1
|
Gerónimo-Alonso M, Ortíz-Vázquez E, Rodríguez-Canto W, Chel-Guerrero L, Betancur-Ancona D. Antithrombotic and anticariogenic activity of peptide fractions from cowpea (Vigna unguiculata) protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:209-217. [PMID: 39139024 DOI: 10.1002/jsfa.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Protein-derived peptide fractions can play a key role in the physiological and metabolic regulation and modulation of the body, which suggests that they could be used as functional ingredients to improve health and to reduce the risk of disease. This work aimed to evaluate the in vitro antithrombotic and anticariogenic bioactivity of hydrolysates and protein fractions obtained from cowpea (Vigna unguiculata) by biocatalysis. RESULTS Cowpea protein concentrate was hydrolyzed by sequential action with two enzyme systems, Pepsin-Pancreatin or Alcalase-Flavourzyme. There was extensive enzymatic hydrolysis, with degrees of hydrolysis of 34.94% and 81.43% for Pepsin-Pancreatin and Alcalase-Flavourzyme, respectively. The degree of hydrolysis for the control treatments, without the addition of the enzymes Pepsin-Pancreatin and Alcalase-Flavourzyme was 1.1% and 1.2%, respectively. The hydrolysates were subjected to fractionation by ultrafiltration, with five cut-off points according to molecular weight (<1, 1-3, 3-5, 5-10 and >10 kDa). The Alcalase-Flavourzyme hydrolysate led to 100% inhibition of platelet aggregation, while the Pepsin-Pancreatin hydrolysate showed 77.41% inhibition, but this was approximately 100% in the ultrafiltered fractions. The highest anticariogenic activity was obtained with the Pepsin-Pancreatin system, with 61.55% and 56.07% for calcium and phosphorus demineralization, respectively. CONCLUSION Hydrolysates and their peptide fractions from Vigna unguiculata exhibited inhibition of platelet aggregation and protection of tooth enamel and have the potential for use in the development of functional products with beneficial health effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Wilbert Rodríguez-Canto
- Tecnológico Nacional de México/Instituto Tecnológico de Mérida, Mérida, Mexico
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico
| | | |
Collapse
|
2
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
3
|
Raoof GFA, El-Anssary AA, Ali Abuaish MA, El-Masry HM. Assessment of Vicia faba L. Peels: Phytochemical Characterization and Evaluation of Cytotoxic and Antimicrobial Potentials. Chem Biodivers 2024:e202402123. [PMID: 39355945 DOI: 10.1002/cbdv.202402123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024]
Abstract
The current study intends to reach the optimal use of plant wastes and explore their biological activities. It evaluated the bioactivities and phytoconstituents of 70 %methanol extract of Vicia faba L. peels. The results revealed that the extract possessed very potent cytotoxicity against ovarian cancer cell line (SKOV-3) (IC50=0.01 μg/mL) which exceeds doxorubicin (IC50=0.95 μg/ml), a reference anticancer agent, potent cytotoxicity against prostate cancer cell line (PC-3) (IC50=13.60 μg/ml), and moderate cytotoxicity against liver cancer cell line (HepG2) (IC50=40.9 μg/ml). Furthermore, the extract exhibited a potent antimicrobial effect on the tested gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis& Micrococcus luteus) with inhibition zone (IZ) range (14.0-23.0 mm), gram-negative bacteria (Pseudomonas aeruginosa) (IZ=14.0 mm), and pathogenic fungal yeast (Candida albicans) (IZ=19.0 mm). Moreover, 46 phytoconstituents were tentatively identified using ultra-high-performance liquid chromatography (UHPLC) hyphenated with quadrupole-time-of-flight tandem mass spectrometry (QTOF-MS) in positive ionization mode, 21 phytoconstituents were detected in Vicia faba peel for the first time. High-performance liquid chromatography (HPLC) was used to quantify phenolic compounds, the major compounds were chlorogenic acid, ferulic acid, catechin, and vanillin. In conclusion, plant wastes are a rich source of phytoconstituents that exhibit biological efficacy.
Collapse
Affiliation(s)
- Gehan F Abdel Raoof
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Amira A El-Anssary
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Moaaz A Ali Abuaish
- College of Biotechnology, Misr University for Science and Technology (MUST), Cairo, Egypt
| | - Hossam M El-Masry
- Chemistry of Natural and Microbial Products Department, National Research Centre, P.O.12622, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Feng Z, Morton JD, Maes E, Kumar L, Serventi L. Exploring faba beans ( Vicia faba L.): bioactive compounds, cardiovascular health, and processing insights. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39097752 DOI: 10.1080/10408398.2024.2387330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Faba beans (Vicia faba L.), integral to the legume family, are a significant component of the global pulse market because of their nutritional richness and positive health implications. While existing reviews have extensively covered the nutritional composition and anti-nutritional factors of faba beans, and their utilization in food product development, the insights into the optimization of processing methods and upcycling the wastewater during faba bean processing remain insufficient. Therefore, this review focuses on consolidating information about their bioactive compounds, elucidating associated health benefits and unveiling the possible application of processing water derived from faba beans. Key issues discussed include the impact of bioactive compounds in faba beans on cardiovascular health and carcinogenic condition, the challenges in processing that affect bioactive content, and the potential nutritional and functional applications of processing water in food production.
Collapse
Affiliation(s)
- Ziqian Feng
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - James D Morton
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Evelyne Maes
- Proteins & Metabolites Team, AgResearch Limited, Lincoln, New Zealand
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Luca Serventi
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| |
Collapse
|
5
|
Xiong X, Wang W, Bi S, Liu Y. Application of legumes in plant-based milk alternatives: a review of limitations and solutions. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38881295 DOI: 10.1080/10408398.2024.2365353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In recent years, a global shift has been observed toward reducing the consumption of animal-derived foods in favor of healthier and more sustainable dietary choices. This has led to a steady growth in the market for plant-based milk alternatives (PBMAs). Projections suggest that this market will reach a value of USD 69.8 billion by 2030. Legumes, being traditional and nutritious ingredients for PMBAs, are rich in proteins, dietary fibers, and other nutrients, with potential health benefits such as anticancer and cardiovascular disease prevention. In this review, the application of 12 legumes in plant-based milk alternatives was thoroughly discussed for the first time. However, compared to milk, processing of legume-based beverages can lead to deficiencies such as nutritional imbalance, off-flavor, and emulsion stratification. Considering the potential and challenges associated with legume-based beverages, this review aims to provide a scientific comparison between legume-based beverages and cow's milk in terms of nutritional quality, organoleptic attributes and stability, and to summarize ways to improve the deficiencies of legume-based beverages in terms of raw materials and processing method improvements. In conclusion, the legume-based beverage industry will be better enhanced and developed by improving the issues.
Collapse
Affiliation(s)
- Xiaoying Xiong
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wendong Wang
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
6
|
Baltazar-García EA, Vargas-Guerrero B, Lima A, Boavida Ferreira R, Mendoza-Magaña ML, Ramírez-Herrera MA, Baltazar-Díaz TA, Domínguez-Rosales JA, Salazar-Montes AM, Gurrola-Díaz CM. Deflamin Attenuated Lung Tissue Damage in an Ozone-Induced COPD Murine Model by Regulating MMP-9 Catalytic Activity. Int J Mol Sci 2024; 25:5063. [PMID: 38791100 PMCID: PMC11121448 DOI: 10.3390/ijms25105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is comprised of histopathological alterations such as pulmonary emphysema and peribronchial fibrosis. Matrix metalloproteinase 9 (MMP-9) is one of the key enzymes involved in both types of tissue remodeling during the development of lung damage. In recent studies, it was demonstrated that deflamin, a protein component extracted from Lupinus albus, markedly inhibits the catalytic activity of MMP-9 in experimental models of colon adenocarcinoma and ulcerative colitis. Therefore, in the present study, we investigated for the first time the biological effect of deflamin in a murine COPD model induced by chronic exposure to ozone. Ozone exposure was carried out in C57BL/6 mice twice a week for six weeks for 3 h each time, and the treated group was orally administered deflamin (20 mg/kg body weight) after each ozone exposure. The histological results showed that deflamin attenuated pulmonary emphysema and peribronchial fibrosis, as evidenced by H&E and Masson's trichrome staining. Furthermore, deflamin administration significantly decreased MMP-9 activity, as assessed by fluorogenic substrate assay and gelatin zymography. Interestingly, bioinformatic analysis reveals a plausible interaction between deflamin and MMP-9. Collectively, our findings demonstrate the therapeutic potential of deflamin in a COPD murine model, and suggest that the attenuation of the development of lung tissue damage occurs by deflamin-regulated MMP-9 catalytic activity.
Collapse
Affiliation(s)
- Elia Ana Baltazar-García
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Ana Lima
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 376, 1749-024 Lisbon, Portugal;
| | - Ricardo Boavida Ferreira
- LEAF—Landscape Environment Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - María Luisa Mendoza-Magaña
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (M.L.M.-M.); (M.A.R.-H.)
| | - Mario Alberto Ramírez-Herrera
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (M.L.M.-M.); (M.A.R.-H.)
| | - Tonatiuh Abimael Baltazar-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - José Alfredo Domínguez-Rosales
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| |
Collapse
|
7
|
Salvador-Reyes R, Furlan LC, Martínez-Villaluenga C, Dala-Paula BM, Clerici MTPS. From ancient crop to modern superfood: Exploring the history, diversity, characteristics, technological applications, and culinary uses of Peruvian fava beans. Food Res Int 2023; 173:113394. [PMID: 37803732 DOI: 10.1016/j.foodres.2023.113394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 10/08/2023]
Abstract
The search for plant-based superfoods has shown that many regional populations already have these foods in their diet, with significant potential for production and marketing. This critical review intends to show the history, diversity, characteristics, and uses, emphasizing their significance in traditional diets and potential in the food industry of Peruvian fava beans. As a valuable plant-based protein source, fava beans offer essential micronutrients and have diverse culinary applications. Innovative food industry applications include plant-based meat alternatives, fortified gluten-free products, and a natural color, protein, and fiber source in extruded foods. Key studies have highlighted the successful incorporation of fava beans into various food products, improving their nutritional properties, though some studies also point to limitations in their sensory acceptance. Further research is needed to understand the bioactive components, health effects, and techno-functional characteristics of beans. Challenges facing cultivating and consuming fava beans in Peru include adapting to climate change, enhancing productivity and quality, and promoting consumption and added value. Addressing these challenges involves developing climate-resilient varieties, optimizing agricultural practices, and providing access to resources and financing. In conclusion, this review highlights the promising prospects of Peruvian fava beans as a sustainable, nutritionally rich, and versatile ingredient in the food industry. By harnessing their potential and overcoming challenges, Peruvian fava beans can transition from an ancient crop to a modern superfood, inspiring a global shift towards sustainable and nutritionally balanced diets, aiding the fight against malnutrition, and enriching culinary traditions worldwide.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil; Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | | | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Department of Technological Processes and Biotechnology, Jose Antonio Novais, 6, 28040 Madrid, Spain
| | - Bruno Martins Dala-Paula
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil
| | | |
Collapse
|
8
|
Liu Y, Bian Y, Bai Y, Yu S, Tian Y, Li J, Li S, Li T. Potato protease inhibitors, a functional food material with antioxidant and anticancer potential. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Perioperative Fast-Track Surgery Nursing Intervention for Patients with Kidney Stone Disease under Computed Tomography Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:1101388. [PMID: 36793497 PMCID: PMC9925241 DOI: 10.1155/2023/1101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 02/10/2023]
Abstract
This research aims to analyze the clinical intervention effect of perioperative fast-track surgery (FTS) nursing on patients with kidney stone disease (KSD) under computed tomography (CT) imaging. One-hundred KSD patients were selected as research objects and grouped after CT examination. These objects were randomly divided into a research group (FTS nursing intervention, n = 50) and a control group (general routine nursing intervention, n = 50). The preoperative psychological status of patients was compared between the two groups, using Self-rating Anxiety Scale and Self-rating Depression Scale. The hunger and thirst situations were compared using Numerical Rating Scale; postoperative recovery time, incidence of complications, and nursing satisfaction were also compared. The high-density shadow could be clearly observed in the right kidney of the patients in the CT imaging examination. The nursing outcomes suggested that there was no notable difference in hunger between the two groups, and anxiety, depression, and thirst in the research group were highly better than those in the control group (P < 0.01). The time of the first exhaust, the time of body temperature returning to normal, the time of getting out of bed, and the length of hospital stay in the research group were all shorter than those in the control group (P < 0.05). The total postoperative satisfaction of the research group (98.00%) was greatly better than the 88.00% in the control group (P < 0.05). As the FTS concept was applied in the perioperative nursing of KSD patients under CT imaging, the preoperative and postoperative negative emotions of patients could be improved. Thereby, the postoperative recovery rate of patients was promoted, postoperative complications and patients' pain were reduced, and the postoperative quality of life of patients was also improved.
Collapse
|
10
|
Therapeutic Potential of Deflamin against Colorectal Cancer Development and Progression. Cancers (Basel) 2022; 14:cancers14246182. [PMID: 36551666 PMCID: PMC9776913 DOI: 10.3390/cancers14246182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.
Collapse
|
11
|
Kaur K, Pandiselvam R, Kothakota A, Padma Ishwarya S, Zalpouri R, Mahanti NK. Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Singh N, Jain P, Ujinwal M, Langyan S. Escalate protein plates from legumes for sustainable human nutrition. Front Nutr 2022; 9:977986. [PMID: 36407518 PMCID: PMC9672682 DOI: 10.3389/fnut.2022.977986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein is one of the most important, foremost, and versatile nutrients in food. The quantity and quality of protein are determinants of its nutritional values. Therefore, adequate consumption of high-quality protein is essential for optimal growth, development, and health of humans. Based on short-term nitrogen balance studies, the Recommended Dietary Allowance of protein for the healthy adult with minimal physical activity is 0.8 g protein/kg body weight (BW) per day. Proteins are present in good quantities in not only animals but also in plants, especially in legumes. With the growing demand for protein, interest in plant proteins is also rising due to their comparative low cost as well as the increase in consumers' demand originating from health and environmental concerns. Legumes are nutrient-dense foods, comprising components identified as "antinutritional factors" that can reduce the bioavailability of macro and micronutrients. Other than nutritive value, the physiochemical and behavioral properties of proteins during processing plays a significant role in determining the end quality of food. The term "complete protein" refers to when all nine essential amino acids are present in the correct proportion in our bodies. To have a balanced diet, the right percentage of protein is required for our body. The consumption of these high protein-containing foods will lead to protein sustainability and eradicate malnutrition. Here, we shed light on major opportunities to strengthen the contribution of diversity in legume crops products to sustainable diets. This review will boost awareness and knowledge on underutilized proteinous foods into national nutritional security programs.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, New Delhi, India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Megha Ujinwal
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
13
|
Duarte C, Nunes M, Gojard P, Dias C, Ferreira J, Prista C, Noronha P, Sousa I. Use of European pulses to produce functional beverages – From chickpea and lupin as dairy alternatives. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Juárez-Chairez MF, Cid-Gallegos MS, Meza-Márquez OG, Jiménez-Martínez C. Biological functions of peptides from legumes in gastrointestinal health. A review legume peptides with gastrointestinal protection. J Food Biochem 2022; 46:e14308. [PMID: 35770807 DOI: 10.1111/jfbc.14308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Extensively consumed worldwide, legumes such as beans, soybeans, chickpeas, and peas represent a great source of protein. Legume-derived proteins provide bioactive peptides, small sequences of amino acids produced by enzymatic hydrolysis, gastrointestinal digestion, fermentation, or germination. Recent studies showed diverse biological effects of these peptides as antioxidants, antihypertensives, anti-inflammatory, antimicrobial, antithrombotic, antidiabetic, hypocholesterolemic, and even immunomodulators. These beneficial effects aid in preventing and treating chronic illnesses, particularly inflammatory disorders, obesity, and cardiovascular diseases. Thus, this work discusses these biological functions in gastrointestinal digestion health of bioactive peptides obtained from common beans, soybeans, chickpeas, peas, and other legumes. PRACTICAL APPLICATIONS: Knowledge of the nutraceutical properties of legumes can encourage the use of these seeds as ingredients in the development and design of functional foods.
Collapse
Affiliation(s)
- Milagros Faridy Juárez-Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Ofelia Gabriela Meza-Márquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| |
Collapse
|
15
|
Ohanenye IC, Ekezie FGC, Sarteshnizi RA, Boachie RT, Emenike CU, Sun X, Nwachukwu ID, Udenigwe CC. Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies. Foods 2022; 11:foods11152299. [PMID: 35954065 PMCID: PMC9368013 DOI: 10.3390/foods11152299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The increased consumption of legume seeds as a strategy for enhancing food security, reducing malnutrition, and improving health outcomes on a global scale remains an ongoing subject of profound research interest. Legume seed proteins are rich in their dietary protein contents. However, coexisting with these proteins in the seed matrix are other components that inhibit protein digestibility. Thus, improving access to legume proteins often depends on the neutralisation of these inhibitors, which are collectively described as antinutrients or antinutritional factors. The determination of protein quality, which typically involves evaluating protein digestibility and essential amino acid content, is assessed using various methods, such as in vitro simulated gastrointestinal digestibility, protein digestibility-corrected amino acid score (IV-PDCAAS), and digestible indispensable amino acid score (DIAAS). Since most edible legumes are mainly available in their processed forms, an interrogation of these processing methods, which could be traditional (e.g., cooking, milling, extrusion, germination, and fermentation) or based on emerging technologies (e.g., high-pressure processing (HPP), ultrasound, irradiation, pulsed electric field (PEF), and microwave), is not only critical but also necessary given the capacity of processing methods to influence protein digestibility. Therefore, this timely and important review discusses how each of these processing methods affects legume seed digestibility, examines the potential for improvements, highlights the challenges posed by antinutritional factors, and suggests areas of focus for future research.
Collapse
Affiliation(s)
- Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Flora-Glad C. Ekezie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Roghayeh A. Sarteshnizi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran P.O. Box 14115-336, Iran
| | - Ruth T. Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Chijioke U. Emenike
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Natural and Applied Sciences, Faculty of Science, Hezekiah University, Umudi, Nkwerre 471115, Nigeria
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ifeanyi D. Nwachukwu
- Center for Nutrition and Healthy Lifestyles, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: (I.D.N.); (C.C.U.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: (I.D.N.); (C.C.U.)
| |
Collapse
|
16
|
Duarte CM, Mota J, Assunção R, Martins C, Ribeiro AC, Lima A, Raymundo A, Nunes MC, Ferreira RB, Sousa I. New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Front Nutr 2022; 9:852907. [PMID: 35911116 PMCID: PMC9333060 DOI: 10.3389/fnut.2022.852907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a strong demand for plant-based milk substitutes, often low in protein content (<1.5% w/v). Protein-rich pulse seeds and the right processing technologies make it possible to make relevant choices. The major objective of this study was to assess the impact of processing on the nutritional characteristics of beverages with a high impact on health, in particular on digestibility and specific bioactivities. The results suggest that pulse beverages are as high in protein content (3.24% w/v for chickpea and 4.05% w/v for lupin) as cow’s milk. The anti-nutrient level characteristics of pulses have been considerably reduced by strategic processing. However, when present in small quantities, some of these anti-nutritional factors may have health benefits. Controlling processing conditions play a crucial role in this fine balance as a tool to take advantage of their health benefits. There is evidence of protein hydrolysis by in vitro digestion and limited bioaccessibility of minerals. In addition to being highly digestible, lupin and chickpea beverages have anti-inflammatory and anti-carcinogenic potential evaluated through the inhibition of metalloproteinase MMP-9.
Collapse
Affiliation(s)
- Carla Margarida Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Joana Mota
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, Costa da Caparica, Portugal
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Carla Martins
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Cristina Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Faculdade de Farmácia de Lisboa, University of Lisbon, Lisbon, Portugal
| | - Ana Lima
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Maria Cristiana Nunes
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Isabel Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- *Correspondence: Isabel Sousa,
| |
Collapse
|
17
|
Mota J, Casimiro S, Fernandes J, Hartmann RM, Schemitt E, Picada J, Costa L, Marroni N, Raymundo A, Lima A, Ferreira RB. Lupin Protein Concentrate as a Novel Functional Food Additive That Can Reduce Colitis-Induced Inflammation and Oxidative Stress. Nutrients 2022; 14:2102. [PMID: 35631241 PMCID: PMC9143369 DOI: 10.3390/nu14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Food fortification with bioactive compounds may constitute a way to ameliorate inflammatory bowel diseases (IBDs). Lupin seeds contain an oligomer named deflamin that can reduce IBD’s symptoms via MMP-9 inhibition. Here, our goal was to develop a lupin protein concentrate (LPC) enriched in deflamin and to test its application as a food additive to be used as a functional food against colitis. The nutritional profile of the LPC was evaluated, and its efficacy in vivo was tested, either alone or as added to wheat cookies. The LPC presented high protein and carbohydrate contents (20.09 g/100 g and 62.05/100 g, respectively), as well as antioxidant activity (FRAP: 351.19 mg AAE/10 mg and DPPH: 273.9 mg AAE/10 mg). It was also effective against TNBS-induced colitis in a dose dependent-manner, reducing DAI scores by more than 50% and concomitantly inhibiting MMP-9 activity. When added to cookies, the LPC activities were maintained after baking, and a 4-day diet with LPC cookies induced a significant protective effect against acetic acid-induced colitis, overall bringing lesions, oxidative stress and DNA damage levels to values significantly similar to controls (p < 0.001). The results show that the LPC is an efficient way to deliver deflamin in IBD-targeted diets.
Collapse
Affiliation(s)
- Joana Mota
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Sandra Casimiro
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
| | - João Fernandes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Renata M. Hartmann
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Elizângela Schemitt
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Jaqueline Picada
- Genetic Toxicologic Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil;
| | - Luís Costa
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Norma Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Ana Lima
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| |
Collapse
|
18
|
Siddiqui SA, Mahmud MMC, Abdi G, Wanich U, Farooqi MQU, Settapramote N, Khan S, Wani SA. New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. J Food Biochem 2022; 46:e14185. [PMID: 35441405 DOI: 10.1111/jfbc.14185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022]
Abstract
Ongoing research in the food industry is striving to replace wheat flour with new alternatives from sustainable sources to overcome the disease burden in the existing population. Celiac disease, wheat allergy, gluten sensitivity, or non-celiac gluten sensitivity are some common disorders associated with gluten present in wheat. These scientific findings are crucial to finding appropriate alternatives in introducing new ingredients supporting the consumer's requirements. Among the alternatives, amaranth, barley, coconut, chestnut, maize, millet, teff, oat, rye, sorghum, soy, rice flour, and legumes could be considered appropriate due to their chemical composition, bioactive profile, and alternatives utilization in the baking industry. Furthermore, the enrichment of these alternatives with proper ingredients is considered effective. Literature demonstrated that the flours from these alternative sources significantly enhanced the physicochemical, pasting, and rheological properties of the doughs. These flours boost a significant reduction in gluten proteins associated with food intolerance, in comparison with wheat highlighting a visible market opportunity with nutritional and organoleptic benefits for food producers. PRACTICAL APPLICATIONS: New alternatives from sustainable sources to wheat in bakery foods as an approach that affects human health. Alternatives from sustainable sources are important source of nutrients and bioactive compounds. Alternatives from sustainable sources are rising due to nutritional and consumer demand in bakery industry. New alternatives from sustainable sources improve physicochemical, pasting, and rheological properties of dough. Non-wheat-based foods from non-traditional grains have a potential to increase consumer market acceptance.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany.,German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - M M Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Uracha Wanich
- Department of Home Economics, Rambhaibarni Rahjabhat University, Chanthaburi, Thailand
| | | | | | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Sajad Ahmad Wani
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
19
|
Cork SD, Blanchard C, Mawson AJ, Farahnaky A. Pulse flaking: Opportunities and challenges, a review. Compr Rev Food Sci Food Saf 2022; 21:2873-2897. [DOI: 10.1111/1541-4337.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen David Cork
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW Australia
- ARC Industrial Transformation Training Centre for Functional Grains (FGC) and Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Chris Blanchard
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW Australia
- ARC Industrial Transformation Training Centre for Functional Grains (FGC) and Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Andrew John Mawson
- The New Zealand Institute for Plant and Food Research Limited Ruakura Research Centre Hamilton New Zealand
| | - Asgar Farahnaky
- Biosciences and Food Technology School of Science RMIT University Bundoora West Campus Melbourne VIC Australia
| |
Collapse
|
20
|
Wen C, Liu G, Ren J, Deng Q, Xu X, Zhang J. Current Progress in the Extraction, Functional Properties, Interaction with Polyphenols, and Application of Legume Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:992-1002. [PMID: 35067056 DOI: 10.1021/acs.jafc.1c07576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume protein can replace animal-derived protein because of its high protein content, low price, lack of cholesterol, complete amino acids, and requirements of vegetarianism. Legume protein has not only superior functional properties but also high biological activities. Therefore, it is widely used in the food industry. However, there are few studies on the comprehensive overview of legume protein. In this review, the extraction, functional properties, interaction with polyphenols, application of legume protein, and activities of their peptides were comprehensively reviewed. Legume proteins are mainly composed of globulin and albumin. The methods of protein extraction from legumes mainly include wet separation (alkali solution and acid precipitation, salt extraction, enzyme extraction, and ultrasonic-assisted extraction) and dry separation (electrostatic separation). Besides, various factors (heat, pH, and concentration) could significantly affect the functional properties of legume protein. Some potential modification technologies could further improve the functionality and quality of these proteins. Moreover, the application of legume protein and the effects of polyphenols on structural properties of legume-derived protein were concluded. Furthermore, the bioactivities of peptides from legume proteins were discussed. To improve the bioactivity, bioavailability, and commercial availability of legume-derived protein and peptides, future studies need to further explore new preparation methods and potential new activities of legume-derived proteins and active peptides. This review provides a real-time reference for further research on the application of legume protein in the food industry. In addition, this review provides a new reference for the development of legume-derived protein functional foods and potential therapeutic agents.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| |
Collapse
|
21
|
Lupinus albus Protein Components Inhibit MMP-2 and MMP-9 Gelatinolytic Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222413286. [PMID: 34948082 PMCID: PMC8705115 DOI: 10.3390/ijms222413286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are regarded as important clinical targets due to their nodal-point role in inflammatory and oncological diseases. Here, we aimed at isolating and characterizing am MMP-2 and-9 inhibitor (MMPI) from Lupinus albus and at assessing its efficacy in vitro and in vivo. The protein was isolated using chromatographic and 2-D electrophoretic procedures and sequenced by using MALDI-TOF TOF and MS/MS analysis. In vitro MMP-2 and 9 inhibitions were determined on colon adenocarcinoma (HT29) cells, as well as by measuring the expression levels of genes related to these enzymes. Inhibitory activities were also confirmed in vivo using a model of experimental TNBS-induced colitis in mice, with oral administrations of 15 mg·kg-1. After chromatographic and electrophoretic isolation, the L. albus MMP-9 inhibitor was found to comprise a large fragment from δ-conglutin and, to a lower extent, small fragments of β-conglutin. In vitro studies showed that the MMPI successfully inhibited MMP-9 activity in a dose-dependent manner in colon cancer cells, with an IC50 of 10 µg·mL-1 without impairing gene expression nor cell growth. In vivo studies showed that the MMPI maintained its bioactivities when administered orally and significantly reduced colitis symptoms, along with a very significant inhibition of MMP-2 and -9 activities. Overall, results reveal a novel type of MMPI in lupine that is edible, proteinaceous in nature and soluble in water, and effective in vivo, suggesting a high potential application as a nutraceutical or a functional food in pathologies related to abnormally high MMP-9 activity in the digestive system.
Collapse
|
22
|
Serala K, Steenkamp P, Mampuru L, Prince S, Poopedi K, Mbazima V. In vitro antimetastatic activity of Momordica balsamina crude acetone extract in HT-29 human colon cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:2196-2205. [PMID: 34272816 DOI: 10.1002/tox.23333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant-derived compounds and/or extracts have proven to be beneficial for the treatment of a broad spectrum of cancers with minimal side effects. In this study, we investigated whether a crude acetone extract of Momordica balsamina (MBE) can interfere with the metastatic ability of HT-29 colorectal cancer (CRC) cells. The phytochemical composition of MBE was determined by ultra-performance liquid chromatography and cytotoxic effects by the MTT and acridine orange/ethidium bromide staining assays. The effect of MBE on the formation of reactive oxygen species was assessed using the DCFH2 -DA assay. Wound healing assay, transwell cell invasion assay, cell adhesion assay, and the extracellular matrix-cell adhesion array were used to assess the antimetastatic effects of MBE. The effect of MBE on the expression of TNF-α, NF-κB, TIMP-3, MMP-2, and MMP-9 was assessed by western blot analysis. Our results showed that MBE consists of a mixture of compounds without a known anticancer activity in CRC and exhibits cytotoxicity against HT-29 cells. MBE also suppressed reactive oxygen species formation, cell invasion, cell migration, and cell adhesion. The reduction of cell invasion was associated with the downregulation of TNF-α, NF-κB, MMP2, and MMP9 and upregulation of TIMP-3 proteins. We concluded that MBE inhibits the metastatic ability of HT-29 CRC cells in vitro.
Collapse
Affiliation(s)
- Karabo Serala
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Paul Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, South Africa
| | - Leseilane Mampuru
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Kgomotso Poopedi
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Vusi Mbazima
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
23
|
Santos MI, Lima A, Mota J, Rebelo P, Ferreira RB, Pedroso L, Ferreira MA, Sousa I. Extended Cheese Whey Fermentation Produces a Novel Casein-Derived Antibacterial Polypeptide That Also Inhibits Gelatinases MMP-2 and MMP-9. Int J Mol Sci 2021; 22:ijms222011130. [PMID: 34681790 PMCID: PMC8541382 DOI: 10.3390/ijms222011130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/18/2023] Open
Abstract
Our previous works produced a whey fermentation methodology that yielded antibacterial activity and potential inhibition of matrix metalloproteases (MMP)-2 and -9. Here, we evaluated if these activities were due to fermentation-produced peptides. Prolonged fermentation was carried out in the presence of our specific lactic acid bacteria (LAB) consortium. LAB fermentation yielded a total of 11 polypeptides, which were predominantly produced after 6 days of fermentation. One which was derived from beat casein presented a particularly high antibacterial activity against food pathogenic bacteria and was more effective than standard food disinfectants. This polypeptide was further studied and was also found to be active against several strains of pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), in a dose-dependent manner. It also inhibited MMP-2 and MMP-9 whilst reducing HT29 cancer cell migration in vitro. Overall, this novel whey-derived polypeptide presents dual antibacterial and anti-inflammatory activity, revealing a strong potential to be used in functional foods or as a nutraceutical. Its identification and further characterization can open novel perspectives in the field of preventive/curative diets related to gut microbiota, gut inflammation, and cancer prevention, particularly if used in in vivo studies.
Collapse
Affiliation(s)
- Maria Isabel Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Lima
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal
| | - Joana Mota
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal
| | - Patrícia Rebelo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
| | - Ricardo Boavida Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
| | - Laurentina Pedroso
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal
| | - Maria Adélia Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
| | - Isabel Sousa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.L.); (J.M.); (P.R.); (R.B.F.); (L.P.); (M.A.F.); (I.S.)
| |
Collapse
|
24
|
Tissue culture-based genetic improvement of fava bean (Vicia faba L.): analysis on previous achievements and future perspectives. Appl Microbiol Biotechnol 2021; 105:6531-6546. [PMID: 34427764 DOI: 10.1007/s00253-021-11517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Fava bean is an extremely important legume and serves immense potential to function as an ingredient as pulse proteins in human diet. Bearing the proficiency of yielding magnanimous amount of functional and nutritional ingredients, this bean deserves to replace any other leguminous crop too. The instability of fava bean in its yield makes breeding for crop improvement difficult, and its high susceptibility to a number of abiotic and biotic stresses additionally results in unstable yields. The self-incompatibility leads to the formation of a limited genetic pool and shows a slow progress in breeding. The plant is highly recalcitrant, making it an onerous task to micropropagate or regenerate fava beans under in vitro conditions. Another fly in the ointment is the release of phenolic compounds by the plant. There are several endeavours that have been made to establish in vitro regeneration, protoplast culture, and genetic transformation and to genetically improve this plant. Nonetheless there are a number of promising cutting-edge technologies that are yet to be harnessed in order to ensure its comprehensive and sustainable genetic improvement. The in vitro-based technologies of this legume and its untraveled path in the plant tissue culture-mediated approaches can assist further genetic manipulation of this plant species in a smoother manner and at an exponential rate. Creation of a single review comprising all the updates and genetic advancements in fava bean is an absolute necessity of the hour. Thus, the importance of this review remains at the peak as it covers a vast range of information, starting from the basic description to the utmost modern stages of advancement in the selected crop. Overall interpretation of the review is aimed at encouraging readers to focus on almost all possible dimensions of international research, already executed, and is being executed in fava bean, thereby helping to understand the demand and advantages of the crop, even at the molecular level.Key points• Fava bean, commonly known as "poor man's meat", is a protein-rich legume with multiple nutritional and pharmacological benefits.• Its highly recalcitrant response makes in vitro interventions quite challenging for its genetic improvement.• This review delves into biotechnological interventions for its advancements to date and highlights major hurdles and potential research solutions to ensure comprehensive genetic improvement.
Collapse
|
25
|
Mota J, Lima A, Ferreira RB, Raymundo A. Technological Potential of a Lupin Protein Concentrate as a Nutraceutical Delivery System in Baked Cookies. Foods 2021; 10:1929. [PMID: 34441706 PMCID: PMC8393273 DOI: 10.3390/foods10081929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Previous reports have shown that lupin protein extracts (LE) contain a polypeptide named deflamin with a potent matrix metalloproteinase (MMP)-9 inhibitory activity. The aim of our study was to develop an efficient delivery method for incorporating deflamin into cookies using different alternative flours. A lupin protein concentrate (10 g protein/100 g cookie dough) was added to gluten and gluten-free flours to produce savoury cookies, and its impacts on the physical properties of doughs and cookies, as well on the maintenance of deflamin's anti-MMP-9 activity, were analysed. The results showed that the biochemical compositions of all cookies with LE presented higher protein and ash contents when compared to the control cookies. Rice, buckwheat and oat doughs were firmer than the others, whereas the addition of LE to kamut and buckwheat flours made cookies significantly firmer than the controls. Additionally, strong interactions between LE and several flours were observed, yielding different impacts on the MMP-9 bioactivity. Overall, the only flour that did not interfere with the desired nutraceutical activities was buckwheat, with 60% MMP-9 inhibitory activity and a concomitant reduction of colon cancer migration; hence, buckwheat flour was revealed to be a good vehicle to deliver bioactive deflamin, showing strong potential as a functional food to be used in preventive or curative approaches to gastrointestinal diseases.
Collapse
Affiliation(s)
- Joana Mota
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| | - Ana Lima
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisbon, Portugal
| | - Ricardo B. Ferreira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| | - Anabela Raymundo
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| |
Collapse
|
26
|
Mota J, Figueira ME, Ferreira RB, Lima A. An Up-Scalable and Cost-Effective Methodology for Isolating a Polypeptide Matrix Metalloproteinase-9 Inhibitor from Lupinus albus Seeds. Foods 2021; 10:foods10071663. [PMID: 34359533 PMCID: PMC8306530 DOI: 10.3390/foods10071663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022] Open
Abstract
One of the most challenging problems with food-borne bioactive compounds is that there are commonly no cost-effective, generally recognized as safe (GRAS) methods for obtaining gram quantities of their purified forms. Here we aimed at developing a method to isolate deflamin, an oligomeric protein from lupin seeds with anti-inflammatory and anticancer activity through matrix metalloprotease (MMP)-9 inhibition. Our goal was to develop a GRAS method that could be easily up-scalable whilst maintaining deflamin’s activity. A sequential precipitation methodology was developed, using an aqueous extraction, followed by heat denaturation, acid precipitation and solubilization in ethanol. A final precipitation with 90% ethanol yielded a purified protein which was sequenced through mass spectrometry and tested for its MMP inhibitory activity using the Dye-quenched (DQ) gelatin assay and the standard wound healing assay in HT29 cells. The developed method yielded a purified oligomer, which represented 0.1% (w/w) of total dry seed weight and was positively confirmed to be deflamin. It further showed to effectively reduce MMP-9 gelatinolytic activity as well as colon cancer cell migration, hence corroborating the effectiveness of our method. Overall, this is the first reported method for isolating an MMP-9 inhibitor from legume seeds, which is up-scalable to an industrial level, in a cost-effective manner.
Collapse
Affiliation(s)
- Joana Mota
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (R.B.F.); (A.L.)
- Correspondence:
| | - Maria E. Figueira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Ricardo B. Ferreira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (R.B.F.); (A.L.)
| | - Ana Lima
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; (R.B.F.); (A.L.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
27
|
Carbas B, Machado N, Pathania S, Brites C, Rosa EAS, Barros AIRNA. Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1901292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bruna Carbas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), Vila Real, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Nelson Machado
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), Vila Real, Portugal
- CoLAB Vines&Wines - National Collaborative Laboratory for the Portuguese Wine Sector, Associação Para O Desenvolvimento Da Viticultura Duriense (ADVID), Régia Douro Park, Vila Real, Portugal
| | | | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
- GREEN-IT, ITQB NOVA, Av. Da República, Oeiras, Portugal
| | - Eduardo AS Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), Vila Real, Portugal
| | - Ana IRNA Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), Vila Real, Portugal
| |
Collapse
|
28
|
Landi N, Piccolella S, Ragucci S, Faramarzi S, Clemente A, Papa S, Pacifico S, Di Maro A. Valle Agricola Chickpeas: Nutritional Profile and Metabolomics Traits of a Typical Landrace Legume from Southern Italy. Foods 2021; 10:foods10030583. [PMID: 33802023 PMCID: PMC8002183 DOI: 10.3390/foods10030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Chickpea (Cicer arietinum L.) from Valle Agricola is a legume cultivated in Southern Italy whose intake is strictly linked to rural traditions. In order to get new biochemical insight on this landrace and to promote its consumption and marketing, nutritional values (moisture content, total proteins, lipids, total and free amino acids) and metabolic traits are deeply investigated. Valle Agricola chickpea is nutritionally rich in proteins (19.70 g/100 g) and essential amino acids (7.12 g/100 g; ~40% of total). Carbohydrates, whose identity was unraveled by means of UHPLC-HR MS/MS analysis, were almost 60% of chemicals. In particular, a di-galactosylglycerol, a pinitol digalactoside, and a galactosylciceritol were found as constitutive, together with different raffinose-series oligosaccharides. Although lipids were the less constitutive compounds, glycerophospholipids were identified, while among free fatty acids linoleic acid (C18:2) was the most abundant, followed by oleic (C18:1) and palmitic (C16:0) acids. Isoflavones and hydroxybenzoic acid derivatives were also detected. Valle Agricola chickpeas showed very good levels of several mineral nutrients, especially magnesium (164 mg/100 g), potassium (748 mg/100 g), calcium (200 mg/100 g), zinc (4.20 mg/100 g) and manganese (0.45 mg/100 g). The boiling process favorably decreases anti-trypsin and anti-chymotrypsin activities, depleting this precious seed of its intrinsic antinutritional factors.
Collapse
|
29
|
Vishnyakova MA, Kushnareva AV, Shelenga TV, Egorova GP. Alkaloids of narrow-leaved lupine as a factor determining alternative ways of the crop's utilization and breeding. Vavilovskii Zhurnal Genet Selektsii 2021; 24:625-635. [PMID: 33659848 PMCID: PMC7716546 DOI: 10.18699/vj20.656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Narrow-leaved lupine (Lupinus angustifolius L.), a valuable leguminous crop adapted to a wide range of
climatic conditions, has a very short history of domestication. For many centuries it was used mainly as a green
manure, since the success and prospects of the multi-purpose use of the species depend on its breeding improvement,
in particular, on a particular concentration of alkaloids in seeds and green mass. The first varieties of scientific
breeding were created only in the 1930s after the appearance of low-alkaloid mutants. Despite wide prospects
for use in various areas of the national economy, unstable productivity and susceptibility to diseases hinder the
production of this crop. Obviously, breeders deal only with a small part of the gene pool of the species and limited
genetic resources, using mainly low-alkaloid (sweet) genotypes to create new varieties. The genetic potential of
the species can be used more efficiently. At the same time, it is rational to create highly alkaloid (bitter) varieties
for green manure, while food and feed varieties
should not lose their adaptive potential, in particular, resistance to
pathogens, due to the elimination of alkaloids. In this regard, it seems to be a productive idea to create ‘bitter/sweet’
varieties combining a high content of alkaloids in the vegetative organs and low in seeds, which can be achieved
by regulating the synthesis/transport of alkaloids in the plant. The paper discusses the current state of use of the
species as a green manure, fodder, food plant. Information is given on the quantity and qualitative composition of
narrow-leaved lupine alkaloids, their applied value, in particular, fungicidal, antibacterial, insecticidal, the use of
lupine alkaloids as active principles of drugs. Along with promising breeding considerations, the possibility of using
technologies for processing raw high-alkaloid materials with the accompanying extraction of valuable ingredients
for pharmaceuticals is discussed. Information is briefly presented about the genomic resources of the species and
the prospects for their use in marker-assistant selection and genome editing.
Collapse
Affiliation(s)
- M A Vishnyakova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A V Kushnareva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - T V Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - G P Egorova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
30
|
Harish BS, Raja MRC, Mahapatra SK, Uppuluri KB. Production Enhancement of an Anticoagulant Trypsin Inhibitor from Oceanimonas sp. BPMS22 and Its Anti-cancer Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10078-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Ahnen RT, Jonnalagadda SS, Slavin JL. Role of plant protein in nutrition, wellness, and health. Nutr Rev 2021; 77:735-747. [PMID: 31322670 DOI: 10.1093/nutrit/nuz028] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant-based diets, and more specifically plant-based proteins, have been the subject of growing interest from researchers and consumers because of their potential health benefits as well as their positive environmental impact. Of course, plant proteins are found in plant foods, and positive health benefits of plant foods are linked to dietary fiber, vitamins, minerals, and phytochemicals. In epidemiological studies it is not possible to separate out the health benefits of plant foods in general as opposed to plant proteins specifically. Additionally, few vegans, who consume only plant-based proteins, are included in existing prospective cohort studies. Isolated plant proteins (soy, pea) have been used in intervention trials, but often to improve biomarkers linked to disease risk, including serum lipids or blood pressure. This review is an overview of plant proteins, the whole foods they are associated with, and the potential health benefits linked to consumption of protein from plant sources. Plant proteins and their potential for reducing the risk of developing metabolic syndrome, diabetes management, cancer prevention, and weight management are each discussed, as are the various rating systems currently used to determine protein quality from plant sources. Although additional research is needed that focuses specifically on the role that plant protein plays in the prevention and management of these chronic illnesses, rather than the role played by a more general plant-based diet, evidence suggests that plant proteins offer nutritional benefits to those who consume them. Limitations to plant proteins, including lower protein quality, must also be considered in this discussion.
Collapse
Affiliation(s)
- Rylee T Ahnen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
32
|
Lima A, Batista-Santos P, Veríssimo E, Rebelo P, Ferreira RB. Differential inhibition of gelatinase activity in human colon adenocarcinoma cells by Aloe vera and Aloe arborescens extracts. BMC Complement Med Ther 2020; 20:379. [PMID: 33308217 PMCID: PMC7733245 DOI: 10.1186/s12906-020-03134-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Aloe's reported bioactivities (anticancer, anti-inflammatory and wound healing) suggest they might inhibit a subgroup of matrix metalloproteinases (MMPs) called gelatinases (MMP-2 and MMP-9). The goal of the present study was to compare the MMP inhibitory potential of two Aloe species, A. vera and A. arborescens. METHODS Different types of extraction were tested and specific bioactive compounds were quantified. Cancer cell invasion inhibitory activities were measured in vitro using the wound healing assay in human colon cancer cells (HT29). Effects on gelatinase activities were further assessed by dye-quenched gelatin and gelatin zymography. RESULTS Different types of extraction yielded significantly different levels of bioactivities and of bioactive compounds, which might be due to a greater amount of extractable bioactive compounds such as anthraquinones. Both A. arborescens and A. vera have potential as inhibitory agents in cancer cell proliferation via MMP-9 and MMP-2 enzymatic activity inhibition, being able to reduce colon cancer cell proliferation and migration but A. arborescens showed to be a more effective inhibitor of cancer cell migration than A. vera. CONCLUSION This work opens novel perspectives on the mode of action of Aloe species in cancer cell migration and may provide clues as to why there are so many conflicting results on Aloe's activities.
Collapse
Affiliation(s)
- Ana Lima
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Paula Batista-Santos
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Eduarda Veríssimo
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Patrícia Rebelo
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- Plants for Health and Nutrition, LEAF (Linking Landscape, Environment, Agriculture and Food), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
33
|
Cid-Gallegos MS, Sánchez-Chino XM, Juárez Chairez MF, Álvarez González I, Madrigal-Bujaidar E, Jiménez-Martínez C. Anticarcinogenic Activity of Phenolic Compounds from Sprouted Legumes. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1840581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Xariss M. Sánchez-Chino
- Cátedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Villahermosa, Mexico
| | - Milagros Faridy Juárez Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Isela Álvarez González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
34
|
Lopes M, Pierrepont C, Duarte CM, Filipe A, Medronho B, Sousa I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods 2020; 9:foods9101458. [PMID: 33066342 PMCID: PMC7602080 DOI: 10.3390/foods9101458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, milk consumption has been declining and there is a high demand for non-dairy beverages. However, market offers are mainly cereal and nut-based beverages, which are essentially poor in protein (typically, less than 1.5% against the 3.5% in milk) and are not true milk replacers in that sense. In this work, new beverages from different pulses (i.e., pea, chickpea and lupin) were developed using technologies that enable the incorporation of a high level of seed components, with low or no discharge of by-products. Different processing steps were sequentially tested and discussed for the optimization of the sensorial features and stability of the beverage, considering the current commercial non-dairy beverages trends. The lupin beverage protein contents ranged from 1.8% to 2.4% (w/v) and the chickpea beverage varied between 1.0% and 1.5% (w/v). The “milk” yield obtained for the optimized procedure B was 1221 g/100 g of dry seed and 1247 g/100 g of dry seed, for chickpea beverage and lupin beverage, respectively. Sensory results show that chickpea beverage with cooking water has the best taste. All pulses-based beverages are typical non-Newtonian fluids, similarly to current non-dairy alternative beverages. In this respect, the sprouted chickpea beverage, without the cooking water, presents the most pronounced shear-thinning behavior of all formulations.
Collapse
Affiliation(s)
- Mariana Lopes
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.L.); (C.P.); (I.S.)
| | - Chloé Pierrepont
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.L.); (C.P.); (I.S.)
| | - Carla Margarida Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.L.); (C.P.); (I.S.)
- Correspondence:
| | - Alexandra Filipe
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II–R. Silvio Lima, 3030-790 Coimbra, Portugal;
| | - Bruno Medronho
- MED–Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal;
- FSCN, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Isabel Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.L.); (C.P.); (I.S.)
| |
Collapse
|
35
|
Graça C, Mota J, Lima A, Boavida Ferreira R, Raymundo A, Sousa I. Glycemic Response and Bioactive Properties of Gluten-Free Bread with Yoghurt or Curd-Cheese Addition. Foods 2020; 9:E1410. [PMID: 33020440 PMCID: PMC7601360 DOI: 10.3390/foods9101410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
The influence of flour replacement by yogurt or curd-cheese additions (from 10% to 20%, w/w) on the glycemic response and bioactivity improvements of gluten-free bread was evaluated. Starch digestibility, measured by an in vitro digestion model, was applied to determine the effect on starch fractions. The bread glycemic index was calculated. Bread antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and ferric-ion-reducing antioxidant power (FRAP) methods) and total phenolic compounds were assessed. Anti-inflammatory properties according to enzymatic matrix metalloproteinase (MMP)-9 inhibitory activity were also studied. Considering the higher level of both dairy products tested (20%, w/w) and comparing with control bread results, a reduction of around 35% in the glycemic response of curd cheese bread was achieved, resulting in intermediate index level (glycemic index (GI) 55-69), with yogurt bread still showing a high glycemic index (GI > 70). In terms of bread bioactivity, curd cheese bread expressed better reducing power effects, whereas yogurt bread showed more effective radical-scavenging capacity. An increase in bread phenolic compounds by yogurt (55.3%) and curd cheese (73.0%) additions (at 20%) were also registered. MMP-9 inhibition activity was higher in the dairy bread than in control bread, suggesting an improvement in terms of anti-inflammatory properties. The supplementation of the gluten-free bread by yogurt or curd cheese was shown to be a promising strategy to reduce the glycemic response and to improve the bioactive properties of the bread, that which can contribute to preventive diets of celiac patients and irritable bowel syndrome individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food, Research Center of Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (C.G.); (J.M.); (A.L.); (R.B.F.); (A.R.)
| |
Collapse
|
36
|
Mota J, Lima A, B. Ferreira R, Raymundo A. Lupin Seed Protein Extract Can Efficiently Enrich the Physical Properties of Cookies Prepared with Alternative Flours. Foods 2020; 9:E1064. [PMID: 32764433 PMCID: PMC7465908 DOI: 10.3390/foods9081064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Legume proteins can be successfully used in bakery foods, like cookies, to obtain a protein-enriched product. A lupin extract (10 g/100 g) was added to gluten and gluten-free flours from different sources: rice, buckwheat, oat, kamut and spelt. The impact on the physical properties of the dough and cookies was evaluated for the different systems. Rice and buckwheat doughs were 20% firmer and 40% less cohesive than the others. The incorporation of lupin extract had a reduced impact on the shape parameters of the cookies, namely in terms of area and thickness. The texture differed over time and after eight weeks, the oat and buckwheat cookies enriched with lupin extract were significantly firmer than the cookies without lupin. The incorporation of lupin extract induced a certain golden-brown coloring on the cookies, making them more appealing: lightness (L*) values decreased, generally, for the cookies with lupin extract when compared to the controls. The aw and moisture content values were very low for all samples, suggesting a high stability food product. Hence, the addition of lupin extract brought some technological changes in the dough and cookies in all the flours tested but improved the final product quality which aligns with the trends in the food industry.
Collapse
Affiliation(s)
- Joana Mota
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.); (A.R.)
| | | | | | | |
Collapse
|
37
|
Ohanenye IC, Tsopmo A, Ejike CE, Udenigwe CC. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Faridy JCM, Stephanie CGM, Gabriela MMO, Cristian JM. Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:142-153. [PMID: 32239331 DOI: 10.1007/s11130-020-00814-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chickpea is one of the most consumed legumes worldwide. Among their benefits are the high protein concentration that reflects not only at the nutritional level but also on the supply of active peptides; besides, it presents different metabolites with pharmacological activities. Some biological activities identified in the different compounds of chickpea are antioxidant, antihypertensive, hypocholesterolemic, and anticancer. Although most reports are based on the effects of the proteins and their hydrolysates, alcoholic extracts have also been proven that contain phenolic compounds, saponins, phytates, among others; therefore, their consumption has been dubbed as an alternative for the prevention of chronic degenerative diseases. In the present review, we summarize the nutritional composition of the chickpea and describe the main biological activities reported for this legume, revealing some of its beneficial effects on health, of which there is still much to be elucidated.
Collapse
Affiliation(s)
- Juárez-Chairez Milagros Faridy
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Cid-Gallegos María Stephanie
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Meza-Márquez Ofelia Gabriela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Jiménez-Martínez Cristian
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico.
| |
Collapse
|
39
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
40
|
Reduction of inflammation and colon injury by a Pennyroyal phenolic extract in experimental inflammatory bowel disease in mice. Biomed Pharmacother 2019; 118:109351. [PMID: 31545244 DOI: 10.1016/j.biopha.2019.109351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Little is known about the pharmacological effects of the phenolic compounds of Pennyroyal (Mentha pulegium). This Mediterranean aromatic plant, used as a gastronomic spice and as food preservative by the food industry has been studied mainly due to its essential oil antibacterial properties, composed primarily by monoterpenes. With this work, we aimed to evaluate the effects of a phenolic extract of pennyroyal in the impairment of inflammatory processes in Inflammatory Bowel Diseases (IBD) and in the potential inhibition of progression to colorectal cancer (CRC). METHODS To that purpose, we evaluated the effect of pennyroyal extract administration in a model of TNBS-induced colitis in mice and further determined its effect on human colon carcinoma cell proliferation and invasion. RESULTS The phenolic extract of pennyroyal exhibited antioxidant properties in in vitro assays and administration of the extract in a rat model of carrageenan-induced paw oedema led to significant anti-inflammatory effects. Further results evidenced a beneficial effect of the phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells, effects not previously described, to our knowledge. A reduction in several markers of colon inflammation was observed following administration of the extract to colitis-induced mice, including functional and histological indicators. A successful inhibition of cancer cell invasion and proliferation was also observed in in vitro studies with HT-29 cells. Furthermore, the extract also led to a reduced expression of iNOS/COX-2 in the colon of colitis-induced mice, both being crucial mediators of intestinal inflammation. CONCLUSIONS Taking into consideration the central role of inflammation in the pathophysiology of CRC and the recognised connection between inflammatory events and cancer, these results enlighten the relevance of the phenolic constituents of pennyroyal as important pharmacological sources in the investigation of new treatment options for patients with inflammatory bowel diseases.
Collapse
|
41
|
Awosika T, Aluko RE. Enzymatic Pea Protein Hydrolysates Are Active Trypsin and Chymotrypsin Inhibitors. Foods 2019; 8:E200. [PMID: 31185637 PMCID: PMC6616451 DOI: 10.3390/foods8060200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
In this work, we report the potency of enzymatic hydrolysates of pea proteins against trypsin and chymotrypsin. Pea protein concentrate was digested with each of alcalase, chymotrypsin, pepsin, and trypsin, followed by membrane separation of the protein hydrolysates into peptide fractions (<1, 1-3, 3-5, and 5-10 kDa). Peptide size profiling with size-exclusion gel chromatography indicated the narrowest size range (0.85-4.98 kDa) for alcalase. Trypsin activity was strongly (p < 0.05) inhibited by the ultrafiltration fractions (mean IC50 = 2.2 mg/mL) obtained from the trypsin hydrolysate when compared to the unfractionated hydrolysate (IC50 = 6.8 mg/mL). Similarly, ultrafiltration also enhanced trypsin inhibition by the alcalase-digested peptides with an IC50 of 21.4 mg/mL for the unfractionated hydrolysate in comparison to 3.1-4.7 mg/mL for the fractions. However, ultrafiltration did not enhance trypsin inhibitory activity of chymotrypsin-digested peptides, while the peptide separation reduced efficacy of pepsin-digested peptides. In contrast, chymotrypsin inhibition by all the enzymatic digests was significantly (p < 0.05) enhanced by ultrafiltration, especially peptide sizes >3 kDa. Kinetics of enzyme inhibition indicate peptides were bound to the enzyme active site in a competitive mode that led to reduced catalysis. We conclude that the pea peptides could function as useful tools to promote human health and as a preservative during food processing and storage.
Collapse
Affiliation(s)
- Temitola Awosika
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
42
|
Direito R, Rocha J, Lima A, Gonçalves MM, Duarte MP, Mateus V, Sousa C, Fernandes A, Pinto R, Boavida Ferreira R, Sepodes B, Figueira ME. Reduction of Inflammation and Colon Injury by a Spearmint Phenolic Extract in Experimental Bowel Disease in Mice. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E65. [PMID: 31174376 PMCID: PMC6630206 DOI: 10.3390/medicines6020065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Background: Inflammatory Bowel Diseases (IBD) encompasses both Crohn's Disease and Ulcerative Colitis, known to be connected to an enlarged risk for developing colorectal cancer (CRC). Spearmint (Mentha spicata L.) is a Mediterranean plant used as an aromatic agent, and studies have mainly focused on the essential oil suggesting an anti-inflammatory activity. This work aimed to perform a preliminary screening of the in vivo anti-inflammatory effects of a spearmint phenolic extract in an acute inflammation model, in a chronic inflammation model of colitis, and also study the effects in vitro on a colon cancer model. Methods: Spearmint extract was administered to rats of a paw oedema model (induced by carrageenan) and to mice from a TNBS-induced colitis model in parallel with studies using HT-29 CRC cells. Results: Administration of the extract led to reduced paw inflammation, reduction of colon injury and inflammation, with attenuation of histological markers, and reduction of iNOS expression. It repressed the in vitro movement of HT-29 cells in a wound healing assay. Conclusions: These findings suggest that spearmint extract exhibits acute and chronic anti-inflammatory activity and is able to inhibit migration of cancer cells, suggesting a potential role in the supplementary therapy of IBD patients.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - João Rocha
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Ana Lima
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
| | - Maria Margarida Gonçalves
- Unidade de Biotecnologia Ambiental, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Monte da Caparica, Portugal.
| | - Maria Paula Duarte
- Unidade de Biotecnologia Ambiental (UBiA), Grupo de Disciplinas da Ecologia da Hidrosfera, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Vanessa Mateus
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
| | - Catarina Sousa
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Adelaide Fernandes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Rui Pinto
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Joaquim Chaves Saúde, Dr Joaquim Chaves Lab Analises Clínicas, 1495-068 Miraflores-Algés, Portugal.
| | - Ricardo Boavida Ferreira
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
| | - Bruno Sepodes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Maria-Eduardo Figueira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
43
|
Zhang H, Yasmin F, Song BH. Neglected treasures in the wild - legume wild relatives in food security and human health. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:17-26. [PMID: 31085425 PMCID: PMC6817337 DOI: 10.1016/j.pbi.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
The legume family (Fabaceae) is the third-largest flowering family with over 18 000 species worldwide that are rich in proteins, oils, and nutrients. However, the production potential of legume-derived food cannot meet increasing global demand. Wild legumes represent a large group of wild species adaptive to diverse habitats and harbor rich genetic diversity for the improvement of the agronomic, nutritional, and medicinal values of the domesticated legumes. Accumulating evidence suggests that the genetic variation retained in these under-exploited leguminous wild relatives can be used to improve crop yield, nutrient contents, and resistance/tolerance to environmental stresses via the integration of omics, genetics, and genome-editing technologies.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Farida Yasmin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
44
|
Lam SH, Li YC, Kuo PC, Hwang TL, Yang ML, Wang CC, Tzen JTC. Chemical Constituents of Vigna luteola and Their Anti-inflammatory Bioactivity. Molecules 2019; 24:molecules24071371. [PMID: 30965630 PMCID: PMC6479608 DOI: 10.3390/molecules24071371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
Seventy-three compounds were identified from the methanol extract of V. luteola, and among these, three new (1–3) were characterized by spectroscopic and mass spectrometric analyses. The isolated constituents were assessed for anti-inflammatory potential evaluation, and several purified principles exhibited significant superoxide anion and elastase inhibitory effects.
Collapse
Affiliation(s)
- Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Mei-Lin Yang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chien-Chiao Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
45
|
Chang CY, Ho BY, Pan TM. Lactobacillus paracasei subsp. paracasei NTU 101-fermented skim milk as an adjuvant to uracil-tegafur reduces tumor growth and improves chemotherapy side effects in an orthotopic mouse model of colorectal cancer. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
46
|
ÇAKIR Ö, UÇARLI C, TARHAN Ç, PEKMEZ M, TURGUT-KARA N. Nutritional and health benefits of legumes and their distinctive genomic properties. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.42117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyanage R. Cowpea: an overview on its nutritional facts and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4793-4806. [PMID: 29656381 DOI: 10.1002/jsfa.9074] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/16/2018] [Accepted: 04/04/2018] [Indexed: 05/23/2023]
Abstract
Cowpea (Vigna unguiculata) is a legume consumed as a high-quality plant protein source in many parts of the world. High protein and carbohydrate contents with a relatively low fat content and a complementary amino acid pattern to that of cereal grains make cowpea an important nutritional food in the human diet. Cowpea has gained more attention recently from consumers and researchers worldwide as a result of its exerted health beneficial properties, including anti-diabetic, anti-cancer, anti-hyperlipidemic, anti-inflammatory and anti-hypertensive properties. Among the mechanisms that have been proposed in the prevention of chronic diseases, the most proven are attributed to the presence of compounds such as soluble and insoluble dietary fiber, phytochemicals, and proteins and peptides in cowpea. However, studies on the anti-cancer and anti-inflammatory properties of cowpea have produced conflicting results. Some studies support a protective effect of cowpea on the progression of cancer and inflammation, whereas others did not reveal any. Because there are only a few studies addressing health-related effects of cowpea consumption, further studies in this area are suggested. In addition, despite the reported favorable effects of cowpea on diabetes, hyperlipidemia and hypertension, a long-term epidemiological study investigating the association between cowpea consumption and diabetes, cardiovascular disease and cancer is also recommended. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chathuni Jayathilake
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Rizliya Visvanathan
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Afka Deen
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Ruksheela Bangamuwage
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia
- National Institute of Complementary Medicine (NICM), Western Sydney University, Sydney, NSW, Australia
| | - Ruvini Liyanage
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
48
|
Rao S, Chinkwo KA, Santhakumar AB, Blanchard CL. Inhibitory Effects of Pulse Bioactive Compounds on Cancer Development Pathways. Diseases 2018; 6:diseases6030072. [PMID: 30081504 PMCID: PMC6163461 DOI: 10.3390/diseases6030072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies suggest that pulses may have the potential to protect against cancer development by inhibiting pathways that result in the development of cancer. These pathways include those that result in inflammation, DNA damage, cell proliferation, and metastasis. Other studies have demonstrated extracts from pulses have the capacity to induce apoptosis specifically in cancer cells. Compounds reported to be responsible for these activities have included phenolic compounds, proteins and short chain fatty acids. The majority of the studies have been undertaken using in vitro cell culture models, however, there are a small number of in vivo studies that support the hypothesis that pulse consumption may inhibit cancer development. This review highlights the potential benefit of a diet rich in pulse bioactive compounds by exploring the anti-cancer properties of its polyphenols, proteins and short chain fatty acids.
Collapse
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Kenneth A Chinkwo
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Abishek B Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Christopher L Blanchard
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| |
Collapse
|
49
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
50
|
Luna-Vital D, González de Mejía E. Peptides from legumes with antigastrointestinal cancer potential: current evidence for their molecular mechanisms. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|