AMPK activation and Nrf2 signaling and blocking the NF-κB and MAPK signaling pathways.
Collapse
|
28
|
Tanaka M, Hong SM, Akiyama S, Hu QQ, Matsui T. Visualized absorption of anti-atherosclerotic dipeptide, Trp-His, in Sprague-Dawley rats by LC-MS and MALDI-MS imaging analyses. Mol Nutr Food Res 2015; 59:1541-9. [DOI: 10.1002/mnfr.201500075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Mitsuru Tanaka
- Faculty of Agriculture; Graduate School of Kyushu University; Fukuoka Japan
| | - Seong-Min Hong
- Faculty of Agriculture; Graduate School of Kyushu University; Fukuoka Japan
| | - Sayaka Akiyama
- Faculty of Agriculture; Graduate School of Kyushu University; Fukuoka Japan
| | - Qing-Qiang Hu
- Faculty of Agriculture; Graduate School of Kyushu University; Fukuoka Japan
| | - Toshiro Matsui
- Faculty of Agriculture; Graduate School of Kyushu University; Fukuoka Japan
| |
Collapse
|
29
|
Park HY, Kunitake Y, Hirasaki N, Tanaka M, Matsui T. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1. Biosci Biotechnol Biochem 2015; 79:130-7. [DOI: 10.1080/09168451.2014.951027] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
We investigated the effect of theaflavins (TFs) on membrane barrier of Caco-2 cells. For fluorescein-transport experiments, the apparent permeability (Papp) of fluorescein in Caco-2 cells pretreated with 20 μM TFs were significantly decreased compared with that in untreated cells. Although the respective monomeric catechins did not show any Papp reduction, purpurogallin pretreatment resulted in a significant Papp reduction similar to that of TF-3′-O-gallate (TF3′G) pretreatment. This indicates that the benzotropolone moiety may play a crucial role in the Papp reduction or tight junction (TJ)-closing effect induced by TFs. In TF-3′-O-gallate-pretreated Caco-2 cells, fluorescein transport was completely restored by compound C (AMPK inhibitor). In addition, TF3′G significantly increased both the mRNA and protein expression of TJ-related proteins (occludin, claudin-1, and ZO-1) as well as the phosphorylation of AMPK. It was, thus, concluded that TFs could enhance intestinal barrier function by increasing the expression of TJ-related proteins through the activation of AMPK in Caco-2 cells.
Collapse
Affiliation(s)
- Ha-Young Park
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Yuri Kunitake
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Naoto Hirasaki
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| |
Collapse
|