1
|
Wei L, Wu H, Wang X, Wen L, Cui B, Cheng Y. Comprehensive review of plant-derived anti-hyperlipidemia peptides: Production, anti-hyperlipidemia mechanism, and structure-activity relationship study. Food Chem 2024; 461:140715. [PMID: 39178542 DOI: 10.1016/j.foodchem.2024.140715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
Hyperlipidemia, an elevated level of cholesterol and/or triglycerides, has become a major public health problem worldwide. Although drugs intervention is effective in treating hyperlipidemia, most of them have adverse side effects. Peptides from natural plants with high anti-hyperlipidemic activity and a strong safety profile have emerged as promising candidates to prevent and ameliorate hyperlipidemia. This review summarizes the recent advances in plant-derived anti-hyperlipidemic peptides in terms of their sources, production, purification, identification, and activity evaluation. The focus is extended to their potential anti-hyperlipidemic mechanisms and structure-function relationships. Bioactive peptides derived from various plant sources, especially peptides containing hydrophobic and/or acidic amino acids, have shown remarkable effects in hyperlipidemic treatment. Their anti-hyperlipidemic effects are mediated by various mechanisms, including regulation of cholesterol metabolism and triglyceride metabolism, inhibition of inflammation-related metabolic syndrome, and modulation of the gut microbiota. Further evaluation of the stability, bioavailability, and clinical efficacy of these peptides is recommended.
Collapse
Affiliation(s)
- Liuyi Wei
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
Chen H, Liu Z, Li L, Cai X, Xiang L, Wang S. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5526-5541. [PMID: 38457666 DOI: 10.1021/acs.jafc.3c09237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Zhiyu Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liheng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Leiwen Xiang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
3
|
Li Y, Liu J, Zhang H, Shi X, Li S, Yang M, Zhang T, Xiao H, Du Z. A Comprehensive Review of Self-Assembled Food Protein-Derived Multicomponent Peptides: From Forming Mechanism and Structural Diversity to Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486612 DOI: 10.1021/acs.jafc.3c02930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Food protein-derived multicomponent peptides (FPDMPs) are a natural blend of numerous peptides with various bioactivities and multiple active sites that can assume several energetically favorable conformations in solutions. The remarkable structural characteristics and functional attributes of FPDMPs make them promising codelivery carriers that can coassemble with different bioactive ingredients to induce multidimensional structures, such as fibrils, nanotubes, and nanospheres, thereby producing specific health benefits. This review offers a prospective analysis of FPDMPs-based self-assembly nanostructures, focusing on the mechanism of formation of self-assembled FPDMPs, the internal and external stimuli affecting peptide self-assembly, and their potential applications. In particular, we introduce the exciting prospect of constructing functional materials through precursor template-induced self-assembly of FPDMPs, which combine the bioactivity and self-assembly capacity of peptides and could dramatically broaden the functional utility of peptide-based materials.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
4
|
Fontes-Candia C, Díaz-Piñero L, Carlos Martínez J, Gómez-Mascaraque LG, López-Rubio A, Martínez-Sanz M. Nanostructural changes in Polysaccharide-Casein Gel-Like structures upon in vitro gastrointestinal digestion. Food Res Int 2023; 169:112862. [PMID: 37254436 DOI: 10.1016/j.foodres.2023.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
This work reports on the nanostructural changes taking place during the in vitro gastrointestinal digestion of polysaccharide-casein gel-like structures through the use of small angle X-ray scattering (SAXS). The results indicated that during the gastric phase, the hydrolysis of casein led to a swelling of the micellar structure, yielding peptide clusters. The presence of sulphated polysaccharides such as agar and κ-carrageenan was seen to limit the hydrolysis of casein during the gastric phase, hence decreasing the size of the formed clusters. After the intestinal phase, the produced peptidic fragments appeared to interact with the bile salts present in the digestion medium, yielding a mixture of bile salt lamellae/micelles and vesicular structures. However, in the presence of polysaccharides, which can interact with bile salts, the formation of vesicular structures was limited. Interestingly, the inclusion of casein within hybrid gel-like structures led to the formation of strong polysaccharide-protein interactions, especially in the case of κ-carrageenan. As a result, in some of the formulations, polysaccharide-peptide complexes were released towards the liquid medium, which formed larger vesicular structures. This was related to the greater protective effect of these particular gel-like structures. Furthermore, κ-carrageenan hindered the formation of bile salt lamellae/micelles. These results are of high relevance to understand the intestinal transport mechanism of the digestion products from protein-based ingredients and will allow a rational design of novel products with optimum nutritional and functional properties.
Collapse
Affiliation(s)
- Cynthia Fontes-Candia
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain; Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Laura Díaz-Piñero
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Juan Carlos Martínez
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | | | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Zhu WW, Zhang Y, Tang CH. Maximizing cholesterol-lowering benefits of soy protein isolate by glycation with soy soluble polysaccharide. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
ŞEN ARSLAN H, SARIÇOBAN C. Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Mungofa N, Sibanyoni JJ, Mashau ME, Beswa D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227995. [PMID: 36432098 PMCID: PMC9696032 DOI: 10.3390/molecules27227995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Indigenous leafy vegetables (ILVs) play a pivotal role in sustaining the lives of many people of low socio-economic status who reside in rural areas of most developing countries. Such ILVs contribute to food security since they withstand harsher weather and soil conditions than their commercial counterparts and supply important nutrients such as dietary fibre, vitamins and minerals. Furthermore, ILVs contain bioactive components such as phenolic compounds, flavonoids, dietary fibre, carotene content and vitamin C that confer health benefits on consumers. Several studies have demonstrated that regular and adequate consumption of vegetables reduces risks of chronic conditions such as diabetes, cancer, metabolic disorders such as obesity in children and adults, as well as cardiovascular disease. However, consumption of ILVs is very low globally as they are associated with unbalanced and poor diets, with being food for the poor and with possibly containing toxic heavy metals. Therefore, this paper reviews the role of ILVs as food security crops, the biodiversity of ILVs, the effects of processing on the bioactivity of ILVs, consumer acceptability of food derived from ILVs, potential toxicity of some ILVs and the potential role ILVs play in the future of eating.
Collapse
Affiliation(s)
- Nyarai Mungofa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
| | - July Johannes Sibanyoni
- School of Hospitality and Tourism, University of Mpumalanga, Mbombela Campus, Mbombela 1200, South Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 1709, South Africa
- Correspondence:
| |
Collapse
|
8
|
Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chem 2022; 389:133107. [DOI: 10.1016/j.foodchem.2022.133107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
|
9
|
de Souza Figueira M, Jurema Soares M, Aparecida Manólio Soares-Freitas R, Rodrigues Sampaio G, Clara da Costa Pinaffi-Langley A, Vasconcelos dos Santos O, Costa De Camargo A, Macedo Rogero M, Aparecida Ferraz da Silva Torres E. Effect of guarana seed powder on cholesterol absorption in vitro and in Caco-2 cells. Food Res Int 2022; 162:111968. [DOI: 10.1016/j.foodres.2022.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
|
10
|
Pak VV, Khojimatov OK, Pak AV, Sagdullaev SS, Yun L. Design of Tetrapeptides as a Competitive Inhibitor for HMG-CoA Reductase and Modeling Recognized Sequence as a β-Turn Structure. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Zhang Y, Tang X, Li F, Zhang J, Zhang B, Yang X, Tang Y, Zhang Y, Fan J, Zhang B. Inhibitory effects of oat peptides on lipolysis: A physicochemical perspective. Food Chem 2022; 396:133621. [DOI: 10.1016/j.foodchem.2022.133621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
|
12
|
Effect of oat β-glucan on in vitro digestion characteristics of set- type yogurt. ACTA INNOVATIONS 2022. [DOI: 10.32933/actainnovations.43.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The main objective of the study was to evaluate the effect of added 0.3% (w/w) oat β-glucan (OG) in set-type yogurt on its protein digestion using an in vitro gastrointestinal model. During gastric digestion phase, the amount of soluble proteins and peptides increased to 25% and 40% for control yogurt (yogurt without OG) and 0.3% OG yogurt, respectively. Buccal digestion has little effect on the structure of yogurts, while large spherical vesicles were formed for both control yogurt and 0.3% OG yogurt after gastric digestion. The presence of 0.3% OG promoted the hydrolysis of yogurt in the gastric digestion phase and caused higher antioxidant activity. Compared with that of control yogurt, the inhibition of cholesterol solubility of 0.3% OG yogurt showed no
differences after buccal digestion but significantly higher after gastrointestinal digestion (21.3% for gastric and 22.7% for intestinal digestion). Overall, this study enhances the understanding of digestion characteristics of 0.3% OG-fortified set-type yogurt and provides a theoretical basis for the development of this kind of dairy products.
Collapse
|
13
|
Yuan H, Luo Z, Ban Z, Reiter RJ, Ma Q, Liang Z, Yang M, Li X, Li L. Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food Funct 2022; 13:3133-3158. [PMID: 35244644 DOI: 10.1039/d1fo04077d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The multiple functions of peptides released from proteins have immense potential in food and health. In the past few decades, research interest in bioactive peptides of plant origin has surged tremendously, and new plant-derived peptides are continually discovered with advances in extraction, purification, and characterization technology. Plant-derived peptides are mainly extracted from dicot plants possessing bioactive functions, including antioxidant, cholesterol-lowering, and antihypertensive activities. Although the distinct functions are said to depend on the composition and structure of amino acids, the practical or industrial application of plant-derived peptides with bioactive features is still a long way off. In summary, the present review mainly focuses on the state-of-the-art extraction, separation, and analytical techniques, functional properties, mechanism of action, and clinical study of plant-derived peptides. Special emphasis has been placed on the necessity of more pre-clinical and clinical trials to authenticate the health claims of plant-derived peptides.
Collapse
Affiliation(s)
- Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhaojun Ban
- School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, USA
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Ze Liang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mingyi Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Rivera del Rio A, Boom RM, Janssen AEM. Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods 2022; 11:870. [PMID: 35327292 PMCID: PMC8955167 DOI: 10.3390/foods11060870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Plant protein concentrates and isolates are used to produce alternatives to meat, dairy and eggs. Fractionation of ingredients and subsequent processing into food products modify the techno-functional and nutritional properties of proteins. The differences in composition and structure of plant proteins, in addition to the wide range of processing steps and conditions, can have ambivalent effects on protein digestibility. The objective of this review is to assess the current knowledge on the effect of processing of plant protein-rich ingredients on their digestibility. We obtained data on various fractionation conditions and processing after fractionation, including enzymatic hydrolysis, alkaline treatment, heating, high pressure, fermentation, complexation, extrusion, gelation, as well as oxidation and interactions with starch or fibre. We provide an overview of the effect of some processing steps for protein-rich ingredients from different crops, such as soybean, yellow pea, and lentil, among others. Some studies explored the effect of processing on the presence of antinutritional factors. A certain degree, and type, of processing can improve protein digestibility, while more extensive processing can be detrimental. We argue that processing, protein bioavailability and the digestibility of plant-based foods must be addressed in combination to truly improve the sustainability of the current food system.
Collapse
Affiliation(s)
| | | | - Anja E. M. Janssen
- Food Process Engineering, Wageningen University, 6700 AA Wageningen, The Netherlands; (A.R.d.R.); (R.M.B.)
| |
Collapse
|
15
|
Shevkani K, Singh N, Patil C, Awasthi A, Paul M. Antioxidative and antimicrobial properties of pulse proteins and their applications in gluten‐free foods and sports nutrition. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khetan Shevkani
- Department of Applied Agriculture Central University of Punjab Bathinda 151401 India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 India
| | - Chidanand Patil
- Department of Applied Agriculture Central University of Punjab Bathinda 151401 India
| | - Ankit Awasthi
- Department of Applied Agriculture Central University of Punjab Bathinda 151401 India
| | - Maman Paul
- Department of Physiotherapy Guru Nanak Dev University Amritsar 143005 India
| |
Collapse
|
16
|
Antioxidant and ACE inhibitory activities of peptides prepared from adzuki bean by semi-solid enzymatic hydrolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
da Silva JR, de Cerqueira e Silva MB, Philadelpho BO, de Souza VC, dos Santos JEM, Castilho MS, de Souza Ferreira E, Cilli EM. PyrGF and GSTLN peptides enhance pravastatin's inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
19
|
Silva M, Philadelpho B, Santos J, Souza V, Souza C, Santiago V, Silva J, Souza C, Azeredo F, Castilho M, Cilli E, Ferreira E. IAF, QGF, and QDF Peptides Exhibit Cholesterol-Lowering Activity through a Statin-like HMG-CoA Reductase Regulation Mechanism: In Silico and In Vitro Approach. Int J Mol Sci 2021; 22:ijms222011067. [PMID: 34681729 PMCID: PMC8538380 DOI: 10.3390/ijms222011067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, in silico approaches are employed to investigate the binding mechanism of peptides derived from cowpea β-vignin and HMG-CoA reductase. With the obtained information, we designed synthetic peptides to evaluate their in vitro enzyme inhibitory activity. In vitro, the total protein extract and <3 kDa fraction, at 5000 µg, support this hypothesis (95% and 90% inhibition of HMG-CoA reductase, respectively). Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides were predicted to bind to the substrate binding site of HMGCR via HMG-CoAR. In silico, it was established that the mechanism of HMG-CoA reductase inhibition largely entailed mimicking the interactions of the decalin ring of simvastatin and via H-bonding; in vitro studies corroborated the predictions, whereby the HMG-CoA reductase activity was decreased by 69%, 77%, and 78%, respectively. Our results suggest that Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides derived from cowpea β-vignin have the potential to lower cholesterol synthesis through a statin-like regulation mechanism.
Collapse
Affiliation(s)
- Mariana Silva
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
- Chemistry Institute, Sao Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Biane Philadelpho
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Johnnie Santos
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Victória Souza
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Caio Souza
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Victória Santiago
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Jaff Silva
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
- Chemistry Institute, Sao Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Carolina Souza
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Francine Azeredo
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Marcelo Castilho
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
| | - Eduardo Cilli
- Chemistry Institute, Sao Paulo State University, Araraquara 14800-900, SP, Brazil
- Correspondence: (E.C.); (E.F.); Tel.: +55-16-993-487-096 (E.C.); +55-71-992-313-184 (E.F.)
| | - Ederlan Ferreira
- School of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; (M.S.); (B.P.); (J.S.); (V.S.); (C.S.); (V.S.); (J.S.); (C.S.); (F.A.); (M.C.)
- Correspondence: (E.C.); (E.F.); Tel.: +55-16-993-487-096 (E.C.); +55-71-992-313-184 (E.F.)
| |
Collapse
|
20
|
Chelliah R, Wei S, Daliri EBM, Elahi F, Yeon SJ, Tyagi A, Liu S, Madar IH, Sultan G, Oh DH. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021; 10:2220. [DOI: https:/doi.10.3390/foods10092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Liaoning 116034, China
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
21
|
The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021; 10:foods10092220. [PMID: 34574330 PMCID: PMC8469013 DOI: 10.3390/foods10092220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.
Collapse
|
22
|
Osman A, Enan G, Al-Mohammadi AR, Abdel-Shafi S, Abdel-Hameid S, Sitohy MZ, El-Gazzar N. Antibacterial Peptides Produced by Alcalase from Cowpea Seed Proteins. Antibiotics (Basel) 2021; 10:870. [PMID: 34356791 PMCID: PMC8300757 DOI: 10.3390/antibiotics10070870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cowpea seed protein hydrolysates (CPH) were output from cowpea seeds applying alcalase® from Bacillus licheniformis. CPH with an elevated level of hydrolysis was fractionated by size exclusion chromatography (SEC). Both CPH and SEC-portions showed to contain antimicrobial peptides (AMPs) as they inhibited both Gram-positive bacteria, such as Listeria monocytogenes LMG10470 (L. monocytogenes), Listeria innocua. LMG11387 (L. innocua), Staphylococcus aureus ATCC25923 (S.aureus), and Streptococcus pyogenes ATCC19615 (St.pyogenes), and Gram-negative bacteria, such as Klebsiella pnemoniae ATCC43816 (K. pnemoniae), Pseudomonas aeroginosa ATCC26853 (P. aeroginosa), Escherichia coli ATCC25468) (E.coli) and Salmonella typhimurium ATCC14028 (S. typhimurium).The data exhibited that both CPH and size exclusion chromatography-fraction 1 (SEC-F1) showed high antibacterial efficiency versus almost all the assessed bacteria. The MIC of the AMPs within SEC-F1 and CPHs were (25 µg/mL) against P. aeruginosa, E.coli and St. pyogenes. However, higher MICsof approximately 100-150 µg/mL showed for both CPHs and SEC-F1 against both S. aureus and L. innocua; it was 50 µg/mL of CPH against S.aureus. The Electro-spray-ionization-mass-spectrometry (ESI-MS) of fraction (1) revealed 10 dipeptides with a molecular masses arranged from 184 Da to 364 Da and one Penta peptide with a molecular mass of approximately 659 Da inthe case of positive ions. While the negative ions showed 4 dipeptides with the molecular masses that arranged from 330 Da to 373 Da. Transmission electron microscope (TEM) demonstrated that the SEC-F1 induced changes in the bacterial cells affected. Thus, the results suggested that the hydrolysis of cowpea seed proteins by Alcalase is an uncomplicated appliance to intensify its antibacterial efficiency.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.Z.S.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | | | - Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | - Samar Abdel-Hameid
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.Z.S.)
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| |
Collapse
|
23
|
Heres A, Mora L, Toldrá F. Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase enzyme by dipeptides identified in dry-cured ham. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00058-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractHigh cholesterolemia is a key risk factor for the development of cardiovascular diseases, which are the main cause of mortality in developed countries. Most therapies are focused on the modulation of its biosynthesis through 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAR) inhibitors. In this sense, food-derived bioactive peptides might act as promising health alternatives through their ability to interact with crucial enzymes involved in metabolic pathways, avoiding the adverse effects of synthetic drugs. Dry-cured ham has been widely described as an important source of naturally-generated bioactive peptides exerting ACEI-inhibitory activity, antioxidant activity, and anti-inflammatory activity between others. Based on these findings, the aim of this work was to assess, for the first time, the in vitro inhibitory activity of HMG-CoAR exerted by dipeptides generated during the manufacturing of dry-cured ham, previously described with relevant roles on other bioactivities.The in vitro inhibitory activity of the dipeptides was assessed by measuring the substrate consumption rate of the 3-hydroxy-3-methylglutaryl CoA reductase in their presence, with the following pertinent calculations.Further research was carried out to estimate the possible interactions of the most bioactive dipeptides with the enzyme by performing in silico analysis consisting of molecular docking approaches.Main findings showed DA, DD, EE, ES, and LL dipeptides as main HMG-CoAR inhibitors. Additionally, computational analysis indicated statin-like interactions of the dipeptides with HMG-CoAR.This study reveals, for the first time, the hypocholesterolemic potential of dry-cured ham-derived dipeptides and, at the same time, converges in the same vein as many reports that experimentally argue the cardiovascular benefits of dry-cured ham consumption due to its bioactive peptide content.
Collapse
|
24
|
Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct 2021; 12:7108-7125. [PMID: 34223585 DOI: 10.1039/d1fo01265g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioactive peptides are a class of peptides with special physiological functions and have potential applications in human health and disease prevention. Bioactive peptides have gained much research attention because they affect the cardiovascular, endocrine, immune, and nervous systems. Recent research has reported that bioactive peptides are of great value for physiological function regulation, including antioxidation, anti-hypertension, antithrombosis, antibacterial properties, anti-cancer, anti-inflammation, anti-diabetic, anti-obesity, cholesterol-lowering, immunoregulation, mineral binding and opioid activities. The production of food-derived bioactive peptides is mainly through the hydrolysis of digestive enzymes and proteolytic enzymes or microbial fermentation. The purpose of this review is to introduce the production, function, application, challenges, and prospects of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Liting Jia
- Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | | | | | | | | |
Collapse
|
25
|
Alashi AM, Wu H, Aluko RE. Indigestible cowpea proteins reduced plasma cholesterol after long-term oral administration to Sprague-Dawley rats. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Cowpea protein isolate (CPI) was subjected to various dry and wet heat pretreatments followed by sequential digestion with pepsin and pancreatin; the undigested residues were isolated as the indigestible cowpea proteins (ICPs). All the ICPs exhibited in vitro bile acid-binding capacity but ICP from the slow cooling-induced gelation had the highest yield (68%) and was used for rat feeding experiments to determine effect on plasma total cholesterol (TC). Groups consisting of 3 male and 3 female Sprague-Dawley rats each were fed hypercholesterolemic diets that contained casein only or casein that was partially substituted with ICP of CPI for 6 weeks. Results showed diet that contained 5% (w/w) ICP was more effective in preventing TC increase (1.8 mmol/L) when compared to increases of 9.34 and 4.15 mmol/L for CPI and casein only diets, respectively.
Graphical abstract
Collapse
|
26
|
Abstract
Legumes are an essential food source worldwide. Their high-quality proteins, complex carbohydrates, dietary fiber, and relatively low-fat content make these an important functional food. Known to possess a multitude of health benefits, legume consumption is associated with the prevention and treatment of cardiovascular diseases (CVD). Legume crude protein isolates and purified peptides possess many cardiopreventive properties. Here, we review selected economically valued legumes, their taxonomy and distribution, biochemical composition, and their protein components and the mechanism(s) of action associated with cardiovascular health. Most of the legume protein studies had shown upregulation of low-density lipoprotein (LDL) receptor leading to increased binding and uptake, in effect significantly reducing total lipid levels in the blood serum and liver. This is followed by decreased biosynthesis of cholesterol and fatty acids. To understand the relationship of identified genes from legume studies, we performed gene network analysis, pathway, and gene ontology (GO) enrichment. Results showed that the genes were functionally interrelated while enrichment and pathway analysis revealed involvement in lipid transport, fatty acid and triglyceride metabolic processes, and regulatory processes. This review is the first attempt to collate all known mechanisms of action of legume proteins associated with cardiovascular health. This also provides a snapshot of possible targets leading to systems-level approaches to further investigate the cardiometabolic potentials of legumes.
Collapse
|
27
|
Durand E, Beaubier S, Ilic I, fine F, Kapel R, Villeneuve P. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 2021; 4:365-397. [PMID: 34142097 PMCID: PMC8187438 DOI: 10.1016/j.crfs.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Preventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants. Among their myriad of molecules, bioactive peptides, which are biologically active sequence of amino acid residues of proteins, seem to be of a great interest. Therefore, the number of identified amino acids sequences of bioactive peptides from plant biomass with potential antioxidant action is progressively increasing. Thus, this review provides a description of 129 works that have been made to produce bioactive peptides (hydrolysate, fraction and/or isolate peptide) from 55 plant biomass, along with the procedure to examine their antioxidant capacity (until 2019 included). The protein name, the process, and the method to concentrate or isolate antioxidant bioactive peptides, along with their identification and/or specificity were described. Considering the complex, dynamic and multifactorial physico-chemical mechanisms of the lipid oxidation, an appropriate in-vitro methodology should be better performed to efficiently probe the antioxidant potential of bioactive peptides. Therefore, the results were discussed, and perspective for antioxidant applications of bioactive peptides from plant biomass was argued.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Isidora Ilic
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Frederic fine
- TERRES INOVIA, Parc Industriel – 11 Rue Monge, 33600 Pessac, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
28
|
Chen GW, Lin HTV, Huang LW, Lin CH, Lin YH. Purification and Identification of Cholesterol Micelle Formation Inhibitory Peptides of Hydrolysate from High Hydrostatic Pressure-Assisted Protease Hydrolysis of Fermented Seabass Byproduct. Int J Mol Sci 2021; 22:ijms22105295. [PMID: 34069880 PMCID: PMC8157361 DOI: 10.3390/ijms22105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
This research focuses on the proteolytic capacity of sea bass byproduct (SB) and their hypocholesterolemic activity via the cholesterol micelle formation (CMF) inhibition. SB was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. The lactic fermented SB was hydrolyzed with Protease N for 6 h under HHP to obtain the SB hydrolysates (HHP-assisted Protease N hydrolysis after fermentation, F-HHP-PN6). The supernatant was separated from the SB hydrolysate and freeze-dried. As the hydrolysis time extended to 6 h, soluble protein content increased from 187.1 to 565.8 mg/g, and peptide content increased from 112.8 to 421.9 mg/g, while inhibition of CMF increased from 75.0% to 88.4%. Decreasing the CMF inhibitory activity from 88.4% to 42.1% by simulated gastrointestinal digestion (FHHP-PN6 was further hydrolyzed by gastrointestinal enzymes, F-HHP-PN6-PP) reduced the CMF inhibitory activity of F-HHP-PN6. Using gel filtration chromatography, the F-HHP-PN6-PP was fractioned into six fractions. The molecular weight of the fifth fraction from F-HHP-PN6-PP was between 340 and 290 Da, and the highest inhibitory efficiency ratio (IER) on CMF was 238.9%/mg/mL. Further purification and identification of new peptides with CMF inhibitory activity presented the peptide sequences in Ser-Ala-Gln, Pro-Trp, and Val-Gly-Gly-Thr; the IERs were 361.7, 3230.0, and 302.9%/mg/mL, respectively.
Collapse
Affiliation(s)
- Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 202, Taiwan; (G.-W.C.); (H.-T.V.L.); (L.-W.H.)
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 202, Taiwan; (G.-W.C.); (H.-T.V.L.); (L.-W.H.)
| | - Li-Wen Huang
- Department of Food Science, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 202, Taiwan; (G.-W.C.); (H.-T.V.L.); (L.-W.H.)
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, No. 64, Wunhua Rd, Yunlin 632, Taiwan;
| | - Yu-Hsin Lin
- Department of Food Science and Technology, Taipei University of Marine Technology, No. 212, Section 9, Yan Ping North Road, Taipei 111, Taiwan
- Correspondence: ; Tel.: +886-228-109-999 (ext. 3405)
| |
Collapse
|
29
|
Yang XY, Zhong DY, Wang GL, Zhang RG, Zhang YL. Effect of Walnut Meal Peptides on Hyperlipidemia and Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet. Nutrients 2021; 13:1410. [PMID: 33922242 PMCID: PMC8146006 DOI: 10.3390/nu13051410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
As a natural active substance that can effectively improve blood lipid balance in the body, hypolipidemic active peptides have attracted the attention of scholars. In this study, the effect of walnut meal peptides (WMP) on lipid metabolism was investigated in rats fed a high-fat diet (HFD). The experimental results show that feeding walnut meal peptides counteracted the high-fat diet-induced increase in body, liver and epididymal fat weight, and reduce the serum concentrations of total cholesterol, triglycerides, and LDL-cholesterol and hepatic cholesterol and triglyceride content. Walnut meal peptides also resulted in increased HDL-cholesterol while reducing the atherosclerosis index (AI). Additionally, the stained pathological sections of the liver showed that the walnut meal peptides reduced hepatic steatosis and damage caused by HFD. Furthermore, walnut meal peptide supplementation was associated with normalization of elevated apolipoprotein (Apo)-B and reduced Apo-A1 induced by the high-fat diet and with favorable changes in the expression of genes related to lipid metabolism (LCAT, CYP7A1, HMGR, FAS). The results indicate that walnut meal peptides can effectively prevent the harmful effects of a high-fat diet on body weight, lipid metabolism and liver fat content in rats, and provide, and provide a reference for the further development of walnut meal functional foods.
Collapse
Affiliation(s)
| | | | | | | | - You-Lin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.-Y.Y.); (D.-Y.Z.); (G.-L.W.); (R.-G.Z.)
| |
Collapse
|
30
|
Effects of ultrasound-assisted sodium bisulfite pretreatment on the preparation of cholesterol-lowering peptide precursors from soybean protein. Int J Biol Macromol 2021; 183:295-304. [PMID: 33894258 DOI: 10.1016/j.ijbiomac.2021.04.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
In order to take full advantage of the gastrointestinal digestive function, the effects of S-type ultrasound-assisted sodium bisulfite (UASB) pretreatment on the preparation of cholesterol-lowering peptide precursors derived from soybean protein were investigated and the structural characterizations of pretreated proteins were explored. UASB pretreatment with the operational mode of mono-frequency ultrasound at 28 kHz, ultrasonic power density of 200 W/L and ultrasonic time of 50 min exhibited the highest cholesterol-lowering activity (56.90%) of soybean protein hydrolysates (SPH) after simulated gastrointestinal digestion, which increased by 87.17% compared to the control. Under these conditions, the peptide content of SPH after simulated gastrointestinal digestion was not significantly different (p > 0.05) compared to the control. Further FTIR analysis showed that UASB pretreatment increased β-turn and β-sheet content and decreased α-helix and random coil content. The changes in the surface hydrophobicity and microstructures of soybean protein indicated that UASB pretreatment loosened soybean protein structure and exposed more hydrophobic groups. SDS-PAGE indicated that the restriction sites changed after UASB pretreatment. In conclusion, UASB pretreatment is an efficient method for the preparation of cholesterol-lowering peptide precursors.
Collapse
|
31
|
Matemu A, Nakamura S, Katayama S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants (Basel) 2021; 10:316. [PMID: 33672537 PMCID: PMC7923761 DOI: 10.3390/antiox10020316] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Legumes such as soybean, chickpea, lentil, cowpea, and mung bean, are valuable sources of protein with a high amino acid score and can provide bioactive peptides. This manuscript presents a review on legume-derived peptides, focusing on in vitro and in vivo studies on the potential antioxidative activities of protein hydrolysates and their characterization, amino acid sequences, or purified/novel peptides. The health implications of legume-derived antioxidative peptides in reducing the risks of cancer and cardiovascular diseases are linked with their potent action against oxidation and inflammation. The molecular weight profiles and amino acid sequences of purified and characterized legume-derived antioxidant peptides are not well established. Therefore, further exploration of legume protein hydrolysates is necessary for assessing the potential applications of antioxidant-derived peptides in the functional food industry.
Collapse
Affiliation(s)
- Athanasia Matemu
- Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania;
| | - Soichiro Nakamura
- Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan;
| | - Shigeru Katayama
- Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan;
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
32
|
HPP and SGQR peptides from silkworm pupae protein hydrolysates regulated biosynthesis of cholesterol in HepG2 cell line. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Hu S, Yuan J, Gao J, Wu Y, Meng X, Tong P, Chen H. Antioxidant and Anti-Inflammatory Potential of Peptides Derived from In Vitro Gastrointestinal Digestion of Germinated and Heat-Treated Foxtail Millet ( Setaria italica) Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9415-9426. [PMID: 32786864 DOI: 10.1021/acs.jafc.0c03732] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed at identifying antioxidant and anti-inflammatory peptides derived from the in vitro gastrointestinal digestion of germinated and heated (microwave and boiling) foxtail millet. The protein digest fraction containing low-molecular-weight peptides (<3 kDa) and the most hydrophobic subfraction (F4) abundant in random coil structure were responsible for the bioactivity. Then, seven novel peptides were identified using liquid chromatography with tandem mass spectrometry (LC-MS/MS) from the most potent F4 subfraction derived from boiled germinated millet. All seven synthesized peptides significantly (p < 0.05) reduced reactive oxygen species production and increased glutathione content and superoxide dismutase activity in Caco-2 cells, whereas two peptides (EDDQMDPMAK and QNWDFCEAWEPCF) were superior in inhibiting nitric oxide, tumor necrosis factor-α (reduced to 42.29 and 44.07%, respectively), and interleukin-6 (reduced to 56.59 and 43.45%, respectively) production in a RAW 264.7 cell model. This study is the first to report about the potential role of germinated and heated foxtail millet as a source of dual antioxidant and anti-inflammatory peptides.
Collapse
Affiliation(s)
- Shuai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
34
|
Ashraf J, Liu L, Awais M, Xiao T, Wang L, Zhou X, Tong LT, Zhou S. Effect of thermosonication pre-treatment on mung bean (Vigna radiata) and white kidney bean (Phaseolus vulgaris) proteins: Enzymatic hydrolysis, cholesterol lowering activity and structural characterization. ULTRASONICS SONOCHEMISTRY 2020; 66:105121. [PMID: 32272330 DOI: 10.1016/j.ultsonch.2020.105121] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Protein hydrolysates have attained great attention due to a good nutritive food ingredient and higher biological activities. In this study, thermosonication, ultrasound and heat were used as a pre-treatment to obtain (<3KDa) hydrolysate from mung bean and white kidney bean to understand the mechanism of cholesterol absorption into micelle and inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) activity. Size exclusion high performance liquid chromatography (SE-HPLC) results of mung bean showed that the concentration of peptides (0.5KDa-1KDa and 1-3KDa) in the hydrolysate were significantly (p < 0.05) increased after thermosonication while, the peptides concentration (1-3KDa) in white kidney bean was significantly (p < 0.05) decreased. Thermosonication of mung bean hydrolysate exhibited higher inhibition of cholesterol solubilization, hydrophobicity and antioxidant activities. In addition, there was no difference observed in HMG-CoA activity and hydrophobicity between ultrasound alone and ultrasound combined with heat i.e. thermosonication treated hydrolysate of white kidney bean. Changes in secondary and tertiary structures were also analyzed under different processing conditions with maximum change due to thermosonication. Results indicated that mung bean hydrolysate had a great potential for inhibition of cholesterol synthesis and its solubility in the micelle, antioxidant activity and also convinced for its application in food and nutraceutical industries.
Collapse
Affiliation(s)
- Jawad Ashraf
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Muhammad Awais
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Tianzhen Xiao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xianrong Zhou
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Li-Tao Tong
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Sumei Zhou
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
35
|
Perchuk I, Shelenga T, Gurkina M, Miroshnichenko E, Burlyaeva M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean ( Vigna unguiculata (L.) Walp.) from China. Molecules 2020; 25:molecules25173778. [PMID: 32825166 PMCID: PMC7503259 DOI: 10.3390/molecules25173778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Asparagus bean immature pods and seeds are popular as food products for healthy and functional nutrition. Gas chromatography with mass spectrometry was used to compare metabolomic profiles of seeds and pods yielded by old Chinese landraces and the modern cultivars ‘Yunanskaya’ and ‘Sibirskiy razmer’. About 120 compounds were identified. The content of a majority among groups of compounds was higher in pods than in seeds. The amount of free amino acids in pods was 47 times higher, polyols and phytosterols 5 times higher, phenolics 4 times higher, and organic acids and saponins 3 times higher than in seeds. Differences were found in the relative content of compounds. Among phenolic compounds, the dominant one for seeds was protocatechuic acid, and for pods 4-hydroxycinnamic acid. Only polyols were identified in seeds, but pods additionally contained ethanolamine, phytol, and phytosphingosine. The ratio for nonsaturated/saturated fatty acids was 2.2 in seeds and 1.4 in pods. Seeds contained more stigmasterol, and pods more β-sitosterol. Aglycones of saponins were identified: cycloartenol in seeds, α- and β-amyrins in pods. Oligosaccharides dominated in both seeds and pods. Landraces manifested higher protein content in pods, while modern cultivars had pods with higher contents of organic acids, polyols, monosaccharides, and fatty acids. The results obtained confirm the high nutritional value of asparagus bean seeds and pods, and the prospects of their use in various diets.
Collapse
Affiliation(s)
- Irina Perchuk
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia; (T.S.); (M.B.)
- Correspondence:
| | - Tatyana Shelenga
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia; (T.S.); (M.B.)
| | - Maria Gurkina
- Astrakhan Experiment Breeding Station, Branch of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, village Yaksatovo, 416162 Astrakhan Region, Russia; (M.G.); (E.M.)
| | - Elena Miroshnichenko
- Astrakhan Experiment Breeding Station, Branch of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, village Yaksatovo, 416162 Astrakhan Region, Russia; (M.G.); (E.M.)
| | - Marina Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia; (T.S.); (M.B.)
| |
Collapse
|
36
|
Ashraf J, Awais M, Liu L, Khan MI, Tong LT, Ma Y, Wang L, Zhou X, Zhou S. Effect of thermal processing on cholesterol synthesis, solubilisation into micelles and antioxidant activities using peptides of Vigna angularis and Vicia faba. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Traffano-Schiffo MV, Aguirre Calvo TR, Avanza MV, Santagapita PR. High-intensity ultrasound-assisted extraction of phenolic compounds from cowpea pods and its encapsulation in hydrogels. Heliyon 2020; 6:e04410. [PMID: 32685731 PMCID: PMC7358274 DOI: 10.1016/j.heliyon.2020.e04410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/12/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Currently and according to the growing worldwide interest in the revaluation of agricultural by-products, the use of legumes waste presents great potential to obtain bioactive compounds. In this context, an extract rich in phenolic compounds was obtained from Vigna unguiculata (cowpea) pods by optimizing the high-intensity ultrasound conditions (10 min and 36% of amplitude) using response surface methodology. Then, the extract was encapsulated in Ca(II)-alginate beads with the addition of arabic or guar gums or cowpea isolated proteins. A complete morphological study by image analysis and microstructural evaluation by SAXS has been carried out. Results showed that beads containing alginate and alginate-guar gum have the highest loading efficiency of total phenolic compounds (47 ± 5%) and antioxidant activity (44 ± 3%). However, the coupled effect of the cowpea extract and the isolated proteins (at it higher concentration) increased the antioxidant capacity of the beads due to the contribution of the phenolic compounds and the amino acids with anti-radical activity, reaching a value of 67 ± 3 % of inhibition of ABTS.+. Finally, the microstructural analyses revealed that cowpea pod extract increased the interconnectivity of the rods due to the presence of trivalent cations, conferring versatility, and larger coordination to the network. Also, it was observed that the addition of cowpea proteins produced more interconnected bigger and fewer compacts rods than beads containing only alginate, increasing 12 and 49 % the interconnection and the size, respectively, and decreasing 10 % their compactness. This research demonstrated the use of cowpea sub-products as a source of bioactive compounds that further modulate the microstructure of the hydrogel network, and the outstanding potential for being incorporated in techno-functional foods by using Ca(II)-alginate as a carrier.
Collapse
Affiliation(s)
- Maria Victoria Traffano-Schiffo
- Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, 3400, Corrientes, Argentina
| | - Tatiana Rocio Aguirre Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) & CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - María Victoria Avanza
- Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, 3400, Corrientes, Argentina
| | - Patricio R. Santagapita
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) & CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| |
Collapse
|
38
|
Jiang X, Pan D, Zhang T, Liu C, Zhang J, Su M, Wu Z, Zeng X, Sun Y, Guo Y. Novel milk casein–derived peptides decrease cholesterol micellar solubility and cholesterol intestinal absorption in Caco-2 cells. J Dairy Sci 2020; 103:3924-3936. [DOI: 10.3168/jds.2019-17586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
39
|
Prados IM, Orellana JM, Marina ML, García MC. Identification of Peptides Potentially Responsible for In Vivo Hypolipidemic Activity of a Hydrolysate from Olive Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4237-4244. [PMID: 32186189 DOI: 10.1021/acs.jafc.0c01280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous studies demonstrated that peptides produced by the hydrolysis of olive seed proteins using Alcalase enzyme showed in vitro multifunctional lipid-lowering capability. This work presents a deeper insight into the hypolipidemic effect of olive seed peptides. The capability of olive seed peptides to inhibit endogenous cholesterol biosynthesis through the inhibition of HMG-CoA reductase enzyme was evaluated observing a 38 ± 7% of inhibition. Two in vivo assays using different peptides concentrations (200 and 400 mg/kg/day) were designed to evaluate the hypolipidemic effect of olive seed peptides in male and female mice. A low concentration of hydrolysate reduced total cholesterol in male mice in a 20% after 11 weeks compared to the mice feeding with hypercholesterolemic diet. A higher hydrolysate concentration showed a greater reduction in total cholesterol (25%). The analysis of the olive seed hydrolysate by reverse phase high-performance liquid chromatography mass spectrometry (RP-HPLC-MS) enabled the identification of peptides that could be responsible for this hypolipidemic effect.
Collapse
Affiliation(s)
- Isabel M Prados
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - J M Orellana
- Centro de Experimentación Animal, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - M Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - M Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
40
|
DIAS DM, GOMES MJC, MOREIRA MEDC, NATAL D, SILVA RR, NUTTI M, MATTA SLD, SANT’ANA HMP, MARTINO HSD. Staple food crops from Brazilian Biofortification Program have high protein quality and hypoglycemic action in Wistar rats. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.32918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
|
42
|
Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020; 11:93-118. [PMID: 31905019 DOI: 10.1146/annurev-food-032519-051708] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional foods is a very popular term in the social and scientific media; consequently, food producers have invested resources in the development of processed foods that may provide added functional benefits to consumers' well-being. Because of intrinsic regulation and end-of-use purposes in different countries, worldwide meanings and definitions of this term are still unclear. Hence, here we standardize this definition and propose a guideline to attest that some ingredients or foods truly deserve this special designation. Furthermore, focus is directed at the most recent studies and practical guidelines that can be used to develop and test the efficacy of potentially functional foods and ingredients. The most widespread functional ingredients, such as polyunsaturated fatty acids (PUFAs), probiotics/prebiotics/synbiotics, and antioxidants, and their technological means of delivery in food products are described. The review discusses the steps that food companies should take to ensure that their developed food product is truly functional.
Collapse
Affiliation(s)
- Daniel Granato
- Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-0250 Espoo, Finland;
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science, Education and Technology of Rio de Janeiro (IFRJ), 20260-100 Rio de Janeiro, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
43
|
Gomes MJC, Lima SLS, Alves NEG, Assis A, Moreira MEC, Toledo RCL, Rosa COB, Teixeira OR, Bassinello PZ, De Mejía EG, Martino HSD. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutr Metab Cardiovasc Dis 2020; 30:141-150. [PMID: 31757569 DOI: 10.1016/j.numecd.2019.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Common beans (Phaseolus vulgaris L.) protein hydrolysate is a source of bioactive peptides with known health benefits. The aim of this study was to evaluate the effect of common bean protein hydrolysate on lipid metabolism and endothelial function in male adult BALB/c mice fed an atherogenic diet for nine weeks. METHODS AND RESULTS Male adult mice were divided into three experimental groups (n = 12) and fed with normal control diet; atherogenic diet and atherogenic diet added with bean protein hydrolysate (700 mg/kg/day) for nine weeks. Food intake, weight gain, lipid profile, Atherogenic Index of Plasma, inflammation biomarkers and endothelial function were evaluated. APH group presented reduced feed intake, weight gain, lipid profile, tumor necrosis factor-α, angiotensin II (94% and 79%, respectively) and increased endothelial nitric oxide synthase (62%). CONCLUSIONS Protein hydrolysate showed hypocholesterolemic activity preventing inflammation and dysfunction of vascular endothelium, in addition to decreasing oxidative stress, indicating an adjuvant effect on reducing atherogenic risk.
Collapse
Affiliation(s)
- Mariana J C Gomes
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Sâmara L S Lima
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Natália E G Alves
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Andressa Assis
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Maria E C Moreira
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil; Faculdade Dinâmica do Vale do Piranga -FADIP, 205 G St, Paraiso, Ponte Nova, Minas Gerais, 35430-302, Brazil
| | - Renata C L Toledo
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Carla O B Rosa
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Olívia R Teixeira
- Embrapa Rice and Bean, Rodovia GO-462, Km 12. Zona Rural, Santo Antônio de Goiás, Goiás, 75375000, Brazil
| | - Priscila Z Bassinello
- Embrapa Rice and Bean, Rodovia GO-462, Km 12. Zona Rural, Santo Antônio de Goiás, Goiás, 75375000, Brazil
| | - Elvira G De Mejía
- Department of Foods Science and Human Nutrition, University of Illinois Urbana-Champaign, 228 ERML, MC-051, 1201 West Gregory Drive, Urbana, IL, 61801, USA
| | - Hércia S D Martino
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil.
| |
Collapse
|
44
|
Urbizo-Reyes U, San Martin-González MF, Garcia-Bravo J, López Malo Vigil A, Liceaga AM. Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105187] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Bessada SM, Barreira JC, Oliveira MBP. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Sisti MS, Scilingo A, Añón MC. Effect of the Incorporation of Amaranth (Amaranthus Mantegazzianus) into Fat- and Cholesterol-Rich Diets for Wistar Rats. J Food Sci 2019; 84:3075-3082. [PMID: 31599971 DOI: 10.1111/1750-3841.14810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Abstract
The hypocholesterolemic effect of amaranth was studied in male Wistar rats fed a high-fat diet that was supplemented with amaranth flour, AF, or isolated protein, AI. Likewise, an in vitro test was carried out, in which the capacity of the AI, AF, the digested isolate, DAI, and the digested amaranth flour, DAF, to displace the cholesterol of the model micelles was evaluated. The in vivo results showed an increase in the excretion of cholesterol through feces (77% for AF7; 23% and 108% for AI30 and AF30, respect control) and a decrease in the content of hepatic cholesterol (98% for AF7; 96% and 53% for AI30 and AF30 respect control); whereas in vitro it was shown that both AF and DAF have greater power to displace cholesterol than the AI and DAI (IC50 0.1, 0.71, 0.2, and 2.1 for AF, DAF, AI, and DAI, respectively). These evidences show that the proteins and fibers of amaranth have an effect on cholesterol metabolism. PRACTICAL APPLICATION: Nowadays, consumers give great importance to the effect that food has on health. The results shown in this work evidence the potential hypocholesterolemic activity presented by amaranth, this is of great importance due to the increase in the incidence of dyslipidemia in the world population and the importance of amaranth as a nonextensive crop of excellent agronomic, nutritional, and bioactive properties suitable for preparation of functional foods.
Collapse
Affiliation(s)
- Martín S Sisti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116-1900, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT, La Plata CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
| | - Adriana Scilingo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116-1900, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT, La Plata CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116-1900, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT, La Plata CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
| |
Collapse
|
47
|
Mada SB, Ugwu CP, Abarshi MM. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09890-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Sakakibara T, Sawada Y, Wang J, Nagaoka S, Yanase E. Molecular Mechanism by Which Tea Catechins Decrease the Micellar Solubility of Cholesterol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7128-7135. [PMID: 31150244 DOI: 10.1021/acs.jafc.9b02265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tea polyphenols lower the levels of cholesterol in the blood by decreasing the cholesterol micellar solubility. To clarify this mechanism, the interactions between taurocholic acid and (-)-epigallocatechin gallate (EGCg) and its derivatives were investigated. 13C NMR studies revealed remarkable chemical-shift changes for the carbonyl carbon atom and the 1″- and 4″-positions in the galloyl moiety. Furthermore, 1H NMR studies using (-)-EGCg derivatives showed that the number of hydroxyl groups on the B ring did not affect these interactions, whereas the carbonyl carbon atom and the aromatic ring of the galloyl moiety had remarkable effects. The configuration at the 2- and 3-positions of the catechin also influenced these interactions, with the trans-configuration resulting in stronger inhibition activity than the cis-configuration. Additionally, a 1:1 component ratio for the catechin-taurocholic acid complex was determined by electrospray ionization-mass spectrometry. These molecular mechanisms contribute to the development of cholesterol-absorption inhibitors.
Collapse
Affiliation(s)
- Takumi Sakakibara
- Graduate School of Natural Science and Technology , Gifu University , 1-1 Yanagido , Gifu 501-1193 , Japan
| | - Yoshiharu Sawada
- Division of Instrumental Analysis Life Science Research Center , Gifu University , 1-1 Yanagido , Gifu 501-1193 , Japan
| | - Jilite Wang
- Graduate School of Natural Science and Technology , Gifu University , 1-1 Yanagido , Gifu 501-1193 , Japan
| | - Satoshi Nagaoka
- Graduate School of Natural Science and Technology , Gifu University , 1-1 Yanagido , Gifu 501-1193 , Japan
| | - Emiko Yanase
- Graduate School of Natural Science and Technology , Gifu University , 1-1 Yanagido , Gifu 501-1193 , Japan
| |
Collapse
|
49
|
de Lima SLS, Gomes MJC, da Silva BP, Alves NEG, Toledo RCL, Theodoro JMV, Moreira MEDC, Bento JAC, Bassinello PZ, da Matta SLP, De Mejía EG, Martino HSD. Whole flour and protein hydrolysate from common beans reduce the inflammation in BALB/c mice fed with high fat high cholesterol diet. Food Res Int 2019; 122:330-339. [PMID: 31229086 DOI: 10.1016/j.foodres.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 01/07/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a source of bioactive peptides, but little is known about its effects on hypercholesterolemia, oxidative stress, and the inflammatory process. Therefore, the aim of this study was to evaluate the effect of whole flour and bean protein hydrolysate of common bean variety Carioca on inflammation and oxidative stress in BALB/c mice. Four experimental groups were included in the study: standard diet (SD), high fat high cholesterol diet (HFC), high fat high cholesterol diet and whole bean flour (HFC-F); and high fat high cholesterol diet and bean protein hydrolysate (HFC-PH). Animals fed with bean protein hydrolysate showed lower weight gain and food intake. Animals fed with whole bean flour showed lower alanine aminotransferase and low-density lipoprotein cholesterol levels than animals fed with bean protein hydrolysate. SOD mRNA was lower in HFC, HFC-F and HFC-PH groups whereas SOD concentration was higher in HFC-F and HFC-PH groups. HSP72 mRNA expression was lower in the HFC-F group in relation to HFC-PH. IL-10 and PPARα mRNA expression was lower in HFC-F and HFC-PH groups in comparison with SD. The whole bean flour and bean protein hydrolysate reduced inflammation and the risk factors for cardiovascular diseases in BALB/c mice.
Collapse
Affiliation(s)
| | | | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais 36570000, Brazil
| | | | - Renata Celi Lopes Toledo
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais 36570000, Brazil
| | | | | | | | - Priscila Zaczuk Bassinello
- Embrapa Rice and Bean, Rodovia GO-462, Km 12. Zona Rural, Santo Antônio de Goiás, Goiás 75375000, Brazil
| | | | - Elvira Gonzalez De Mejía
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign. 228 ERML, MC-051, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
50
|
Nwachukwu ID, Aluko RE. Structural and functional properties of food protein-derived antioxidant peptides. J Food Biochem 2019; 43:e12761. [PMID: 31353492 DOI: 10.1111/jfbc.12761] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
The aim of this work is to provide a timely examination of the structure-activity relationship of antioxidative peptides. The main production approach involves enzymatic hydrolysis of animal and plant proteins to produce protein hydrolyzates, which can be further processed by membrane ultrafiltration into size-based peptide fractions. The hydrolyzates and peptide fractions can also be subjected to separation by column chromatography to obtain pure peptides. Although the structural basis for enhanced antioxidant activity varies, protein hydrolyzates and peptide fractions that contain largely low molecular weight peptides have generally been shown to be potent antioxidants. In addition to having hydrophobic amino acids such as Leu or Val in their N-terminal regions, protein hydrolyzates, and peptides containing the nucleophilic sulfur-containing amino acid residues (Cys and Met), aromatic amino acid residues (Phe, Trp, and Tyr) and/or the imidazole ring-containing His have been generally found to possess strong antioxidant properties. PRACTICAL APPLICATIONS: High levels of reactive oxygen species (ROS) in addition to the presence of metal cations can lead to oxidative stress, which promotes reactions that cause destruction of critical cellular biopolymers, such as proteins, lipids, and nucleic acids. Oxidative stress could be due to insufficient levels of natural cellular antioxidants, which enables accumulation of ROS to toxic levels. A proposed approach to ameliorating oxidative stress is the provision of exogenous peptides that can be consumed to complement cellular antioxidants. Food protein-derived peptides consist of amino acids joined by peptides bonds just like glutathione, a very powerful natural cellular antioxidant. Therefore, this review provides a timely summary of the in vitro and in vivo reactions impacted by antioxidant peptides and the postulated mechanisms of action, which could aid development of potent antioxidant agents. The review also serves as a resource material for identifying novel antioxidant peptide sources for the formulation of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ifeanyi D Nwachukwu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| |
Collapse
|