1
|
da Costa KCM, Oliveira LDS, Silva JC, Santana TS, de Freitas RA, Bressan AFM, Gómez-Alonso S, Pérez-Navarro J, Pertuzatti PB, Giachini FR. Enhancing Vascular Health and Lowering Blood Pressure in Spontaneously Hypertensive Rats through Syrah Grape ( Vitis vinifera) Pomace: The Role of Phenolic Compounds. Nutrients 2024; 16:2312. [PMID: 39064756 PMCID: PMC11279649 DOI: 10.3390/nu16142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The beneficial properties of wine by-products include actions that help prevent and treat cardiovascular conditions such as hypertension, primarily due to their antioxidant effects. Novel pharmacotherapies are being developed to treat arterial hypertension, including investigations into natural products exhibiting biological activity, necessitating rigorous evaluation of their efficacy and safety. This study aimed to identify and quantify phenolic compounds in Syrah (Vitis vinifera) grapes grown in the Brazilian Cerrado and their presence in winemaking by-products. It also examined the effects of grape pomace on blood pressure. METHODS Fresh grapes, pomace, and lees, were subjected to spectrophotometric determination of total phenolic compounds, followed by identification and quantification using HPLC-DAD-ESI-MSn. Normotensive male rats (Wistar) and spontaneously hypertensive rats (SHR) received grape pomace-enriched (150 or 300 mg/kg/day, 14 days) or standard chow. Indirect arterial pressure was assessed, while vascular reactivity was evaluated in mesenteric resistance arteries. RESULTS Pomace samples exhibited higher total phenolic compound concentrations than grapes or lees. Seven derivatives of hydroxycinnamic acids and twenty-one flavonols were identified. Quercetin-3-glucoside and ethyl caffeate were the most abundant phenolic compounds. Grape pomace-enriched chow demonstrated a dose-dependent hypotensive effect in rats. CONCLUSION the abundance of flavonols and hydroxycinnamic acids, combined with their hypotensive effects, underscores the therapeutic potential of fine wine-making by-products produced in the Brazilian Cerrado.
Collapse
Affiliation(s)
- Kelly C. M. da Costa
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Lorrayne de S. Oliveira
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Júlia C. Silva
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Taynara S. Santana
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Raiany A. de Freitas
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Alecsander F. M. Bressan
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Sérgio Gómez-Alonso
- Regional Institute of Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain (J.P.-N.)
| | - José Pérez-Navarro
- Regional Institute of Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain (J.P.-N.)
| | - Paula B. Pertuzatti
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiania 74690-900, Brazil
| |
Collapse
|
2
|
Moraes DPDE, Ferreira DF, Farias CAA, Nehring P, Barcia MT, Cichoski AJ, Barin JS. Solvent-free sonication of blackberries for the anthocyanin enrichment of juices obtained by pressing. AN ACAD BRAS CIENC 2023; 95:e20221106. [PMID: 37646713 DOI: 10.1590/0001-3765202320221106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 09/01/2023] Open
Abstract
An ultrasound pretreatment was used to increase anthocyanins content in blackberry juice. Whole fruits were inserted into a glass vessel without contact with any solvent, sonicated in an ultrasonic bath, and then pressed with a manual juicer. The experimental design showed that 7 min at 65% of ultrasound amplitude increased the anthocyanin content in juices from 31 to 56% for BRS Xingu, Guarani, and Xavante cultivars. Two major anthocyanins, cyanidin-3-glucoside and cyanidin-3-rutinoside were found in higher concentrations for sonicated fruits. Therefore, ultrasonic pretreatment of whole fruits increased the anthocyanins in blackberry juices using a simple, fast, and green approach.
Collapse
Affiliation(s)
- Débora P DE Moraes
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Daniele F Ferreira
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Carla Andressa A Farias
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Priscila Nehring
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Milene T Barcia
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Alexandre José Cichoski
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Juliano S Barin
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência dos Alimentos, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Nishiyama-Hortense YP, Olivati C, Pérez-Navarro J, Souza RT, Janzantti NS, Da-Silva R, Hermosín-Gutiérrez I, Gómez-Alonso S, Lago-Vanzela ES. Phenolic Composition of Brazilian BRS Carmem (Muscat Belly A × BRS Rúbea) Grapes: Evaluation of Their Potential Use as Bioingredients. Foods 2023; 12:2608. [PMID: 37444346 DOI: 10.3390/foods12132608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The BRS Carmem grape was developed as an alternative for processing juices and wines. This study aimed to determine the phenolic compounds (PC) in the edible parts of this grape from two harvests-one harvested at ideal maturation time and another when the grapes were still immature-using HPLC-DAD-ESI-MS/MS. Student's t-test was used (α = 0.05) to evaluate differences in the PC content between the edible parts and between the harvests. Both skins showed a predominance of flavonols, anthocyanins, hydroxycinnamic acids derivatives (HCAD) and stilbenes, with higher concentrations for harvest 1 than harvest 2. For both harvests (harvest 1 and harvest 2), the HCAD (mg of caftaric acid•kg fruit-1) was higher in whole grapes (383.98 and 67.09) than in their skins (173.95 and 21.74), with a predominance of trans-caffeic acid for all samples; the flavan-3-ols and proanthocyanidins (mg of (+)-catechin•kg fruit-1) presented higher concentrations in the seeds (flavan-3-ols: 203.20 and 182.71, proanthocyanidins: 453.57 and 299.86) than in the skins (flavan-3-ols: 1.90 and 4.56, proanthocyanidins: 37.58 and 98.92); the stilbenes concentration (µg 3-glc-resveratrol•kg fruit-1) was higher for the seeds from harvest 2 (896.25) than those from harvest 1 (48.67). BRS Carmem grapes contain a phenolic composition complex, and still have a relevant concentration of flavonols, anthocyanins and stilbenes, even when immature.
Collapse
Affiliation(s)
- Yara Paula Nishiyama-Hortense
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Carolina Olivati
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Pérez-Navarro
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | - Natália S Janzantti
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
| | - Roberto Da-Silva
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
| | - Isidro Hermosín-Gutiérrez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ellen Silva Lago-Vanzela
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (Unesp), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
| |
Collapse
|
4
|
Fontana A, Schieber A. Preparative Fractionation of Phenolic Compounds and Isolation of an Enriched Flavonol Fraction from Winemaking Industry By-Products by High-Performance Counter-Current Chromatography. PLANTS (BASEL, SWITZERLAND) 2023; 12:2242. [PMID: 37375868 DOI: 10.3390/plants12122242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
High-performance counter-current chromatography (HPCCC) was used as a tool for the isolation and fractionation of phenolic compounds (PCs) in extracts from wine lees (WL) and grape pomace (GP). The biphasic solvent systems applied for HPCCC separation were n-butanol:methyl tert-butyl ether:acetonitrile:water (3:1:1:5) with 0.1% trifluoroacetic acid (TFA) and n-hexane:ethyl acetate:methanol:water (1:5:1:5). After refining the ethanol:water extracts of GP and WL by-products by ethyl acetate extraction, the latter system yielded an enriched fraction of the minor family of flavonols. Recoveries of 112.9 and 105.9 mg of purified flavonols (myricetin, quercetin, isorhamnetin, and kaempferol) in GP and WL, respectively, from 500 mg of ethyl acetate extract (equivalent to 10 g of by-product) were obtained. The HPCCC fractionation and concentration capabilities were also exploited for the characterization and tentative identification of constitutive PCs by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). In addition to the isolation of the enriched flavonol fraction, a total of 57 PCs in both matrixes were identified, 12 of which were reported for the first time in WL and/or GP. The application of HPCCC to GP and WL extracts may be a powerful approach to isolate large amounts of minor PCs. The composition of the isolated fraction demonstrated quantitative differences in the individual compound composition of GP and WL, supporting the potential exploitation of these matrixes as sources of specific flavonols for technological applications.
Collapse
Affiliation(s)
- Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza CONICET-UNCuyo, Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| |
Collapse
|
5
|
Duarte CN, Taofiq O, Dias MI, Heleno SA, Santos-Buelga C, Barros L, Amaral JS. Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals. COSMETICS 2023. [DOI: 10.3390/cosmetics10020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Annually, wine production is responsible for generating large quantities of residues, which are frequently disposed of and not valorized. So far, different studies have been conducted on grape pomace, yet less attention has been paid to other residues, such as wine lees and diatomaceous earth used in wine filtration. In this context, this study aimed to evaluate and compare the phenolic profile of these underexploited winemaking residues and assess their biological potential based on their antioxidant, antimicrobial, cytotoxic, and anti-aging activities (inhibition of tyrosinase and collagenase). Twenty-nine phenolic compounds, including twelve anthocyanins, were tentatively identified in the residues, with red grape pomace showing the highest diversity of compounds. The diatomaceous earth presented the highest content of non-anthocyanin phenolic compounds, being particularly rich in flavan-3-ols and myricetin-O-hexoside, and also presenting two anthocyanins. This sample also showed a high antioxidant activity, evidencing the best result in the reducing power assay. The red wine lees extract, despite showing a low content of phenolic compounds and less antioxidant activity, presented the highest inhibition capacity of bacteria growth. The extracts did not exhibit cytotoxicity against keratinocyte (up to 400 μg/mL) and fibroblast (up to 100 μg/mL) skin cell lines. However, the capacity of inhibiting tyrosinase and collagenase was low for the lees and diatomaceous earth, contrary to the grape pomace, seeds, and skins extracts that showed promising results, evidencing its potential as a cosmeceutical. Overall, this study highlights for the first time the potential of diatomaceous earth, an underexploited winemaking waste, in the obtention of added-value extracts and/or ingredients for cosmetic industry.
Collapse
|
6
|
De Luca M, Restuccia D, Spizzirri UG, Crupi P, Ioele G, Gorelli B, Clodoveo ML, Saponara S, Aiello F. Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity. Antioxidants (Basel) 2023; 12:antiox12030622. [PMID: 36978870 PMCID: PMC10045199 DOI: 10.3390/antiox12030622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
An ultrasound-assisted extraction method, employing ethanol and water as solvents at low temperature (30 °C) and reduced time (15 min), was proposed to extract bioactive molecules from different cultivars (Magliocco Canino, Magliocco Rosato, Gaglioppo, and Nocera Rosso) of wine lees. All the extract yields were evaluated and their contents of phenolic acids, flavonoids, and total polyphenols were determined by means of colorimetric assays and high-performance liquid chromatography coupled with diode-array detection (HPLC-DAD) and Fourier transform infrared (FTIR) techniques. Radical scavenging assays were performed and the Magliocco Canino extracted with a hydroalcoholic mixture returned the best results both against ABTS (0.451 mg mL−1) and DPPH (0.395 mg mL−1) radicals. The chemometric algorithms principal component analysis (PCA) and partial least square regression (PLS) were used to process the data obtained from all qualitative–quantitative sample determinations with the aim of highlighting data patterns and finding possible correlations between composition and antioxidant features of the different wine lees cultivars and the extraction procedures. Wine lees from Magliocco Canino and Magliocco Rosato were found to be the best vegetable matrices in terms of metabolite content and antioxidant properties. The components extracted with alcoholic or hydroalcoholic solvents, specifically (−)-epigallocatechin gallate, chlorogenic acid, and trans-caftaric acid, were found to be correlated with the antioxidant capacity of the extracts. Multivariate data processing was able to identify the compounds related to the antioxidant features. Two PLS models were optimized by using their concentration levels to predict the IC50 values of the extracts in terms of DPPH and ABTS with high values of correlation coefficient R2, 0.932 and 0.824, respectively, and a prediction error lower than 0.07. Finally, cellular (SH-SY5Y cells) antioxidant assays were performed on the best extract (the hydroalcoholic extract of Magliocco Canino cv) to confirm its biological performance against radical species. All these recorded data strongly outline the aptness of valorizing wine lees as a valuable source of antioxidants.
Collapse
Affiliation(s)
- Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Donatella Restuccia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence:
| | - Pasquale Crupi
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
7
|
Costa-Pérez A, Medina S, Sánchez-Bravo P, Domínguez-Perles R, García-Viguera C. The (Poly)phenolic Profile of Separate Winery By-Products Reveals Potential Antioxidant Synergies. Molecules 2023; 28:2081. [PMID: 36903327 PMCID: PMC10004379 DOI: 10.3390/molecules28052081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The by-products of grapes (Vitis vinifera L.) in the winemaking process present a diverse phytochemical profile of (poly)phenols, essentially represented by phenolic acids, flavonoids, and stilbenes, which have health benefits. In winemaking, solid (grape stems and pomace) and semisolid (wine lees) by-products are generated, negatively impacting the sustainability of the agro-food activity and the local environment. Although information on the phytochemical profile of grape stems and pomace has been reported, especially information concerning (poly)phenols, research on wine lees is necessary to take advantage of the compositional traits of this residue. So, in the present work, an updated, in-depth comparison of the (poly)phenolic profiles of these three resulting matrices in the agro-food industry has been carried out to provide new knowledge and interesting data on the action of yeast and lactic acid bacteria (LAB) metabolism in the diversification of phenolic composition; additionally, we extract complementarities for the possible joint application of the three residues. The phytochemical analysis of the extracts was carried out using HPLC-PDA-ESI-MSn. The (poly)phenolic profiles of the residues showed significant discrepancies. The results obtained showed that the greatest diversity of (poly)phenols was found in the stems of the grapes, followed closely by the lees. Through technological insights, it has been suggested that yeasts and LAB, responsible for the fermentation of must, might play a key role in the transformation of phenolic compounds. This would provide new molecules with specific bioavailability and bioactivity features, which might interact with different molecular targets and, consequently, improve the biological potential of these underexploited residues.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| | - Paola Sánchez-Bravo
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
8
|
Mir-Cerdà A, Carretero I, Coves JR, Pedrouso A, Castro-Barros CM, Alvarino T, Cortina JL, Saurina J, Granados M, Sentellas S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159623. [PMID: 36283524 DOI: 10.1016/j.scitotenv.2022.159623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Winery wastes are rich in polyphenols with high added value to be used in cosmetics, pharmaceuticals, and food products. This work aims at recovering and purifying the polyphenolic fraction occurring in the malolactic fermentation lees generated during the production of Albariño wines. Phenolic acids, flavonoids, and related compounds were recovered from this oenological waste by green liquid extraction using water as the solvent. The resulting extract solution was microfiltered to remove microparticles and further treated by ultrafiltration (UF) using membranes of 30 kDa and 5 kDa molecular weight cut-offs (MWCOs). The feed sample and the filtrate and retentate solutions from each membrane system were analyzed by reversed-phase liquid chromatography (HPLC) with UV and mass spectrometric (MS) detection. The most abundant polyphenols in the extracts were identified and quantified, namely: caftaric acid with a concentration of 200 µg g-1 and trans-coutaric acid, cis-coutaric acid, gallic acid, and astilbin with concentrations between 15 and 40 µg g-1. Other minor phenolic acids and flavanols were also found. The UF process using the 30 kDa membrane did not modify the extract composition, but filtration through the 5 kDa poly-acrylonitrile membrane elicited a decrease in polyphenolic content. Hence, the 30 kDa membrane was recommended to further pre-process the extracts. The combined extraction and purification process presented here is environmentally friendly and demonstrates that malolactic fermentation lees of Albariño wines are a valuable source of phenolic compounds, especially phenolic acids.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Iris Carretero
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - José Rubén Coves
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Alba Pedrouso
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Celia María Castro-Barros
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - José Luis Cortina
- Department of Chemical Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Eduard Maristany 10-14, Campus Diagonal-Besòs, E08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, E-08930 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Lecturer, Generalitat de Catalunya, Rambla de Catalunya 19-21, E08007 Barcelona, Spain.
| |
Collapse
|
9
|
da Silva MJR, Paiva APM, de Souza JF, Padilha CVDS, Basílio LSP, Lima MDS, Pereira GE, Corrêa LC, Vianello F, Lima GPP, Moura MF, Tecchio MA. Phytochemical profile of Brazilian grapes (Vitis labrusca and hybrids) grown on different rootstocks. PLoS One 2022; 17:e0275489. [PMID: 36264899 PMCID: PMC9584379 DOI: 10.1371/journal.pone.0275489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Important factors may influence the bioactive compounds in grapes, including scion–rootstock interaction. Therefore, the bioactive compounds and antioxidant activity in grape skin and pulp fractions of ‘Isabel Precoce’, ‘BRS Carmem’, ‘BRS Cora’, ‘BRS Violeta’ and ‘IAC 138–22 Máximo’ were assessed. These cultivars, from genetic improvement programs in Brazil, have good adaptation to subtropical and tropical climate conditions, and can be widely used by winegrowers aiming at adding value to the grape. All grapevines were grafted onto ‘IAC 766’ and ‘IAC 572’ rootstocks under tropical conditions in Brazil. The highest concentration of bioactive compounds was found in skins of ‘BRS Violeta’, followed by ‘IAC 138–22 Máximo’, both grafted onto ‘IAC 766’. There was a strong correlation between phenolic content and antioxidant properties, since antioxidant activity also decreased in the sequence: ‘BRS Violeta’ > ‘IAC 138–22 Máximo’ > ‘BRS Cora’ > ‘BRS Carmem’ > ‘Isabel Precoce’. Skin from hybrid grapes (‘BRS Violeta’, ‘IAC 138–22 Máximo’, ‘BRS Cora’ and ‘BRS Carmem’) grafted in both rootstocks contains higher levels of (poly)phenolic compounds and antioxidant activity than ‘Isabel Precoce’ (V. labrusca). Skin from ‘BRS Violeta’ grafted onto ’IAC 766’ stand out from the others due to their high content of bioactive compounds.
Collapse
Affiliation(s)
| | - Ana Paula Maia Paiva
- Department of Horticulture, School of Agriculture, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Joyce Fagundes de Souza
- Department of Technology and Social Sciences, Bahia State University (UNEB), Juazeiro, Bahia, Brazil
| | | | | | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | - Giuliano Elias Pereira
- Brazilian Agricultural Research Corporation (Embrapa Semiárido), Petrolina, Pernambuco, Brazil
| | - Luiz Claudio Corrêa
- Brazilian Agricultural Research Corporation (Embrapa Semiárido), Petrolina, Pernambuco, Brazil
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova (UNIPD), Padova, Italy
| | - Giuseppina Pace Pereira Lima
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil,* E-mail:
| | | | - Marco Antonio Tecchio
- Department of Horticulture, School of Agriculture, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
10
|
Pires JA, Gomes WPC, Teixeira NN, Melchert WR. Effect of drying methods on nutritional constitutes of fermented grape residue. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3458-3463. [PMID: 35875233 PMCID: PMC9304517 DOI: 10.1007/s13197-021-05334-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 06/15/2023]
Abstract
One of the biggest hurdles faced by the wine industry is the disposal of residual biomass generated after vinification. Although this residue is biodegradable, it constitutes a potential source of environmental pollutants. To alleviate this issue, this biomass may be used in alternative applications; for example, it may be transformed into an enriched flour that can be used to improve the nutrient content in different foods. In this study, were evaluated the effects of drying processes on the relevant nutritional components in dry extracts obtained from the residue of fermented grape pomace. The concentrations of phenolic compounds and anthocyanins were higher when drying the flour by the traditional oven procedure than by freeze-drying. The highest difference (approximately 40%) was observed for tannin compounds. Therefore, drying in an oven is recommended due to the lower loss of bioactive compounds, in addition to being simple and cheap.
Collapse
Affiliation(s)
- Juliana A. Pires
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias 11, Box 9, Piracicaba, SP 13418-900 Brazil
| | - Winston P. C. Gomes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP 13416-000 Brazil
| | - Natalia N. Teixeira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP 13416-000 Brazil
| | - Wanessa R. Melchert
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias 11, Box 9, Piracicaba, SP 13418-900 Brazil
| |
Collapse
|
11
|
Farias CAA, Moraes DP, Neuenfeldt NH, Zabot GL, Emanuelli T, Barin JS, Ballus CA, Barcia MT. Microwave hydrodiffusion and gravity model with a unique hydration strategy for exhaustive extraction of anthocyanins from strawberries and raspberries. Food Chem 2022; 383:132446. [PMID: 35202925 DOI: 10.1016/j.foodchem.2022.132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to verify if microwave hydrodiffusion and gravity (MHG) could efficiently extract anthocyanins from strawberries and raspberries with low environmental impact and costs. Our findings revealed that it was possible to extract 69 and 64% anthocyanins from the strawberries and raspberries in a single extraction step, respectively. When the co-product (product remaining after extracting in natura fruits) was hydrated with green solvents and subjected to re-extraction, it was possible to exhaustively extract the anthocyanins from both fruits. Using the Green Analytical Procedure Index (GAPI), the MHG proved to cause low environmental impact due to the solvents used, enabling the reuse of the co-product for food and pharmaceutical products application. Moreover, the MHG was economically viable, and the sample pretreated with distilled water was the most indicated re-extraction method. The MHG process proved to be exhaustive for strawberry and raspberry anthocyanins, thus demonstrating to be an excellent alternative for sustainable extraction.
Collapse
Affiliation(s)
- Carla A A Farias
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Débora P Moraes
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara H Neuenfeldt
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil
| | - Tatiana Emanuelli
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Juliano S Barin
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cristiano A Ballus
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Milene T Barcia
- Department of Technology and Food Science, Center for Agrarian Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Dou Y, Mei M, Kettunen T, Mäkinen M, Jänis J. Chemical fingerprinting of phenolic compounds in Finnish berry wines using Fourier transform ion cyclotron resonance mass spectrometry. Food Chem 2022; 383:132303. [PMID: 35196582 DOI: 10.1016/j.foodchem.2022.132303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Chemical fingerprinting of phenolic compounds present in Finnish berry wines was performed using a direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The main aim of this study was to compare the phenolics profiles of wines produced from natural and/or cultivated berries and to demonstrate the feasibility of FT-ICR MS for a direct chemical analysis of the wine samples without chromatographic separation. First, phenolic compounds were recovered from the wine samples by solid-phase extraction (SPE), and the total phenolic content (TPC) was then determined by a Folin-Ciocalteau assay. The TPC of the original berry wines varied from 421 to 2108 mg/L, while the TPC of the extracts was 157-1525 mg/L. Over fifty phenolic compounds were tentatively identified from the wine samples by FT-ICR MS, whose concentrations highly varied depending on the types of berries used in the winemaking process.
Collapse
Affiliation(s)
- Yanning Dou
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| | - Menglan Mei
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| | - Timo Kettunen
- Hermanni Winery Ltd, Käymiskuja 2, FI-82900, Ilomantsi, Finland.
| | - Marko Mäkinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| |
Collapse
|
13
|
Filippou P, Mitrouli ST, Vareltzis P. Sequential Membrane Filtration to Recover Polyphenols and Organic Acids from Red Wine Lees: The Antioxidant Properties of the Spray-Dried Concentrate. MEMBRANES 2022; 12:membranes12040353. [PMID: 35448323 PMCID: PMC9030477 DOI: 10.3390/membranes12040353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023]
Abstract
The vinification process produces a considerable amount of waste. Wine lees are the second most generated byproduct, representing around 14% of total vinification wastes. They are a valuable source of natural antioxidants, mainly polyphenols, as well as organic acids, such as tartaric acid. This paper deals with the application of an integrated, environment friendly membrane separation process to recover polyphenols and organic acids. A two-step membrane process is described, consisting of an ultra- and a nano-filtration process. The physicochemical and antioxidant properties of all the process streams were determined. High Pressure Liquid Chromatography (HPLC) was employed for identifying certain individual organic acids and polyphenols, while the antioxidant potential was determined by the 2,2′-diphenyl-1-picrylhydrazyl radical) (DPPH) radical scavenging ability and ferric reducing ability. A liquid concentrate stream containing 1351 ppm of polyphenols was produced and then spray dried. The resulting powder retained most of the polyphenols and antioxidant properties and was successfully applied to a real food system to retard lipid oxidation, followed by Thiobarbituric Acid Reactive Substances (TBARS) and the determination of oxymyoglobin content. The results show that membrane separation technology is an attractive alternative process for recovering value-added ingredients from wine lees.
Collapse
Affiliation(s)
- Polychronis Filippou
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, GR541 24 Thessaloniki, Greece;
| | - Soultana T. Mitrouli
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology-Hellas (CERTH), 6th km Charilaou-Thermi Road, GR570 01 Thessaloniki, Greece;
| | - Patroklos Vareltzis
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, GR541 24 Thessaloniki, Greece;
- Correspondence:
| |
Collapse
|
14
|
Klimek K, Kapłan M, Najda A. Influence of Rootstock on Yield Quantity and Quality, Contents of Biologically Active Compounds and Antioxidant Activity in Regent Grapevine Fruit. Molecules 2022; 27:2065. [PMID: 35408464 PMCID: PMC9000453 DOI: 10.3390/molecules27072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The cultivation of vines in temperate climates poses many difficulties to be overcome. The soil and climatic conditions in Poland limit the choice of vine varieties that can be used in the field; therefore, growers are often limited to varieties that are tolerant to extreme winter temperatures and spring frosts and to cultivars that are able to achieve optimum berry maturity at the end of the season. The study evaluated the effect of six rootstock types and own-root bushes on yield quantity and quality and on the content of biologically active compounds and antioxidant activity in Regent grapevine fruit. The research was conducted in 2015 at NOBILIS Vineyard (50°39' N; 21°34' E) in the Sandomierz Upland. Among the evaluated rootstocks, 125AA turned out to exert the significantly best effect on the yield, grape and berry weight, and number of grapes per bush. The fruit from bushes grafted on the 5BB rootstock were characterised by the highest content of L-ascorbic acid and tannins.
Collapse
Affiliation(s)
- Kamila Klimek
- Department of Applied Mathematics and Informatics, University of Life Science, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Magdalena Kapłan
- Institute of Horticulture Production, University of Life Science, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| |
Collapse
|
15
|
Effects of blueberry extract co-microencapsulation on the survival of Lactobacillus rhamnosus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Pérez-Navarro J, Hermosín-Gutiérrez I, Gómez-Alonso S, Kurt-Celebi A, Colak N, Akpınar E, Hayirlioglu-Ayaz S, Ayaz FA. Vitis vinifera Turkish novel table grape 'Karaerik'. Part II: Non-anthocyanin phenolic composition and antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:813-822. [PMID: 34223652 DOI: 10.1002/jsfa.11416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 'Karaerik' is a novel table grape (Vitis vinifera L.) native to Turkey and widely cultivated in areas bordering the city of Erzincan. Because of the demonstrated beneficial effects on human health of the grape phenolic composition, the aim of this work was to conduct a detailed profiling of non-anthocyanin phenolic fractions from different grape tissues of the 'Karaerik' table grape. Both qualitative and quantitative characterization of phenolic compounds were achieved using high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry. Total phenolic content and oxygen radical absorbance capacity were also determined to evaluate the antioxidant properties of this table grape. RESULTS A high number of non-anthocyanin phenolic compounds was identified in 'Karaerik' table grape skins and seeds, including 11 flavonols, six hydroxycinnamic acid derivatives, two stilbenes, several monomeric and dimeric flavan-3-ols and proanthocyanidins. Quercetin-type derivatives dominated the flavonol profile of grape skins, followed by myricetin type. Tartaric acid esters of three acids (caffeic, coumaric and ferulic acids) were the main hydroxycinnamic acid derivatives in this cultivar. Qualitative and quantitative differences were observed in flavan-3-ol composition among the grape tissues. Proanthocyanidins were the most abundant class of phenolic compounds in 'Karaerik' grapes, being mainly located in seeds. Higher antioxidant capacity values were determined in grape seeds, in correlation with the total phenolic content. CONCLUSION These results provide useful information for a better understanding of phenolic antioxidants from the 'Karaerik' table grape and will contribute to promoting the varietal identity and health-related properties of this fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- José Pérez-Navarro
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isidro Hermosín-Gutiérrez
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Aynur Kurt-Celebi
- Graduate School of Natural and Applied Sciences, Biology Graduate Program, Karadeniz Technical University, Trabzon, Turkey
| | - Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Erdal Akpınar
- Department of Geography, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Sema Hayirlioglu-Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Faik A Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
17
|
Hernández-Macias S, Ferrer-Bustins N, Comas-Basté O, Jofré A, Latorre-Moratalla M, Bover-Cid S, Vidal-Carou MDC. Revalorization of Cava Lees to Improve the Safety of Fermented Sausages. Foods 2021; 10:1916. [PMID: 34441693 PMCID: PMC8394411 DOI: 10.3390/foods10081916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023] Open
Abstract
The revalorization of food processing by-products not only reduces the environmental impact of their disposal, but also generates added economic value. Cava lees consist of inactive cells of Saccharomyces cerevisiae, and though regarded as a valueless winery by-product, they are rich in fiber and phenolic compounds. In this study, a challenge test was performed to assess the effect of cava lees and a phenolic extract (LPE) derived therefrom on the behaviour of technological microbiota (lactic acid bacteria used as a starter culture) and the foodborne pathogens Salmonella spp. and Listeria monocytogenes during the fermentation and ripening of pork sausages. Ten batches of fermented sausages were prepared with and without cava lees or the LPE, and with or without different strains of Latilactobacillus sakei (CTC494 or BAP110). The addition of cava lees reduced the pH values of the meat batter throughout the fermentation and ripening process. No growth-promoting effect on spontaneous lactic acid bacteria (LAB) or the starter culture was observed. In contrast, the presence of cava lees prevented the growth of the tested pathogens (Salmonella and L. monocytogenes), as did the starter culture, resulting in significantly lower counts compared to the control batch. In addition, the combination of cava lees with L. sakei CTC494 had a bactericidal effect on Salmonella. LPE supplementation did not affect the pH values or LAB counts but reduced the mean counts of Salmonella, which were 0.71 log10 lower than the control values at the end of the ripening. The LPE did not exert any additional effect to that of the starters applied alone. The revalorization of cava lees as a natural ingredient to improve the microbiological safety of fermented sausages is a feasible strategy that would promote a circular economy and benefit the environment.
Collapse
Affiliation(s)
- Salvador Hernández-Macias
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Núria Ferrer-Bustins
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (N.F.-B.); (A.J.); (S.B.-C.)
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Anna Jofré
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (N.F.-B.); (A.J.); (S.B.-C.)
| | - Mariluz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Sara Bover-Cid
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (N.F.-B.); (A.J.); (S.B.-C.)
| | - María del Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Martins Flores DR, Patrícia da Fonseca AF, Schmitt J, José Tonetto C, Rosado Junior AG, Hammerschmitt RK, Facco DB, Brunetto G, Nörnberg JL. Lambs fed with increasing levels of grape pomace silage: Effects on meat quality. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2020.106234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Flores DRM, da Fonseca PAF, Schmitt J, Tonetto CJ, Junior AGR, Hammerschmitt RK, Facco DB, Brunetto G, Nörnberg JL. Lambs fed with increasing levels of grape pomace silage: Effects on productive performance, carcass characteristics, and blood parameters. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Pertuzatti PB, Mendonça SC, Alcoléa M, Guedes CT, Amorim FDE, Beckmann APS, Gama LA, Américo MF. Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Song Y, Tajima H, Sato T, Ito K, Okuno T, Kurasaki M. Zweigelt and Niagara skin extracts suppress cyclobutane pyrimidine dimer formation due to UV irradiation in NHEK cells: first attempt. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:593-598. [PMID: 32241220 DOI: 10.1080/03601234.2020.1745544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The grape skins after pressing the juice are a major problem for winery. However, because it contains a large amount of polyphenols, development of effective usages are expected to construct sustainable waste use. In this study, we examined whether grape skin extract is effective for recovery of DNA damage caused by UV irradiation. Extract from Zweigelt and Niagara skin was prepared by methanol, and UV irradiation was performed at 10 mJ/cm2 (250 nm) and 15 mJ/cm2 (290 nm) using human normal skin cells. As results, the decreased cell viability due to UV irradiation was improved by adding Niagara or Zweigelt skin extract. On the other hand, cyclobutane pyrimidine dimer production due to UV irradiation decreased significantly by Niagara or Zweigelt extract. In addition, the effects of grape skin extracts on the expression of sirtuin gene were also examined.
Collapse
Affiliation(s)
- Yutong Song
- Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | | | | | - Keizo Ito
- Sapporo Bio Factory Co., Ltd, Sapporo, Japan
| | - Tsutomu Okuno
- Department of Electrical Engineering and Computer Science, Graduate School of System Design, Tokyo Metropolitan University, Hino, Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Leal C, Santos RA, Pinto R, Queiroz M, Rodrigues M, José Saavedra M, Barros A, Gouvinhas I. Recovery of bioactive compounds from white grape ( Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J Biol Sci 2020; 27:1009-1015. [PMID: 32256161 PMCID: PMC7105666 DOI: 10.1016/j.sjbs.2020.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
The grape is a matrix rich in bioactive compounds and its production generates large quantities of by-products, such as grape stems, which, to date, present low commercial value. However, there is a growing interest in the application of this material as a source of phenolic compounds. Therefore, the present study aims at assessing the phytochemical profile of (poly)phenolic extracts of white Portuguese grape stem varieties produced in the Região Demarcada do Douro (Portugal). The antioxidant activity determined by several assays, as well as the antimicrobial activity using the disc diffusion method against human gastrointestinal pathogenic bacteria of the hydromethanolic extracts, were evaluated. This work presents very positive results as the rich composition in phenolic compounds (94.71–123.09 mg GA−1 and 0.02–73.79 mg g−1 for the total phenol content and for individual phenolics, respectively) presented by grape stems can explain the high antioxidant (0.37–1.17 mmol Trolox g−1) and antimicrobial activities against, essentially, Gram-positive bacteria, and in some cases with higher efficacy than commercial antibiotics. Thus, demonstrating that this wine by-product should deserve greater attention from the pharmaceutical industries due to its excellent biological properties and characteristics not yet applied.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Irene Gouvinhas
- Corresponding author at: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
24
|
Silveira RDS, Leal GC, Molin TRD, Faccin H, Gobo LA, Silveira GDD, Souza MTDS, Lameira OA, Carvalho LMD, Viana C. Determination of phenolic and triterpenic compounds in Jatropha gossypiifolia L by Ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS). BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000417262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Valéria da Silva Padilha C, dos Santos Lima M, Maia Toaldo I, Elias Pereira G, Terezinha Bordignon-Luiz M. Effects of successive harvesting in the same year on quality and bioactive compounds of grapes and juices in semi-arid tropical viticulture. Food Chem 2019; 301:125170. [DOI: 10.1016/j.foodchem.2019.125170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
|
26
|
Maria de Carvalho Tavares I, Bonatto Machado de Castilhos M, Aparecida Mauro M, Mota Ramos A, Teodoro de Souza R, Gómez-Alonso S, Gomes E, Da-Silva R, Hermosín-Gutiérrez I, Silva Lago-Vanzela E. BRS Violeta (BRS Rúbea × IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chem 2019; 298:124971. [PMID: 31260997 DOI: 10.1016/j.foodchem.2019.124971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
The BRS Violeta grape presents pulp and skin with high content of phenolic compounds (PCs) and intense purplish color. It was used as raw material for the production of juice and dehydrated products using foam mat drying at 60, 70 and 80 °C and freeze drying (control). HLPC-DAD-ESI-MSn allowed the evaluation of the quantitative and qualitative changes of the main PCs (anthocyanins, flavonols and hydroxycinnamic acid derivatives (HCAD)) present in the grapes during the processing. The use of the steam extraction method to obtain grape juice allowed a greater extraction of flavonols and, mainly derivatives of hydroxycinnamic acids, when compared with anthocyanins. Drying at 70 °C was the most suitable for the preservation of the PCs and, at the same time, for the reduction of the processing time. The powdered products presented considerable concentrations of total PCs (3-5 mg/g) and antioxidant activity (32-79 (DPPH) or 17-27 (FRAP) mg/g).
Collapse
Affiliation(s)
- Iasnaia Maria de Carvalho Tavares
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Cristovão Colombo, 2265, Jardim Nazareth, 15054-000, Campus São, José do Rio Preto, São Paulo, Brazil.
| | | | - Maria Aparecida Mauro
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Cristovão Colombo, 2265, Jardim Nazareth, 15054-000, Campus São, José do Rio Preto, São Paulo, Brazil.
| | - Afonso Mota Ramos
- University of Vicosa (UFV), Avenida Peter Henry Rolfs, s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil.
| | | | - Sergio Gómez-Alonso
- Universidad de Castilla-La Mancha (UCLM), Instituto Regional de Investigación Científica Aplicada, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain.
| | - Eleni Gomes
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Cristovão Colombo, 2265, Jardim Nazareth, 15054-000, Campus São, José do Rio Preto, São Paulo, Brazil.
| | - Roberto Da-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Cristovão Colombo, 2265, Jardim Nazareth, 15054-000, Campus São, José do Rio Preto, São Paulo, Brazil.
| | - Isidro Hermosín-Gutiérrez
- Universidad de Castilla-La Mancha (UCLM), Instituto Regional de Investigación Científica Aplicada, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain.
| | - Ellen Silva Lago-Vanzela
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Cristovão Colombo, 2265, Jardim Nazareth, 15054-000, Campus São, José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
27
|
Pérez-Navarro J, Cazals G, Enjalbal C, Izquierdo-Cañas PM, Gómez-Alonso S, Saucier C. Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain. Molecules 2019; 24:molecules24214001. [PMID: 31694238 PMCID: PMC6864760 DOI: 10.3390/molecules24214001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosylated flavanols (monoglycosides and diglycosides) in skin and seed extracts of Vitis vinifera grapes grown in Castilla-La Mancha (Spain) were investigated using ultra-high-performance liquid chromatography—tandem mass spectrometry (UHPLC-ESI-QQQ-MS/MS). Six grape varieties (Airén, Tempranillo, the recently identified Albillo Dorado, Montonera del Casar, Moribel, and Tinto Fragoso) were studied over two consecutive years (2016 and 2017). A total of twenty monomeric flavanol monoglycosides, four diglycosylated monomers, and three dimeric flavanol monoglycosides were detected in all grape samples. The diversity observed in the composition of glycosylated flavanol in the grape berries suggests a strong influence of variety and grape tissue (skin or seed). Monomeric flavanol glycosides were more abundant in grape seed extracts, in contrast with monoglycosylated dimeric forms. In addition, the glycosylated flavanol content was related to berry color in grape skins, with higher concentrations measured in black grape varieties.
Collapse
Affiliation(s)
- José Pérez-Navarro
- IRICA, Univ. Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.P.-N.); (S.G.-A.)
| | - Guillaume Cazals
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (G.C.); (C.E.)
| | - Christine Enjalbal
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (G.C.); (C.E.)
| | | | - Sergio Gómez-Alonso
- IRICA, Univ. Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.P.-N.); (S.G.-A.)
| | - Cédric Saucier
- SPO, Univ Montpellier, INRA, Montpellier Supagro, 34000 Montpellier, France
- Correspondence:
| |
Collapse
|
28
|
Lingua MS, Theumer MG, Kruzynski P, Wunderlin DA, Baroni MV. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Res Int 2019; 122:496-505. [PMID: 31229105 DOI: 10.1016/j.foodres.2019.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
The primary objective of this study was to assess the changes on phenolic composition and AC (antioxidant capacity) of white grape and its winemaking product, during in vitro gastrointestinal (GI) digestion. Phenolic compounds were evaluated by HPLC-MS/MS. The AC was measured by in vitro (FRAP, ABTS and DPPH) and cellular (Caco-2 cells) assays. Digestion had a reducing effect on phenolic content, being only 31% and 67% of native polyphenols from grapes and wines, respectively, potentially bioaccessible. At same polyphenol concentration, cellular AC of nondigested and digested foods was the same, indicating that changes in phenolic profile did not modify the bioactivity. Phenolic acids, in addition to quercetin, were the most resistant polyphenols to digestion, and would be the most relevant to explain the biological activity of digested foods. Results indicate that the changes occurred in the native phenolic profile of foods as a consequence of GI digestion, do not modify the bioactivity of white grapes and wines.
Collapse
Affiliation(s)
- Mariana S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina
| | - Martín G Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Kruzynski
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel A Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María V Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
29
|
Tkacz K, Wojdyło A, Nowicka P, Turkiewicz I, Golis T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Wine lees from the 1st and 2nd rackings: valuable by-products. Journal of Food Science and Technology 2019; 56:1559-1566. [PMID: 30956336 DOI: 10.1007/s13197-019-03665-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Phenolic compounds of the first and second racking wine lees, including anthocyanins, were qualitatively and quantitatively analyzed by HPLC-DAD-MS. Wine lees from both rackings displayed similar chromatographic profiles. Therefore, it was impossible to differentiate the qualitative results regarding phenolic compounds. On the other hand, those from the second racking presented, on average, concentration of polyphenols twice as high. While the ones from the first racking displayed ca. 1600 mg phenolic compounds and 400 mg anthocyanins per kg of dry matter, those from the second racking have shown ca. 3300 mg phenolic compounds and 700 mg anthocyanins per kg of dry matter. These outcomes indicate that, although the wine lees from the first racking can be employed as a resource for phenolic compounds recovery, those from the second racking are more appropriate for this purpose.
Collapse
|
31
|
da Silva MJR, da Silva Padilha CV, Dos Santos Lima M, Pereira GE, Filho WGV, Moura MF, Tecchio MA. Grape juices produced from new hybrid varieties grown on Brazilian rootstocks - Bioactive compounds, organic acids and antioxidant capacity. Food Chem 2019; 289:714-722. [PMID: 30955671 DOI: 10.1016/j.foodchem.2019.03.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/28/2022]
Abstract
The objective of this study was to assess the content of bioactive compounds, organic acids and antioxidant capacity of grape juices from Isabel Precoce, BRS Carmem, BRS Cora and IAC 138-22 Máximo varieties grown on the 'IAC 766' and 'IAC 572' rootstocks under tropical conditions in Brazil. In general, the color attributes of the 'Isabel Precoce' juice were inferior to those of the other juices due to their low anthocyanin content. In contrast, 'IAC 138-22 Máximo' juices showed the highest content of most individual anthocyanins, flavonols, trans-resveratrol and total phenolic compounds, and thus, higher antioxidant capacity. Except for 'BRS Carmem', all the juices presented higher sugar accumulation when 'IAC 766' was used. This rootstock also contributed to the accumulation of t-resveratrol and most of individual anthocyanins in the 'IAC 138-22 Máximo' juices. However, the monomeric anthocyanin content was higher in 'BRS Carmem' juices when 'IAC 572' rootstock was used.
Collapse
Affiliation(s)
- Marlon Jocimar Rodrigues da Silva
- São Paulo State University (Unesp), School of Agriculture, Campus Botucatu, Avenida Universitária, n° 3780 - CEP 18610-034, Altos do Paraíso, Botucatu, SP, Brazil.
| | - Carla Valéria da Silva Padilha
- Instituto Federal do Sertão Pernambucano, Departamento de Tecnologia em Alimentos, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, CEP 56314-520 Petrolina, PE, Brazil
| | - Marcos Dos Santos Lima
- Instituto Federal do Sertão Pernambucano, Departamento de Tecnologia em Alimentos, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, CEP 56314-520 Petrolina, PE, Brazil.
| | - Giuliano Elias Pereira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Semiárido/Uva e Vinho, Rodovia BR 428, Km 152, CP 23, CEP 56302-970 Petrolina, PE, Brazil.
| | - Waldemar Gastoni Venturini Filho
- São Paulo State University (Unesp), School of Agriculture, Campus Botucatu, Avenida Universitária, n° 3780 - CEP 18610-034, Altos do Paraíso, Botucatu, SP, Brazil.
| | - Mara Fernandes Moura
- Centro APTA de Frutas, Instituto Agronômico, Avenida Luiz Pereira do Santos, 1500, CEP 13.214-820, Jundiaí, SP, Brazil.
| | - Marco Antonio Tecchio
- São Paulo State University (Unesp), School of Agriculture, Campus Botucatu, Avenida Universitária, n° 3780 - CEP 18610-034, Altos do Paraíso, Botucatu, SP, Brazil.
| |
Collapse
|
32
|
Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking. Food Chem 2019; 277:391-397. [DOI: 10.1016/j.foodchem.2018.10.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
|
33
|
Wine Lees as a Source of Antioxidant Compounds. Antioxidants (Basel) 2019; 8:antiox8020045. [PMID: 30781536 PMCID: PMC6406673 DOI: 10.3390/antiox8020045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
The winemaking industry produces large amount of byproducts, including grape pomace, stalks, and lees. Wine lees are a natural source of phenolic compounds, which have important antioxidant and biological properties. Due to the high quantities produced worldwide, this byproduct can be an ideal raw material for obtaining phenolic compounds that could be of interest in the food and pharmaceutical industries. In this mini review, the main characteristics of wine lees as well as their phenolic composition and antioxidant activity have been summarized from the information in the literature.
Collapse
|
34
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
35
|
RIBEIRO TP, LIMA MACD, ALVES RE, GONÇALVES ALDS, SOUZA APC. Chemical characterization of winemaking byproducts from grape varieties cultivated in Vale do São Francisco, Brazil. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.01116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
BÖGER BR, GEORGETTI SR, KUROZAWA LE. Microencapsulation of grape seed oil by spray drying. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.04417] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Enrichment of waste yeast with bioactive compounds from grape pomace as an innovative and emerging technology: Kinetics, isotherms and bioaccessibility. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Luo L, Cui Y, Zhang S, Li L, Suo H, Sun B. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:201-209. [DOI: 10.1016/j.jchromb.2017.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
|
39
|
Wojdyło A, Samoticha J, Nowicka P, Chmielewska J. Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC-PDA-ESI-MS QTof. Food Chem 2017; 239:94-101. [PMID: 28873656 DOI: 10.1016/j.foodchem.2017.06.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/01/2022]
Abstract
The aim of this study was to identify and compare phenolic acids, flavan-3-ols, flavonols, and anthocyanins in two the most popular interspecific hybrids of red grapes, Rondo and Regent, nowadays very popular in red wine production in Poland. The phenolic profiles of these hybrids have not yet been reported. Thirty-three phenolic compounds, including 2 flavan-3-ols, 3 phenolic acids, 5 flavonols, and 23 anthocyanins, were determined in the examined samples using the ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method. Major differences were found in the phenolic profiles of investigated cultivars. The Regent hybrid exhibited the highest total phenolics content (27029.75mg/kg dry matter) but Rondo was characterized by the highest concentration of anthocyanins (19342.36mg/kgdm). The dominant fraction was anthocyanin compounds, especially acetylated>diglucosylated forms than glucosylated ones. This data represents valuable information that may be useful for oenological practices and to valorise these varieties as sources of bioactive compounds.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Nutraceutical Plant Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Justyna Samoticha
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Nutraceutical Plant Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Nutraceutical Plant Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Joanna Chmielewska
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fermentation and Cereal Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
40
|
Li P, Shen Y, You M, Zhang Y, Yan J, Li D, Bai S. Effect of grape pomace on fermentation quality and aerobic stability of sweet sorghum silage. Anim Sci J 2017; 88:1523-1530. [PMID: 28485116 DOI: 10.1111/asj.12791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2017] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effect of grape pomace (GP) with different adding levels (0%, 5%, 10% and 15%, fresh matter basis), alone (GP-LAB) or in combine with an inoculant LAB (GP+LAB), on the fermentation quality and aerobic stability of sweet sorghum silage. After 90 days of ensiling in vacuumized mini-silos, silages were subject to a 7-day aerobic stability test, in which chemical, microbial and polyphenol composition were measured. In the GP-LAB group, adding GP decreased (P < 0.05) concentrations of water-soluble carbohydrate (WSC) and butyric acid in silage. In the GP+LAB group, adding GP increased (P < 0.05) concentrations of lactic acid, WSC and crude protein, decreased (P < 0.05) final pH value, NH3 -N ratio and butyric acid concentration in silage. Polyphenol level was reduced (P < 0.05) after silage fermentation. During aerobic exposure, the fungi count, pH value and silage temperature increased (P < 0.05), the levels of lactic acid, acetic acid and polyphenols (quercetin 3-O-glucoside and quercetin 3-O-glucuronid) decreased (P < 0.05) in silage. GP+LAB treated silage had a lag phase for aerobic spoilage. When the fermentation products, microbial counts, chemical and polyphenol composition were considered, the use of 10% GP+LAB at ensiling could provide a valuable source for improved fermentation quality and aerobic stability of sweet sorghum silage.
Collapse
Affiliation(s)
- Ping Li
- Sichuan Academy of Grassland Science, Chengdu, China.,College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yixin Shen
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Yu Zhang
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxue Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| |
Collapse
|
41
|
He Y, Wen L, Liu J, Li Y, Zheng F, Min W, Yue H, Pan P. Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis Amurensis Rupr. Nat Prod Res 2017; 32:23-29. [PMID: 28480755 DOI: 10.1080/14786419.2017.1324963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Beibinghong Vitis amurensis Rupr has wide plantation area, high productivity and rich anthocyanin. Common hot-extraction has poor deficiency and destroys anthocyanin severely. For Beibinghong V. amurensis Rupr as materials, response surface-optimised electric fields were used, the structure of Beibinghong was observed by SEM, antioxidant activity was measured by DPPH, ABTS and reducing force, the component of anthocyanin was analyzed by HPLC-MS. We found the content of total anthocyanin extracted by pulsed electric fields was 166.65 ± 3.88 mg/100 g.FW. Total anthocyanin from Beibinghong had high antioxidant activity, also contained multiple steady anthocyanin of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, petunidin 3-O-glucoside, peonidin 3-O-glucoside, malvidin 3-O-glucoside, delphinidin-3-O-(6-O-acetyl) glucoside and delphinidin-3-O-(6-O-p-coumaroyl) glucoside et al. In conclusion, the optimised pulsed electric fields method can quickly and efficiently extract several kinds of anthocyanins from V. amurensis Rupr. This study promoted the intensive processing of V. amurensis Rupr and widened the practical application of pulsed electric field technology.
Collapse
Affiliation(s)
- Yang He
- a Department of Food Science and Engineering , Jilin Agricultural University , Changchun , China
| | - Liankui Wen
- a Department of Food Science and Engineering , Jilin Agricultural University , Changchun , China
| | - Jingsheng Liu
- a Department of Food Science and Engineering , Jilin Agricultural University , Changchun , China
| | - Yueru Li
- b Agricultural Quality Standards and Testing Technology Research Center , Changchun , China
| | - Fei Zheng
- a Department of Food Science and Engineering , Jilin Agricultural University , Changchun , China.,c Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | - Weihong Min
- a Department of Food Science and Engineering , Jilin Agricultural University , Changchun , China
| | - Hao Yue
- c Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , China
| | - Puqun Pan
- b Agricultural Quality Standards and Testing Technology Research Center , Changchun , China
| |
Collapse
|
42
|
Marlon JRDS, Bruna TFV, Giuseppina PPL, Mara FM, Giovanni MDAGC, Charles YW, Marco AT. Phenolic compounds and antioxidant activity of red and white grapes on different rootstocks. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.12.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Sequential pressure-driven membrane operations to recover and fractionate polyphenols and polysaccharides from second racking wine lees. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Fontana A, Antoniolli A, D'Amario Fernández MA, Bottini R. Phenolics profiling of pomace extracts from different grape varieties cultivated in Argentina. RSC Adv 2017. [DOI: 10.1039/c7ra04681b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Grape pomace can be considered as an excellent and inexpensive source of phenolic compounds with potential bioactive properties.
Collapse
Affiliation(s)
- Ariel Fontana
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| | - Andrea Antoniolli
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| | - María Agustina D'Amario Fernández
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| | - Rubén Bottini
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| |
Collapse
|
46
|
Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem 2017; 214:308-318. [DOI: 10.1016/j.foodchem.2016.07.081] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
|
47
|
Tolun A, Altintas Z, Artik N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. J Biotechnol 2016; 239:23-33. [DOI: 10.1016/j.jbiotec.2016.10.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 01/27/2023]
|
48
|
Lingua MS, Fabani MP, Wunderlin DA, Baroni MV. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem 2016; 208:228-38. [DOI: 10.1016/j.foodchem.2016.04.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022]
|
49
|
Reiner DA, Dallemole-Giaretta R, dos Santos I, Oldoni TLC, Lopes EA, Chiarani A. Efeito nematicida de um subproduto da indústria vinícola em Meloidogyne javanica(Treub) Chitwood. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2016. [DOI: 10.1051/ctv/20163101024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Reis GM, Faccin H, Viana C, Rosa MBD, de Carvalho LM. Vitis vinifera L. cv Pinot noir pomace and lees as potential sources of bioactive compounds. Int J Food Sci Nutr 2016; 67:789-96. [DOI: 10.1080/09637486.2016.1204595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gabriel M. Reis
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Carine Viana
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Center of Health Sciences, UFSM, Santa Maria, Brazil
| | - Marcelo Barcellos da Rosa
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Department of Chemistry, UFSM, Santa Maria, Brazil
| | - Leandro M. de Carvalho
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Department of Chemistry, UFSM, Santa Maria, Brazil
| |
Collapse
|