1
|
Fedko M, Siger A, Szydłowska-Czerniak A, Rabiej-Kozioł D, Tymczewska A, Włodarczyk K, Kmiecik D. The Effect of High-Temperature Heating on Amounts of Bioactive Compounds and Antiradical Properties of Refined Rapeseed Oil Blended with Rapeseed, Coriander and Apricot Cold-Pressed Oils. Foods 2024; 13:2336. [PMID: 39123528 PMCID: PMC11311388 DOI: 10.3390/foods13152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cold-pressed oils are rich sources of bioactive substances, which may protect triacylglycerols from degradation during frying. Nevertheless, these substances may decompose under high temperature. This work considers the content of bioactive substances in blends and their changes during high-temperature heating. Blends of refined rapeseed oil with 5% or 25% in one of three cold-pressed oils (rapeseed, coriander and apricot) were heated at 170 or 200 °C in a thin layer on a pan. All non-heated blends and cold-pressed oils were tested for fatty acid profile, content and composition of phytosterols, tocochromanols, chlorophyll and radical scavenging activity (RSA) analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the stability of phytosterols, tocochromanols, DPPH and ABTS values was determined in heated blends. All tocochromanols were lost during the heating process, in particular, at 200 °C. However, there were some differences between homologues. α-Tocopherol and δ-tocopherol were the most thermolabile and the most stable, respectively. Phytosterols were characterized by very high stability at both temperatures. We observed relationships between ABTS and DPPH values and contents of total tocochromanols and α-tocopherol. The obtained results may be useful in designing a new type of fried food with improved health properties and it may be the basis for further research on this topic.
Collapse
Affiliation(s)
- Monika Fedko
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dobrochna Rabiej-Kozioł
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Katarzyna Włodarczyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| |
Collapse
|
2
|
Hemmami H, Seghir BB, Zeghoud S, Ben Amor I, Kouadri I, Rebiai A, Zaater A, Messaoudi M, Benchikha N, Sawicka B, Atanassova M. Desert Endemic Plants in Algeria: A Review on Traditional Uses, Phytochemistry, Polyphenolic Compounds and Pharmacological Activities. Molecules 2023; 28:molecules28041834. [PMID: 36838819 PMCID: PMC9959599 DOI: 10.3390/molecules28041834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Due to their robust antioxidant capabilities, potential health benefits, wide variety of biological activities, and strong antioxidant qualities, phenolic compounds are substances that have drawn considerable attention in recent years. The main goal of the review is to draw attention to saharian Algerian medicinal plants and the determination of their bioactivity (antioxidant, anti-cancer, and anti-inflammatory importance), and to present their chemical composition as well as in vivo and in vitro studies, clinical studies, and other studies confirming their real impact on human health. Research results have revealed a rich variety of medicinal plants used to treat various disease states in this region. Based on in vivo and in vitro studies, biological activity, and clinical studies, a list of 34 species of desert plants, belonging to 20 botanical families, useful both in preventive actions and in the treatment of neoplastic diseases has been established, and polyphenolic compounds have been identified as key to the health potential of endemic diseases and desert plants. It has been shown that people who follow a diet rich in polyphenols are less prone to the risk of many cancers and chronic diseases, such as obesity and diabetes. In view of the increasing antioxidant potential of these plant species, as well as the increasing trade in herbal products from the Sahara region, phytosanitary and pharmaceutical regulations must change in this respect and should be in line with Trade Related Aspects of Intellectual Property Rights (TRIPS), and the sustainable use and development of plant products must be addressed at the same time.
Collapse
Affiliation(s)
- Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Bachir Ben Seghir
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University May 8, 1945, Guelma 24000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Imane Kouadri
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University May 8, 1945, Guelma 24000, Algeria
- Department of Process Engineering, Faculty of Technology, University May 8, 1945, Guelma 24000, Algeria
| | - Abdelkrim Rebiai
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Abdelmalek Zaater
- Biodiversity Laboratory and Application of Biotechnology in Agriculture, University of El Oued, El Oued 39000, Algeria
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued 39000, Algeria
| | - Mohammed Messaoudi
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
- Nuclear Research Centre of Birine, Ain Oussera, Djelfa 17200, Algeria
| | - Naima Benchikha
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, 20-950 Lublin, Poland
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
3
|
Mnari Bhouri A, Ghnimi H, Amri Z, Koubaa N, Hammami M. Effect of tunisian pomegranate peel extract on the oxidative stability of corn oil under heating conditions. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.1010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of pomegranate peel extract (PPE) on the oxidative stability of corn oil during heating was studied. Oxidation was followed by determining peroxide value (PV), p-anisidine value (p-AV), free fatty acid value (FFA), conjugated dienes (CD), conjugated trienes hydroperoxides (CT) and the calculated total oxidation value (TOTOX). Polyphenol (TPC) and ortho-diphenol (TOPC) contents as well as the antioxidant activity of each oil sample were evaluated before and after heating. PPE showed a significant inhibitory effect on lipid oxidation. Heating samples for 8 hours supplemented by PPE to a level of 1000 ppm resulted in the highest significant decreases in investigated indices compared to the control and BHT values. It was concluded that the antioxidant activity of PPE delayed oxidation and can be used in the food industry to prevent and reduce lipid deterioration in oil.
Collapse
|
4
|
Lingua MS, Gies M, Descalzo AM, Servent A, Páez RB, Baroni MV, Blajman JE, Dhuique-Mayer C. Impact of storage on the functional characteristics of a fermented cereal product with probiotic potential, containing fruits and phytosterols. Food Chem 2022; 370:130993. [PMID: 34509945 DOI: 10.1016/j.foodchem.2021.130993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 01/29/2023]
Abstract
The aim of this work was to study the changes in the functional characteristics of a fermented maize product containing fruits, and enriched with phytosterols. Functional characteristics (natural antioxidants and phytosterols content, in vitro antioxidant capacity and probiotic viability), lipid oxidation, and physicochemical parameters were investigated during 4 weeks of storage at 4 °C. The differences between one formulation elaborated with semi-skimmed powdered milk (Basic Product) and another with whey protein isolate (WPI Product) were evaluated. The content of polyphenols, carotenoids and tocopherols remained unchanged during the storage of both formulations. These compounds increased the antioxidant capacity in both products compared to the control formulation (without fruits), which was displayed along the whole storage period. The doses of phytosterols and the probiotic potential were maintained to the end of the storage period for both formulations. Basic and WPI products represent novel foods with desirable functional characteristics preserved during commercial storage.
Collapse
Affiliation(s)
- Mariana S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET-Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | - Magali Gies
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR QualiSud, 34398 Montpellier, France; QualiSud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Université d́Avignon, Université de La Réunion, 34398 Montpellier, France
| | - Adriana M Descalzo
- INTA- Instituto Tecnología de Alimentos, CIA, Castelar, 1686 Hurlingham, Buenos Aires, Argentina
| | - Adrien Servent
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR QualiSud, 34398 Montpellier, France; QualiSud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Université d́Avignon, Université de La Réunion, 34398 Montpellier, France
| | | | - María V Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET-Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Jesica E Blajman
- Instituto de Investigación de la Cadena Láctea (IDICAL), CONICET-INTA EEA Rafaela, 2300 Rafaela, Santa Fe, Argentina
| | - Claudie Dhuique-Mayer
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR QualiSud, 34398 Montpellier, France; QualiSud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Université d́Avignon, Université de La Réunion, 34398 Montpellier, France
| |
Collapse
|
5
|
Xu B, You S, Zhang L, Ma F, Zhang Q, Luo D, Li P. Comparative analysis of free/combined phytosterols--degradation and differential formation of oxidation products during heating of sunflower seed oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhang Y, Li X, Lu X, Sun H, Wang F. Effect of oilseed roasting on the quality, flavor and safety of oil: A comprehensive review. Food Res Int 2021; 150:110791. [PMID: 34865806 DOI: 10.1016/j.foodres.2021.110791] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Roasting is widely applied in oil processing and employs high temperatures (90-260 °C) to heat oilseeds evenly. Roasting improves the extraction yield of oil by the generation of pores in the oilseed cell walls, which facilitates the movement of oil from oilseed during subsequent extraction. It also affects the nutritional value and palatability of the prepared oil, which has attracted consumers' attention. An appropriate roasting process contributes to better extraction of bioactive compounds, particularly increasing the total polyphenol content in the oil. Correspondingly, extracted oil exhibits higher antioxidant capacity and oxidative stability after roasting the oilseeds due to better extraction of endogenous antioxidants and the generation of Maillard reaction products. Furthermore, roasting process is critical for the formation of aroma-active volatiles and the improvement of desired sensory characteristics, so it is indispensable for the production of fragrant oil. However, some harmful components are inevitably generated during roasting, including oxidation products, polycyclic aromatic hydrocarbons, and acrylamide. Monitoring and controlling the concentrations of harmful compounds in the oil during the roasting process is important. Therefore, this review updates how roasting affect the quality and safety of oils and provides useful insight into regulation of the roasting process based on bioactive compounds, sensory characteristics, and safety of oils. Further research is required to assess the nutritional value and safety of roasted oils in vivo and to develop a customized roasting process for various oilseeds to produce good-quality oils.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xiaolong Li
- COFCO Nutrition & Health Research Institute, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing 102209, PR China
| | - Xinzhu Lu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Hao Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
7
|
Gachumi G, Poudel A, Wasan KM, El-Aneed A. Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation. Pharmaceutics 2021; 13:pharmaceutics13020268. [PMID: 33669349 PMCID: PMC7920278 DOI: 10.3390/pharmaceutics13020268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products (POPs) present in a variety of enriched and non-enriched foods can show pro-atherogenic and pro-inflammatory properties. Therefore, it is crucial to screen and analyze various phytosterol-containing products for the presence of POPs and ultimately design or modify phytosterols in such a way that prevents the generation of POPs and yet maintains their pharmacological activity. The main approaches for the analysis of POPs include the use of mass spectrometry (MS) linked to a suitable separation technique, notably gas chromatography (GC). However, liquid chromatography (LC)-MS has the potential to simplify the analysis due to the elimination of any derivatization step, usually required for GC-MS. To reduce the transformation of phytosterols to their oxidized counterparts, formulation strategies can theoretically be adopted, including the use of microemulsions, microcapsules, micelles, nanoparticles, and liposomes. In addition, co-formulation with antioxidants, such as tocopherols, may prove useful in substantially preventing POP generation. The main objectives of this review article are to evaluate the various analytical strategies that have been adopted for analyzing them. In addition, formulation approaches that can prevent the generation of these oxidation products are proposed.
Collapse
Affiliation(s)
- George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Kishor M. Wasan
- iCo Therapeutics Inc., Vancouver, BC V6Z 2T3, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Skymount Medical Group Inc., Calgary, AB T3C 0J8, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
- Correspondence: ; Tel.: +1-306-966-2013
| |
Collapse
|
8
|
Thermo-Oxidation of Phytosterol Molecules in Rapeseed Oil during Heating: The Impact of Unsaturation Level of the Oil. Foods 2020; 10:foods10010050. [PMID: 33375349 PMCID: PMC7823690 DOI: 10.3390/foods10010050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Phytosterols are naturally occurring substances in foods of plant origin that have positive effects on the human body. Their consumption can reduce the level of low density lipoprotein (LDL) cholesterol. The presence of unsaturated bonds in their structure leads to their oxidation during production, storage, and thermal processes. The aim of the study was to determine how the degree of unsaturation of rapeseed oil affects the oxidation of phytosterols in oil during 48 h of heating. In all not-heated oils, the dominant groups of oxyphytosterols were 7α- and 7β-hydroxy sterols. During 48 h of heating, the rapid decrease of phytosterols' levels and the increase of the content of oxyphytosterols were observed. The main dominant group in heated samples was hydroxy and epoxy sterols. Despite differences in fatty acid composition and content and composition of single phytosterols in unheated oils samples, the total content of oxyphytosterols after finishing of heating was on a similar level for each of the tested oils. This showed that the fatty acid composition of oil is not the only factor that affects the oxidation of phytosterols in foods during heating.
Collapse
|
9
|
Kobus-Cisowska J, Dziedziński M, Szczepaniak O, Kusek W, Kmiecik D, Ligaj M, Telichowska A, Byczkiewicz S, Szulc P, Szwajgier D. Phytocomponents and evaluation of acetylcholinesterase inhibition by Ginkgo biloba L. leaves extract depending on vegetation period. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1804462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Marcin Dziedziński
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Oskar Szczepaniak
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Weronika Kusek
- Earth, Environmental and Geographical Sciences Department, Northern Michigan University, Marquette, MI, USA
| | - Dominik Kmiecik
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Marta Ligaj
- Department of Industrial Product Quality and Ecology, Poznan University of Economics and Business, Poznan, Poland
| | - Aleksandra Telichowska
- Foundation for the Education of Innovation and Implementation of Modern Technologies, Dabrowka, Poland
| | - Szymon Byczkiewicz
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
10
|
Rosa ACS, Stevanato N, Santos Garcia VA, Silva C. Simultaneous extraction of the oil from the kernel and pulp of macauba fruit using a green solvent. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Natália Stevanato
- Departamento de Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brasil
| | - Vitor Augusto Santos Garcia
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo (USP) Pirassununga Brasil
| | - Camila Silva
- Departamento de Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brasil
- Departamento de Tecnologia Universidade Estadual de Maringá (UEM) Umuarama Brasil
| |
Collapse
|
11
|
|
12
|
Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). SUSTAINABILITY 2020. [DOI: 10.3390/su12041305] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antioxidants are a wide group of chemical compounds characterized by high bioactivity. They affect human health by inhibiting the activity of reactive oxygen species. Thus, they limit their harmful effect and reduce the risk of many diseases, including cardiovascular diseases, cancers, and neurodegenerative diseases. Antioxidants are also widely used in the food industry. They prevent the occurrence of unfavourable changes in food products during storage. They inhibit fat oxidation and limit the loss of colour. For this reason, they are often added to meat products. Many diet components exhibit an antioxidative activity. A high antioxidative capacity is attributed to fruit, vegetables, spices, herbs, tea, and red wine. So far, the antioxidative properties of various plant materials have been tested. However, the antioxidative activity of some products has not been thoroughly investigated yet. To date, there have been only a few studies on the antioxidative activity of the pumpkin, including pumpkin seeds, flowers, and leaves, but not the pulp. The main focus of our experiment was to optimize the extraction so as to increase the antioxidative activity of the pumpkin pulp. Variable extraction conditions were used for this purpose, i.e., the type and concentration of the solvent, as well as the time and temperature of the process. In addition, the experiment involved a comparative analysis of the antioxidative potential of 14 pumpkin cultivars of the Cucurbita maxima species. The study showed considerable diversification of the antioxidative activity of different pumpkin cultivars.
Collapse
|
13
|
Comparative analysis of selected bioactive components (fatty acids, tocopherols, xanthophyll, lycopene, phenols) and basic nutrients in raw and thermally processed camelina, sunflower, and flax seeds ( Camelina sativa L. Crantz, Helianthus L., and Linum L.). Journal of Food Science and Technology 2019; 56:4296-4310. [PMID: 31478000 PMCID: PMC6706495 DOI: 10.1007/s13197-019-03899-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Revised: 03/18/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
The aim of study was to determine the content of basic nutrients, the level of fatty acids, tocopherols, xanthophyll, and lycopene, and the total phenolic content in camelina (Camelina sativa L. Crantz) (Cs), sunflower (Helianthus L.) (Ha), and flax (Linum L.) (Lu) seeds. The seeds were either raw or subjected to processing, i.e. boiling, micronization, or microwave roasting. The basic chemical composition was established and the fatty acid composition as well as the content of tocopherol (α, β, γ, δ, total), β-carotenoids, xanthophyll, lycopene, and total phenolics were determined in the analyzed oil seeds. The analyzed oil seeds are a rich source of protein and PUFAs as well as α-tocopherols (Ha) and γ-tocopherols (Cs, Lu), xanthophyll, and phenolics One portion of seeds covered from 746/513 (Cs) to as much as 1209/813% (Lu) (female/male) of the ALA daily intake. The AI value in the processed seeds increased (P < 0.05) and the values of H/H and HC declined (P < 0.05). The oil seed processing resulted in loss of most nutrients and bioactive constituents and appearance of some amounts of trans isomers, especially in the microwave roasted seeds (0.99-1.79 g/100 g crude lipid). The phenolic content decreased in the boiled seeds (Ha: 1301; Cs: 578.3, and Lu: 62.75 mg/100 g).
Collapse
|
14
|
Zhao Y, Yang B, Xu T, Wang M, Lu B. Photooxidation of phytosterols in oil matrix: Effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chem 2019; 288:162-169. [DOI: 10.1016/j.foodchem.2019.02.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/26/2023]
|
15
|
Efficient Homogenization-Ultrasound-Assisted Extraction of Anthocyanins and Flavonols from Bog Bilberry ( Vaccinium uliginosum L.) Marc with Carnosic Acid as an Antioxidant Additive. Molecules 2019; 24:molecules24142537. [PMID: 31336730 PMCID: PMC6680774 DOI: 10.3390/molecules24142537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
To explore the optimum conditions for the extraction of anthocyanins and flavonols from bog bilberry (Vaccinium uliginosum L.) marc on a single-factor experimental basis, a response surface methodology was adopted for this intensive study. The extraction procedure was carried out in a Waring blender and followed an ultrasonic bath, and the natural antioxidant carnosic acid was added to inhibit oxidation. The optimum extraction conditions were as follows: a volume fraction of ethanol of 70%, an antioxidant content of 0.02% (the mass of sample) carnosic acid, a liquid–solid ratio of 16 mL/g, a homogenization time of 3 min, a reaction temperature of 55 °C, an ultrasound irradiation frequency of 80 kHz, an ultrasound irradiation power of 200 W, and an ultrasound irradiation time of 40 min. Satisfactory yields of anthocyanins (13.95 ± 0.37 mg/g) and flavonols (3.51 ± 0.16 mg/g) were obtained. The experimental results showed that the carnosic acid played an effective antioxidant role in the extraction process of anthocyanins and flavonols with a green and safety guarantee.
Collapse
|
16
|
Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 2019; 11:E1242. [PMID: 31159190 PMCID: PMC6627181 DOI: 10.3390/nu11061242] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/26/2022] Open
Abstract
Chia (Salvia hispanica) is an annual herbaceous plant, the seeds of which were consumed already thousands of years ago. Current research results indicate a high nutritive value for chia seeds and confirm their extensive health-promoting properties. Research indicates that components of chia seeds are ascribed a beneficial effect on the improvement of the blood lipid profile, through their hypotensive, hypoglycaemic, antimicrobial and immunostimulatory effects. This article provides a review of the most important information concerning the potential application of chia seeds in food production. The chemical composition of chia seeds is presented and the effect of their consumption on human health is discussed. Technological properties of chia seeds are shown and current legal regulations concerning their potential use in the food industry are presented.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Maciej Taczanowski
- Department of Food Quality and Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Dominik Kmiecik
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Anna Gramza-Michałowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
17
|
Angelica Stem: A Potential Low-Cost Source of Bioactive Phthalides and Phytosterols. Molecules 2018; 23:molecules23123065. [PMID: 30477097 PMCID: PMC6321507 DOI: 10.3390/molecules23123065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Chinese Angelica is a significant medical plant due to the various therapeutic constituents in its root; whereas the aerial part is considered worthless and often discarded as agricultural waste. In this work, phytochemicals from the stem were first systematically analyzed by means of GC–MS after derivatization and HPLC–MS/MS in multiple reaction monitoring (MRM) mode. Phthalides, ferulic acid, and coniferyl ferulate were detected in the stem; although their content is relatively low in comparison with the root. Some specific compounds, such as p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, caffeic acid, 4-hydroxyphenyl-1, 2-ethanediol, thymol-β-d-glucopyranoside, etc. and a significant amount of phytosterols (1.36 mg/g stem, mainly β-sitosterol) were detected in the stem. The extracted oil from the stem contained a considerable amount of phthalides (48.5 mg/g), β-sitosterol (56.21 mg/g), and stigmasterol (14.03 mg/g); no other bioactive compounds were found that could be potentially used as pharmaceuticals or additives to healthcare food.
Collapse
|
18
|
Ahmadi K, Wulansari A, Subroto Y, Estiasih T. Lipid profile improvement of food products containing bioactive compounds from unsaponifiable matters of palm fatty acid distillate in hypercholesterolemia rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2018. [DOI: 10.3233/mnm-18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Unsaponifiable matters (USM) from palm fatty acid distillate (PFAD) contains vitamin E (mainly tocotrienols), phytosterols, and squalene that have ability to reduce blood cholesterol. Fortification of USM into food products is a way for hypercholesterolemia management. OBJECTIVE: This study evaluated effects of fortification of USM from PFAD into instant noodle, bread, and biscuit on lipid profile improvement of hypercholesterolemia rats. It was also aimed to compare the effects of different type of foods as USM carrier that represented different processing steps and nutritional composition. METHODS: Rats were divided into control-standard diet and atherogenic diet fed groups, and 6 hypercholesterolemia groups fed by instant noodle, plain bread, and biscuit with 1% USM fortification and without fortification for 8 weeks. Lipid profile (total cholesterol, triglyceride, LDL cholesterol, and HDL cholesterol) was analysed at week 0, 4, and 8. Hepatic and fecal cholesterol and bile acid were also examined at the end of experiment to elucidate some mechanism of cholesterol lowering due to USM fortified foods administration. RESULTS: Some bioactive compounds lost during USM fortified food preparation and the highest retention was found in biscuit. Lipid profile improvement was indicated by reduction of total cholesterol, triglyceride, and LDL cholesterol, meanwhile HDL cholesterol increased. Type of fortified foods affected the level of alteration of lipid profile. Degree of lipid profile improvement was affected by nutritional composition of fortified foods, food intake of the rats, and level of bioactive content. Bioactive compounds in USM fortified foods inhibited cholesterol absorption that indicated by higher fecal cholesterol and bile acid compared to atherogenic diet fed group. Modulation of cholesterol synthesis was likely to occur that indicated by lower hepatic cholesterol and higher bile acids. CONCLUSIONS: Feeding of USM fortified food products improved lipid profile of hypercholesterolemia rats.
Collapse
Affiliation(s)
- Kgs Ahmadi
- Department of Agroindustry Technology, Faculty of Agriculture, Tribhuwana Tunggadewi University, Indonesia
| | - Angela Wulansari
- Master Program of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Indonesia
| | - Yunianta Subroto
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Indonesia
| | - Teti Estiasih
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Indonesia
| |
Collapse
|
19
|
Structure–activity relationships between sterols and their thermal stability in oil matrix. Food Chem 2018; 258:387-392. [DOI: 10.1016/j.foodchem.2018.03.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
|
20
|
Ghasemzadeh A, Baghdadi A, Z E Jaafar H, Swamy MK, Megat Wahab PE. Optimization of Flavonoid Extraction from Red and Brown Rice Bran and Evaluation of the Antioxidant Properties. Molecules 2018; 23:molecules23081863. [PMID: 30049990 PMCID: PMC6222751 DOI: 10.3390/molecules23081863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022] Open
Abstract
Recently, the quality-by-design concept has been widely implemented in the optimization of pharmaceutical processes to improve batch-to-batch consistency. As flavonoid compounds in pigmented rice bran may provide natural antioxidants, extraction of flavonoid components from red and brown rice bran was optimized using central composite design (CCD) and response surface methodology (RSM). Among the solvents tested, ethanol was most efficient for extracting flavonoids from rice bran. The examined parameters were temperature, solvent percentage, extraction time, and solvent-to-solid ratio. The highest total flavonoid content (TFC) in red rice bran was predicted as 958.14 mg quercetin equivalents (QE)/100 g dry matter (DM) at 58.5 °C, 71.5% (v/v), 36.2 min, and 7.94 mL/g, respectively, whereas the highest TFC in brown rice bran was predicted as 782.52 mg QE/100 g DM at 56.7 °C, 74.4% (v/v), 36.9 min, and 7.18 mL/g, respectively. Verification experiment results under these optimized conditions showed that the TFC values for red and brown rice bran were 962.38 and 788.21 mg QE/100 g DM, respectively. No significant differences were observed between the predicted and experimental TFC values, indicating that the developed models are accurate. Analysis of the extracts showed that apigenin and p-coumaric acid are abundant in red and brown rice bran. Further, red rice bran with its higher flavonoid content exhibited higher nitric oxide and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (EC50 values of 41.3 and 33.6 μg/mL, respectively) than brown rice bran. In this study, an extraction process for flavonoid compounds from red and brown rice bran was successfully optimized. The accuracy of the developed models indicated that the approach is applicable to larger-scale extraction processes.
Collapse
Affiliation(s)
- Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Ali Baghdadi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Hawa Z E Jaafar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Puteri Edaroyati Megat Wahab
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
21
|
Descalzo AM, Rizzo SA, Servent A, Rossetti L, Lebrun M, Pérez CD, Boulanger R, Mestres C, Pallet D, Dhuique-Mayer C. Oxidative status of a yogurt-like fermented maize product containing phytosterols. Journal of Food Science and Technology 2018; 55:1859-1869. [PMID: 29666539 DOI: 10.1007/s13197-018-3102-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
Abstract
This work describes the formulation of a functional yogurt-like product based on fermented maize with added phytosterols and its oxidative stability during cold storage. The technological challenge was to stabilize 3.5% esterified phytosterols (between 2 and 3 g of free sterols) in a low-fat emulsion and to preserve the obtained product throughout processing and storage. The natural bioactive compounds: lutein, zeaxanthin, β-cryptoxanthin, β-carotene and γ-tocopherol were detected in the yogurt, and remained stable during 12 days of refrigeration. Higher content of C18:1 n-9 and C18:3 n-3 (six and ninefold, respectively) were obtained in samples with phytosterols. This was desirable from a nutritional point of view, but at the same time it induced lipid oxidation that was 1.4-fold higher in the product with phytosterols than in the controls. The use of a multivariate approach served to find descriptors which were related to treatments, and to explain their behavior over time.
Collapse
Affiliation(s)
- Adriana María Descalzo
- Instituto Nacional de Tecnología Agropecuaria INTA-LABINTEX, UMR Qualisud, 34398 Montpellier, France.,5Universidad de Morón, Cabildo 134, (B1708JPD), Morón, Buenos Aires, Argentina
| | - Sergio Aníbal Rizzo
- 4Centro de Investigación de Agroindustria, InstitutoTecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), CC77 (B1708WAB), Morón, Buenos Aires, Argentina.,5Universidad de Morón, Cabildo 134, (B1708JPD), Morón, Buenos Aires, Argentina
| | - Adrien Servent
- CIRAD, UMR Qualisud, 34398 Montpellier, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Luciana Rossetti
- 4Centro de Investigación de Agroindustria, InstitutoTecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), CC77 (B1708WAB), Morón, Buenos Aires, Argentina
| | - Marc Lebrun
- CIRAD, UMR Qualisud, 34398 Montpellier, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Carolina Daiana Pérez
- 4Centro de Investigación de Agroindustria, InstitutoTecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), CC77 (B1708WAB), Morón, Buenos Aires, Argentina.,6Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, G. Cruz 2290-CABA, Buenos Aires, Argentina
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, 34398 Montpellier, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Christian Mestres
- CIRAD, UMR Qualisud, 34398 Montpellier, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Dominique Pallet
- CIRAD, UMR Qualisud, 34398 Montpellier, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Claudie Dhuique-Mayer
- CIRAD, UMR Qualisud, 34398 Montpellier, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| |
Collapse
|
22
|
Lin Y, Knol D, Menéndez-Carreño M, Baris R, Janssen HG, Trautwein EA. Oxidation of sitosterol and campesterol in foods upon cooking with liquid margarines without and with added plant sterol esters. Food Chem 2018; 241:387-396. [DOI: 10.1016/j.foodchem.2017.08.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023]
|
23
|
Anti-polymerization activity of tea and fruits extracts during rapeseed oil heating. Food Chem 2018; 239:858-864. [DOI: 10.1016/j.foodchem.2017.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
|
24
|
Kmiecik D, Kobus-Cisowska J, Korczak J. The content of anti-nutritional components in frozen fried-potato products. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Hu Y, Huang W, Li M, Wang M, Zhao Y, Xu T, Zhang L, Lu B, He Y. Metal ions accelerated phytosterol thermal degradation on Ring A & Ring B of steroid nucleus in oils. Food Res Int 2017; 100:219-226. [PMID: 28888444 DOI: 10.1016/j.foodres.2017.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of metal ions on the degradation of phytosterols in oils. The oil was heated at 180°C for 1h with/without addition of Fe3+, Fe2+, Cu2+, Mn2+, Zn2+, Na+, Al3+ and Mg2+. Variations of β-sitosterol, stigmasterol, campesterol, brassicasterol and their degradation products were confirmed by the GC-MS analysis. In general, the increase of the metal ion concentration resulted in more phytosterol degradation, and the ability of metal ions following decreasing order: Fe3+>Fe2+>Mn2+≥Cu2+≥Zn2+>Na+≥Mg2+>Al3+. Metal ions significantly induced phytosterol autoxidation on C5, C6 and C7 on Ring B of steroid nucleus at even a low concentration, and induced dehydration on the C3 hydroxyl to form dienes and trienes at high concentration. The metal ions in oils are accounted for increasing phytosterol degradation, which decreases food nutritional quality and gives rise to the formation of undesirable compounds.
Collapse
Affiliation(s)
- Yinzhou Hu
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Maiquan Li
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Yajing Zhao
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Liuquan Zhang
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China.
| | - Yan He
- Institute of Food Science and Technology CAAS, Beijing 100081, China
| |
Collapse
|
26
|
Barriuso B, Ansorena D, Astiasarán I. Oxysterols formation: A review of a multifactorial process. J Steroid Biochem Mol Biol 2017; 169:39-45. [PMID: 26921766 DOI: 10.1016/j.jsbmb.2016.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
Abstract
Dietary sterols are nutritionally interesting compounds which can suffer oxidation reactions. In the case of plant sterols, they are being widely used for food enrichment due to their hypocholesterolemic properties. Besides, cholesterol and plant sterols oxidation products are associated with the development of cardiovascular and neurodegenerative diseases, among others. Therefore, the evaluation of the particular factors affecting sterol degradation and oxysterols formation in foods is of major importance. The present work summarizes the main results obtained in experiments which aimed to study four aspects in this context: the effect of the heating treatment, the unsaturation degree of the surrounding lipids, the presence of antioxidants on sterols degradation, and at last, oxides formation. The use of model systems allowed the isolation of some of these effects resulting in more accurate data. Thus, these results could be applied in real conditions.
Collapse
Affiliation(s)
- Blanca Barriuso
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
27
|
Chen MH, Huang TC. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction. Molecules 2016; 21:molecules21121735. [PMID: 27999320 PMCID: PMC6274330 DOI: 10.3390/molecules21121735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco), Tankan (C. tankan Hayata), and Murcott (C. reticulate × C. sinensis) face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g), limonoids (111.7~406.2 mg/g), and phytosterols (686.1~1316.4 μg/g). The DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.
Collapse
Affiliation(s)
- Min-Hung Chen
- Department of Food Science, National Pingtung University of Science & Technology, Pingtung 90090, Taiwan.
| | - Tzou-Chi Huang
- Department of Food Science, National Pingtung University of Science & Technology, Pingtung 90090, Taiwan.
| |
Collapse
|
28
|
Lu B, Hu Y, Huang W, Wang M, Jiang Y, Lou T. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions. Sci Rep 2016; 6:27240. [PMID: 27328709 PMCID: PMC4916447 DOI: 10.1038/srep27240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu(2+), Fe(2+), Mn(2+), Zn(2+), Na(+), and Mg(2+)) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe(2+) and Cu(2+) were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe(2+) > Cu(2+) > Mn(2+) > Zn(2+) > Mg(2+) ≈ Na(+). 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe(2+) and Cu(2+), as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs.
Collapse
Affiliation(s)
- Baiyi Lu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yinzhou Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Lou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Siriamornpun S, Tangkhawanit E, Kaewseejan N. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder. Food Chem 2016; 201:160-7. [DOI: 10.1016/j.foodchem.2016.01.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
|
30
|
Gramza-Michałowska A, Kobus-Cisowska J, Kmiecik D, Korczak J, Helak B, Dziedzic K, Górecka D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem 2016; 211:448-54. [PMID: 27283654 DOI: 10.1016/j.foodchem.2016.05.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
This paper presents a study on development of functional food products containing green and yellow tea leaves. The results indicated that green and yellow tea are significant tools in the creation of the nutritional value, antioxidative potential and stability of the lipid fraction of cookies. Tea-fortified cookies showed considerably higher contents of dietary fiber, especially hemicellulose and insoluble fractions, and were characterized by significantly higher antioxidant potential associated with their phenolics content. Results of ABTS, DPPH, ORACFL and PCL assay showed significantly higher antioxidant potential of tea cookies, highest for yellow tea. The antioxidative potential of applied teas was significant in terms of the inhibition of hydroperoxide content, while formation of secondary lipid oxidation products was less spectacular. It is concluded that tea leaves could be widely used as a source of polyphenols with high antioxidative potential, as well as fiber; thus introducing numerous health benefits for the consumer.
Collapse
Affiliation(s)
- Anna Gramza-Michałowska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Joanna Kobus-Cisowska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Dominik Kmiecik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Józef Korczak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Barbara Helak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Krzysztof Dziedzic
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Danuta Górecka
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
31
|
Barriuso B, Astiasarán I, Ansorena D. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment. Food Chem 2016; 196:451-8. [DOI: 10.1016/j.foodchem.2015.09.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023]
|
32
|
Nieminen V, Laakso P, Kuusisto P, Niemelä J, Laitinen K. Plant stanol content remains stable during storage of cholesterol-lowering functional foods. Food Chem 2016; 196:1325-30. [DOI: 10.1016/j.foodchem.2015.10.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022]
|
33
|
HERCHI W, AMMAR KBEN, BOUALI I, ABDALLAH IBOU, GUETET A, BOUKHCHINA S. Heating effects on physicochemical characteristics and antioxidant activity of flaxseed hull oil (Linum usitatissimum L). FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wahid HERCHI
- Taibah University, Saudi Arabia; Faculté des Sciences de Tunis, Tunisia
| | | | | | | | - Arbi GUETET
- National Institute of Applied Sciences and Technology, Tunisia
| | | |
Collapse
|
34
|
Leal-Castañeda EJ, Inchingolo R, Cardenia V, Hernandez-Becerra JA, Romani S, Rodriguez-Estrada MT, Galindo HSG. Effect of Microwave Heating on Phytosterol Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5539-5547. [PMID: 25973984 DOI: 10.1021/acs.jafc.5b00961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The oxidative stability of phytosterols during microwave heating was evaluated. Two different model systems (a solid film made with a phytosterol mixture (PSF) and a liquid mixture of phytosterols and triolein (1:100, PS + TAG (triacylglycerol))) were heated for 1.5, 3, 6, 12, 20, and 30 min at 1000 W. PS degraded faster when they were microwaved alone than in the presence of TAG, following a first-order kinetic model. Up to 6 min, no phytosterol oxidation products (POPs) were generated in both systems. At 12 min of heating, the POP content reached a higher level in PSF (90.96 μg/mg of phytosterols) than in PS + TAG (22.66 μg/mg of phytosterols), but after 30 min of treatment, the opposite trend was observed. 7-Keto derivates were the most abundant POPs in both systems. The extent of phytosterol degradation depends on both the heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking.
Collapse
Affiliation(s)
- Everth Jimena Leal-Castañeda
- †Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Colonia Formando Hogar, Veracruz 91897, México
| | - Raffaella Inchingolo
- ‡Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | | | - Josafat Alberto Hernandez-Becerra
- ⊥División de Tecnología de Alimentos, Universidad Tecnológica de Tabasco, Kilómetro 14.6 Carretera Villahermosa-Teapa, Villahermosa, Tabasco 86280, México
| | | | - María Teresa Rodriguez-Estrada
- ‡Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Hugo Sergio García Galindo
- †Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Colonia Formando Hogar, Veracruz 91897, México
| |
Collapse
|