1
|
Liu G, Zhou J, Wu S, Fang S, Bilal M, Xie C, Wang P, Yin Y, Yang R. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Food Res Int 2024; 186:114335. [PMID: 38729717 DOI: 10.1016/j.foodres.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.
Collapse
Affiliation(s)
- Guannan Liu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Zhou
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sijin Wu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijie Fang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Muhammad Bilal
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Pei Wang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Runqiang Yang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
2
|
Tan S, Zhu Y, Wang Y, Wu S, Xie C, Rui X, Wang P, Yang R. Refrigerated storage stimulates isoflavone and γ-aminobutyric acid accumulation in germinated soybeans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108667. [PMID: 38678946 DOI: 10.1016/j.plaphy.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
This study aims to investigate the quality changes of germinated soybeans during refrigerated storage (4 °C), with an emphasis on the stimulatory effect of refrigeration on their special functional compounds. After germinating for two days, germinated soybeans were stored at 4 °C for seven days, while the germinated soybeans stored at 25 °C served as control group. The results showed that refrigerated storage significantly affected the physiological changes in germinated soybeans. The weight loss rate, browning rate, malondialdehyde (MDA) content and H2O2 content all decreased dramatically during refrigerated storage compared to the control group. The total phenolic and total flavonoid contents of germinated soybeans under refrigeration exhibited a trend of increasing and then decreasing over time. Additionally, during refrigerated storage, the total isoflavone content reached a peak of 8.72 g/kg on the fifth day, in which the content of daidzein and glycitin increased by 45% and 49% respectively, when compared with the control group. Moreover, the content of γ-aminobutyric acid (GABA) peaked on the first day, and kept a high level during storage. In which, the refrigerated group was 2.35-, 2.88-, 1.67-fold respectively after storage for three to seven days. These results indicated that refrigeration stimulated the biosynthesis of isoflavones and GABA in germinated soybeans during storage. More importantly, there was a sequential difference in the timing of the stimulation of the two functional components under refrigeration.
Collapse
Affiliation(s)
- Shengqi Tan
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Ying Zhu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yaqiong Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Sijin Wu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| | - Xin Rui
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| |
Collapse
|
3
|
Zhang Y, Jia R, Hui T, Hu Y, Wang W, Wang Y, Wang Y, Zhu Y, Yang L, Xiang B. Transcriptomic and physiological analysis of the response of Spirodela polyrrhiza to sodium nitroprusside. BMC PLANT BIOLOGY 2024; 24:95. [PMID: 38331719 PMCID: PMC10851477 DOI: 10.1186/s12870-024-04766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. RESULTS To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. CONCLUSIONS Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment.
Collapse
Affiliation(s)
- Yamei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Rong Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Tanyue Hui
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yue Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Wenjing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China.
| |
Collapse
|
4
|
Liu XD, Zeng YY, Zhang XY, Tian XQ, Hasan MM, Yao GQ, Fang XW. Polyamines inhibit abscisic acid-induced stomatal closure by scavenging hydrogen peroxide. PHYSIOLOGIA PLANTARUM 2023; 175:e13903. [PMID: 37002824 DOI: 10.1111/ppl.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan-Yuan Zeng
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xia-Yi Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Shomodder A, Imaizumi T, Nagata M, Kasai E, Shiina T, Tsuta M, Thammawong M, Nakano K. Existence of circadian rhythm and its response behavior under different storage conditions of soybean sprouts. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153906. [PMID: 36621022 DOI: 10.1016/j.jplph.2022.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The circadian system plays an essential role in plant cells, and numerous physiological events are generally modulated by circadian clock genes. To further improve postharvest handling of fresh produce, it is vital to understanding the behavior of clock gene expression and its underlying interactions with changes in quality. In this study, the effect of temperature and controlled atmosphere storage on the expression of clock genes (GmLCL1, GmPRR7, GmGI, GmTOC1, and GmLUX), postharvest quality characteristics and their related genes in soybean sprouts were investigated. By fitting the obtained gene expression level using the qPCR method with the cosine curve equation, it was successfully found that the circadian rhythm existed under constant dark storage conditions of soybean sprouts. A significant rhythm in clock gene expression was observed in control soybean sprouts. In contrast, low temperature storage diminished the cyclic expression of GmLCL1, GmPRR7, and GmTOC1, which also affected GmGI and GmLUX expression. Additionally, high CO2 concentrations during storage disturbed the circadian clock by affecting the phase and amplitude of each gene; for low O2 concentrations, it was only affected by amplitude. Interestingly, low temperature, low O2, and high CO2 maintained postharvest quality, including reduced respiration, weight loss and browning incidence. The expression behaviors of postharvest quality attribute-related genes (GmFUM1, GmCS, Gm2-OGDH, GmPPO1, GmPAL) were also influenced by the storage treatments. Overall, the findings first suggest a possible link between clock disruption and postharvest quality maintenance of soybean sprouts.
Collapse
Affiliation(s)
- Anupama Shomodder
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Teppei Imaizumi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masayasu Nagata
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eri Kasai
- Faculty of Home Economics, Gifu Women's University, 80 Taroumaru, Gifu City, Gifu, 501-2592, Japan
| | - Takeo Shiina
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo-shi, Chiba, 271-8510, Japan
| | - Mizuki Tsuta
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Manasikan Thammawong
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Kohei Nakano
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
6
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
7
|
Effect of exogenous melatonin on the isoflavone content and antioxidant properties of soybean sprouts. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Xie C, Sun M, Wang P, Yang R. Interaction of Gamma-Aminobutyric Acid and Ca 2+ on Phenolic Compounds Bioaccumulation in Soybean Sprouts under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3503. [PMID: 36559615 PMCID: PMC9787623 DOI: 10.3390/plants11243503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
NaCl stress can enhance the accumulation of phenolic compounds in soybean during germination. In the present study, effects of gamma-aminobutyric acid (GABA) and Ca2+ on the biosynthesis of phenolic compounds in soybean sprouts germinated with NaCl stress were investigated. Results showed that addition of Ca2+ increased the content of total phenolics, phenolic acids, and isoflavonoids in soybean sprouts by ca. 15%, 7%, and 48%, respectively, through enhancing the activities of three key enzymes involved in the biosynthesis. On the other hand, addition of LaCl3, a calcium channel blocker, inhibited the synthesis of phenolic compounds, indicating that Ca2+ plays an important role in the synthesis of these compounds in soybean sprouts. Addition of GABA can increase the content of Ca2+ in soybean sprouts by ca. 20% and alleviate the inhibition of LaCl3 on phenolics biosynthesis in soybean sprouts. Similarly, addition of Ca2+ can reverse the inhibition of 3-mercaptopropionate, an inhibitor of endogenous GABA synthesis, on the biosynthesis of phenolic compounds in soybean sprouts under NaCl stress. To conclude, both GABA and Ca2+ can enhance the biosynthesis of phenolic compounds in soybean sprouts and there was an interaction between their effects on the promotion of phenolic compounds biosynthesis.
Collapse
|
9
|
Yin Y, Hu J, Tian X, Yang Z, Fang W. Nitric oxide mediates melatonin-induced isoflavone accumulation and growth improvement in germinating soybeans under NaCl stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153855. [PMID: 36335894 DOI: 10.1016/j.jplph.2022.153855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The involvement of nitric oxide (NO) in exogenous melatonin (MT)-induced isoflavone accumulation and growth improvement in NaCl-stressed soybeans was investigated in this study. The results demonstrated that MT increased the activity of nitrate reductase (NR) and upregulated the relative expression of NR1, NR2, and nitric oxide synthase1, which subsequently led to an increase in NO content. MT and sodium nitroprusside (SNP, as an NO donor) markedly increased isoflavone content by enhancing the activities of cinnamic acid 4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL), and by upregulating gene expression of C4H, Isoflavone synthase, PAL, and Chalcone isomerase 1A, which are involved in isoflavone biosynthesis. Moreover, MT, as well as SNP, improved the growth and biomass of NaCl-treated soybeans by increasing the activities of superoxide dismutase, catalase, and peroxidase, and reducing the accumulation of H2O2 and O2•- in soybeans under NaCl stress. These MT-induced responses were entirely reversed by the supply of 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a specific scavenger of NO), which in turn considerably decreased endogenous NO content. These results suggest that NO acts as an important downstream signal molecule, mediating MT-induced isoflavone accumulation and growth improvement in NaCl-stressed soybeans.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Jingjing Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
10
|
Lyu C, Zhang X, Huang L, Yuan X, Xue C, Chen X. Widely targeted metabolomics analysis characterizes the phenolic compounds profiles in mung bean sprouts under sucrose treatment. Food Chem 2022; 395:133601. [PMID: 35816988 DOI: 10.1016/j.foodchem.2022.133601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Phenolic compounds are one of the wholesome substances of mung bean sprouts, showing numerous health-promoting functions. Here, effects of sucrose on phenolic compounds profiles of mung bean sprouts were investigated. Results showed that the content and composition of phenolic compounds were significantly altered by 1‰ and 5‰ sucrose, respectively. The antioxidant capacity was significantly improved by sucrose. Based on metabolomics, 251 metabolites were detected, of which 106 were phenolic compounds. Correlation analysis showed 21 phenolics were positively correlated with antioxidant capacity. The changes in phenolic composition and antioxidant capacity after sucrose treatment were mainly due to the enrichment of phenolic biosynthesis pathways. Moreover, the gene expression and enzyme activity analysis of key phenolic biosynthetic genes contributed to elucidate the phenolic profile under sucrose treatment. In summary, mung bean sprouts are promising sources of dietary phenolic compounds and sucrose treatment is a good process to produce phenolic-rich mung bean sprouts.
Collapse
Affiliation(s)
- Chongyang Lyu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
11
|
Zhang X, Shen Y, Mu K, Cai W, Zhao Y, Shen H, Wang X, Ma H. Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233239. [PMID: 36501278 PMCID: PMC9736545 DOI: 10.3390/plants11233239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and a key enzyme involved in plant growth and development and environmental adaptation. However, the biological function of PAL in seed vigor remains unknown. Here, GmPAL1.1 was cloned from soybean, and its protein was located in the cytoplasm and cell membrane. GmPAL1.1 was significantly induced by HTH stress in developing seeds. The overexpression of GmPAL1.1 in Arabidopsis (OE) accumulated lower level of ROS in the developing seeds and in the leaves than the WT at the physiological maturity stage under HTH stress, and the activities of SOD, POD, and CAT and flavonoid contents were significantly increased, while MDA production was markedly reduced in the leaves of the OE lines than in those of the WT. The germination rate and viability of mature seeds of the OE lines harvested after HTH stress were higher than those of the WT. Compared to the control, the overexpression of GmPAL1.1 in Arabidopsis enhanced the tolerance to salt and drought stresses during germination. Our results suggested the overexpression of GmPAL1.1 in Arabidopsis promoted seed vigor at the physiological maturation period under HTH stress and increased the seeds' tolerance to salt and drought during germination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Ma
- Correspondence: ; Tel./Fax: +86-25-8439-5324
| |
Collapse
|
12
|
Yu G, Chen F, Wang Y, Chen Q, Liu H, Tian J, Wang M, Ren C, Zhao Q, Yang F, Sheng Y, Wei J, Zhang Y. Exogenous γ-aminobutyric acid strengthens phenylpropanoid and nitrogen metabolism to enhance the contents of flavonoids, amino acids, and the derivatives in edamame. Food Chem X 2022; 16:100511. [DOI: 10.1016/j.fochx.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
|
13
|
Yin Y, Tian X, He X, Yang J, Yang Z, Fang W. Exogenous melatonin stimulated isoflavone biosynthesis in NaCl-stressed germinating soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:123-131. [PMID: 35671589 DOI: 10.1016/j.plaphy.2022.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (MT) has gained increasing attention due to its pleiotropic effects. In this study, the function of exogenous MT on the response to NaCl stress and isoflavone biosynthesis in germinating soybeans was investigated. Results showed the exogenous MT (100 μM) application neutralised the negative effects of NaCl stress (60 mM), induced sprout growth, biomass and fluorescence intensity of intracellular free calcium, decreased malondialdehyde, H2O2 content and fluorescence intensity of O2•-, and enhanced superoxide dismutase, catalase and peroxidas activities of germinating soybeans. Meanwhile, total flavonoids and different forms of isoflavone content were enhanced by MT application, not only companied by the up-regulated relative gene expression of cinnamic acid 4-hydroxylase chalcone reductase, chalcone isomerase 1A, isoflavone reductase and isoflavone synthase 1 that involved in isoflavone biosynthesis, but also increased activities of phenylalanine ammonia lyase and 4-coumarate coenzyme A ligase. Given the evidence from the present study, it's proposed that the exogenous MT could relieve NaCl stress and stimulate isoflavone biosynthesis in germinating soybeans.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
14
|
Ma M, Xu W, Wang P, Gu Z, Zhang H, Yang R. UV-B- triggered H 2O 2 production mediates isoflavones synthesis in germinated soybean. Food Chem X 2022; 14:100331. [PMID: 35634219 PMCID: PMC9133748 DOI: 10.1016/j.fochx.2022.100331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/11/2022] [Accepted: 05/15/2022] [Indexed: 11/04/2022] Open
Abstract
UV-B up-regulated the activity, gene and protein expression of NADPH oxidase. UV-B induced H2O2 signal pathway activation. H2O2 is an essential signaling molecule mediating UV-B-induced isoflavone production. H2O2 up-regulated activities, gene and protein expression of PAL, CHS, IFS under UV-B. The inhibition of DPI on endogenous H2O2 signal pathway reduced isoflavone synthesis.
In this study, the functions of Hydrogen peroxide (H2O2) on the synthesis of isoflavones in germinated soybean under UV-B radiation were investigated. Results showed that the activity, gene, and protein expression of NADPH oxidase were up-regulated by 1.46, 6.92, and 1.34 times with UV-B radiation, while endogenous H2O2 content was also significantly increased. UV-B radiation and exogenous H2O2 treatment significantly increased the activities, gene and protein expression of phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), and isoflavone synthase (IFS) involved in isoflavones synthesis, and there was a synergistic effect with combining treatment. However, these up-regulation effects were suppressed by the supplementary diphenylene iodonium (DPI), which is the inhibitor of NADPH oxidase. Interestingly, the inhibition effect was largely reversed by exogenous H2O2, indicating that H2O2 was indispensable in regulating the isoflavones synthesis in germinated soybeans under UV-B radiation. Overall, H2O2 is an essential signaling molecule, mediating UV-B-induced isoflavone accumulation.
Collapse
Affiliation(s)
- Meng Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wenlin Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hongzhi Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
15
|
Lee JH, Tanaka S, Goto E. Growth and Biosynthesis of Phenolic Compounds of Canola ( Brassica napus L.) to Different Ultraviolet (UV)-B Wavelengths in a Plant Factory with Artificial Light. PLANTS (BASEL, SWITZERLAND) 2022; 11:1732. [PMID: 35807684 PMCID: PMC9268760 DOI: 10.3390/plants11131732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The application of ultraviolet-B (UV-B) irradiation to supplement visible light as an elicitor to increase bioactive compounds under controlled conditions is increasing. This study aimed to evaluate the effects of UV-B dose and wavelength region (280−300 and 300−320 nm) on the morphological, physiological, and biochemical responses of canola plants (Brassica napus L.). Canola plants (17 days after sowing) were subjected to various UV-B intensities (i.e., 0.3, 0.6, and 0.9 W m−2) and were divided into cut and non-cut treatments for each UV treatment. Plant growth parameters exhibited different trends based on the treated UV irradiation intensity. Plant growth gradually decreased as the UV irradiation intensity and exposure time increased. Despite the same UV irradiation intensity, plant response varied significantly depending on the presence or absence of a short-wavelength cut filter (<300 nm). Canola plants suffered more leaf damage in nonfilter treatments containing shorter wavelengths (280−300 nm). UV treatment effectively activates the expression of secondary metabolite biosynthetic genes, differing depending on the UV irradiation intensity. Our results suggest that both UV irradiation intensity and wavelength should be considered when enhancing antioxidant phytochemicals without inhibiting plant growth in a plant factory with artificial light.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Saki Tanaka
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
- Plant Molecular Research Center, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
16
|
Kim JH, Yoon YH, Dhungana SK, Kim ID, Shin DH. Soaking Soybean Seeds with <i>Abeliophyllum distichum</i> Nakai Extract Increased the Yield and Nutritional Value of Soybean Sprouts. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/147520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Wang SY, Zhang YJ, Zhu GY, Shi XC, Chen X, Herrera-Balandrano DD, Liu FQ, Laborda P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J Food Sci 2022; 87:1961-1982. [PMID: 35411587 DOI: 10.1111/1750-3841.16131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101 g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-β-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-β-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-β-glucoside and 6″-O-acetyl-7-O-β-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
18
|
Yin Y, Tian X, Yang J, Yang Z, Tao J, Fang W. Melatonin mediates isoflavone accumulation in germinated soybeans (Glycine max L.) under ultraviolet-B stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:23-32. [PMID: 35168107 DOI: 10.1016/j.plaphy.2022.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 05/23/2023]
Abstract
Soybean germination under ultraviolet-B (UV-B) radiation stress is a common and effective way to enrich the isoflavone content of sprouts. However, the growth and biomass of germinated soybeans are significantly suppressed using this method. Melatonin (MT), a novel plant biostimulant, not only plays a vital protective role in responses to various abiotic stresses but also regulates the accumulation of secondary metabolites. In the present study, the effects of exogenous MT on the growth and isoflavone metabolism of germinating soybeans exposed to UV-B stress were investigated. Compared to UV-B stress, the application of exogenous MT (25 μM) significantly increased sprout length, fresh weight, Ca2+ influx, and peroxidase activity; markedly decreased the content of malondialdehyde and H2O2 and the fluorescence intensity of H2O2 and O2•-; but had no noticeable effect on the activity of superoxide dismutase and catalase during germination. Moreover, the content of total flavonoids and isoflavone monomers (including daidzein, genistein, daidzin, glycitin and genistin) in 4-day-old germinated soybeans was significantly enhanced by MT application under UV-B stress and was not only companied by dramatically increased phenylalanine ammonia lyase activity, but also by markedly increased relative expression levels of phenylalanine ammonia lyase1, chalcone synthase, isoflavone reductase and flavanone 3-hydroxylase that are involved in the isoflavone biosynthesis pathway. The inhibitory effects of UV-B stress on the growth and biomass of germinated soybeans were alleviated with exogenous MT. MT enhanced the content of total flavonoids and isoflavone monomers under UV-B stress by increasing the activity and relative gene expression level of critical isoflavone biosynthesis-related enzymes.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
19
|
Ha MC, Im DY, Park HS, Dhungana SK, Kim ID, Shin DH. Seed Treatment with Illite Enhanced Yield and Nutritional Value of Soybean Sprouts. Molecules 2022; 27:1152. [PMID: 35208942 PMCID: PMC8875372 DOI: 10.3390/molecules27041152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Soybean sprouts, a nutritional food product, can contribute to food security because they can be grown within a week and do not require sophisticated technology. The yield and quality of soybean sprouts are influenced by various factors, including seed priming and growing conditions. The objective of this study was to investigate the effects of seed soaking in different concentrations of illite, a clay mineral, on the yield and quality of soybean sprouts. Soybean seeds soaked in five concentrations (0.5%, 1%, 3%, 5%, and 10%, w/v) of illite or tap water for 8 h were named IP-0.5, IP-1, IP3, IP-5, IP-10, and control, respectively. The highest sprout yield was found in IP-3, followed by IP-1, and IP-5, which had 11.1%, 8.8%, and 7.4% increments, respectively, compared to the control. The content of vitamin C, mineral element, isoflavone, total polyphenol, and total flavonoid was higher in many of the illite-treated soybean sprouts than in the control. The overall results indicated that pre-soaking soybean seeds in lower concentrations (0.5-3%, w/v) of illite could be helpful to enhance the yield and nutritional value of soybean sprouts in an easy and inexpensive way.
Collapse
Affiliation(s)
- Man-Chul Ha
- AOS Co. Ltd., Yongsan-myeon, Yeongdong-gun 29108, Korea; (M.-C.H.); (H.-S.P.)
| | - Dong-Young Im
- Yeongdong County Office, Yeongdong-eup, Yeongdong-gun 29140, Korea;
| | - Hung-Soo Park
- AOS Co. Ltd., Yongsan-myeon, Yeongdong-gun 29108, Korea; (M.-C.H.); (H.-S.P.)
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea;
| | - Il-Doo Kim
- International Institute of Research & Development, Kyungpook National University, Daegu 41566, Korea;
| | - Dong-Hyun Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
20
|
Xie C, Wang P, Sun M, Gu Z, Yang R. Nitric oxide mediates γ-aminobutyric acid signaling to regulate phenolic compounds biosynthesis in soybean sprouts under NaCl stress. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Ferreyra MLF, Serra P, Casati P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. PHYSIOLOGIA PLANTARUM 2021; 173:736-749. [PMID: 34453749 DOI: 10.1111/ppl.13543] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/25/2023]
Abstract
Flavonoids are plant specialized metabolites that consist of one oxygenated and two aromatic rings. Different flavonoids are grouped according to the oxidation degree of the carbon rings; they can later be modified by glycosylations, hydroxylations, acylations, methylations, or prenylations. These modifications generate a wide collection of different molecules which have various functions in plants. All flavonoids absorb in the UV wavelengths, they mostly accumulate in the epidermis of plant cells and their biosynthesis is generally activated after UV exposure. Therefore, they have been assumed to protect plants against exposure to radiation in this range. Some flavonoids also absorb in other wavelengths, for example anthocyanins, which absorb light in the visible part of the solar spectrum. Besides, some flavonoids show antioxidant properties, that is, they act as scavengers of reactive oxygen species that could be produced after high fluence UV exposure. However, to date most reports were based on in vitro studies, and there is very little in vivo evidence of how their roles are carried out. In this review we first summarize the biosynthetic pathway of flavonoids and their characteristics, and we describe recent advances on the investigation of the role of three of the most abundant flavonoids: flavonols, flavones, and anthocyanins, protecting plants against UV exposure and high light exposure. We also present examples of how using UV-B supplementation to increase flavonoid content, is possible to improve plant nutritional and pharmaceutical values.
Collapse
Affiliation(s)
- María Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paloma Serra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
22
|
Hoang XLT, Chuong NN, Hoa TTK, Doan H, Van PHP, Trang LDM, Huyen PNT, Le DT, Tran LSP, Thao NP. The Drought-Mediated Soybean GmNAC085 Functions as a Positive Regulator of Plant Response to Salinity. Int J Mol Sci 2021; 22:8986. [PMID: 34445699 PMCID: PMC8396556 DOI: 10.3390/ijms22168986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Abiotic stress factors, such as drought and salinity, are known to negatively affect plant growth and development. To cope with these adverse conditions, plants have utilized certain defense mechanisms involved in various aspects, including morphological, biochemical and molecular alterations. Particularly, a great deal of evidence for the biological importance of the plant-specific NAM, ATAF1/2, CUC2 (NAC) transcription factors (TFs) in plant adaptation to abiotic stress conditions has been reported. A previous in planta study conducted by our research group demonstrated that soybean (Glycine max) GmNAC085 mediated drought resistance in transgenic Arabidopsis plants. In this study, further characterization of GmNAC085 function in association with salt stress was performed. The findings revealed that under this condition, transgenic soybean plants overexpressing GmNAC085 displayed better germination rates than wild-type plants. In addition, biochemical and transcriptional analyses showed that the transgenic plants acquired a better defense system against salinity-induced oxidative stress, with higher activities of antioxidant enzymes responsible for scavenging hydrogen peroxide or superoxide radicals. Higher transcript levels of several key stress-responsive genes involved in the proline biosynthetic pathway, sodium ion transporter and accumulation of dehydrins were also observed, indicating better osmoprotection and more efficient ion regulation capacity in the transgenic lines. Taken together, these findings and our previous report indicate that GmNAC085 may play a role as a positive regulator in plant adaptation to drought and salinity conditions.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Khanh Hoa
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Hieu Doan
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Pham Hoang Phuong Van
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Le Dang Minh Trang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Pham Ngoc Thai Huyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Dung Tien Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str., Hanoi 100000, Vietnam;
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
23
|
GABA Regulates Phenolics Accumulation in Soybean Sprouts under NaCl Stress. Antioxidants (Basel) 2021; 10:antiox10060990. [PMID: 34205788 PMCID: PMC8235516 DOI: 10.3390/antiox10060990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
NaCl stress causes oxidative stress in plants; γ-aminobutyric acid (GABA) could alleviate such abiotic stress by enhancing the synthesis of phenolics, but the underlying mechanism is not clear. We investigated the effects of GABA on phenolics accumulation in soybean sprouts under NaCl stress by measuring changes in the content of physiological biochemicals and phenolic substances, in the activity and gene expression of key enzymes, and in antioxidant capacity. GABA reduced the oxidative damage in soybean sprouts caused by NaCl stress and enhanced the content of total phenolics, phenolic acids, and isoflavones by 16.58%, 22.47%, and 3.75%, respectively. It also increased the activities and expression of phenylalanine ammonia lyase, cinnamic acid 4-hydroxylase, and 4-coumarate coenzyme A ligase. Furthermore, GABA increased the activity of antioxidant enzymes and the antioxidant capacity. These events were inhibited by 3-mercaptopropionate (an inhibitor for GABA synthesis), indicating that GABA mediated phenolics accumulation and antioxidant system enhancement in soybean sprouts under NaCl stress.
Collapse
|
24
|
Geng J, Li J, Zhu F, Chen X, Du B, Tian H, Li J. Plant sprout foods: Biological activities, health benefits, and bioavailability. J Food Biochem 2021; 46:e13777. [PMID: 34050545 DOI: 10.1111/jfbc.13777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Plant sprout foods exhibit a lot of biological activities including anti-inflammatory, antioxidative, anticancer, antidiabetes, anti-infection, and antiviral activities. Up to the present moment, plant sprout foods have received much attention due to their abundance, good bioavailability, and health benefits for human. This review highlights the biological activities of different plant sprout foods (viz., broccoli sprout, buckwheat sprout, wheat sprout, mung bean sprout, soybean sprout, and adkuzi bean sprout) using in vitro model, animal model, and human model. Furthermore, the bioavailability of plant sprout foods is also discussed. PRACTICAL APPLICATIONS: A review of the literature was conducted to biological activities of plant sprout foods, in addition to a summary of health benefits and bioavailability of sprout foods. Several biological activities of plant sprout foods with in vitro and in vivo evidence are currently unexplored in clinical trials, because the effects of sprout foods on human tissues and cells measured by tube test do not recapitulate the actual in vivo effects. Moreover, the safety of chemoprevention strategies using sprout foods that to protect against environmental exposures and other oxidative stress-related pathologies is important. Further research is warranted to evaluate bioavailability of individual forms.
Collapse
Affiliation(s)
- Jingzhang Geng
- College of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, China.,School of Life Science and Technology, Shaanxi Nutrition and Health Engineering Research Center, Xi'an Jiaotong University, Shaanxi, China
| | - Jiaxuan Li
- College of Food Science and Technology, Hebei Agricultural University, Hebei, China
| | - Fengmei Zhu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Hebei, China
| | - Xiangning Chen
- College of Food Science and Technology, Beijing Agricultural University, Beijing, China
| | - Bin Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Hebei, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Jun Li
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Hebei, China
| |
Collapse
|
25
|
Kim MJ, Kim P, Chen Y, Chen B, Yang J, Liu X, Kawabata S, Wang Y, Li Y. Blue and UV-B light synergistically induce anthocyanin accumulation by co-activating nitrate reductase gene expression in Anthocyanin fruit (Aft) tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:210-220. [PMID: 32492761 DOI: 10.1111/plb.13141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
The tomato accession LA1996, which carries a dominant allele of anthocyanin fruit (Aft) locus, accumulates anthocyanins in the epidermis of fruits when exposed to sunlight. The involvement of blue, UV-A, UV-B and a combination of these wavelengths on anthocyanin accumulation and the molecular mechanism of their regulation was investigated in LA1996. The most effective treatment for inducing anthocyanin biosynthesis in Aft fruits was co-irradiation with blue and UV-B (blue + UV-B) light. Finding the correlated genes is an important approach towards understanding their molecular mechanisms. In the present study, the nitrate reductase (NR) gene SlNIA was isolated using RNA-seq profiling of Aft fruits given different light treatments. The functions of NR-mediated anthocyanin induction by blue + UV-B were confirmed using a series of chemical treatments, followed by assessment of NR activity and nitric oxide (NO) detection. The expression of NR was highly induced by blue + UV-B, and this specificity was also confirmed with the enzyme activity of NR and the NO concentration. The NR inhibitors, which reduce NO generation, the expression levels of anthocyanin related genes and decreased anthocyanin accumulation in LA1996. Our results suggest that NR plays a key role in blue + UV-B-mediated anthocyanin accumulation in LA1996 fruits.
Collapse
Affiliation(s)
- M-J Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - P Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Institute of Biotechnology, Wonsan University of Agriculture, Wonsan, Democratic People's Republic of Korea
| | - Y Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - B Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - J Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - X Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - S Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Y Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Y Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
26
|
|
27
|
Kim JH, Yoon YH, Kim ID, Dhungana SK, Shin DH. Pu-erh Tea Extract Treatment Could Be an Efficient Way to Enhance the Yield and Nutritional Value of Soybean Sprout. Molecules 2020; 25:E3869. [PMID: 32854419 PMCID: PMC7504710 DOI: 10.3390/molecules25173869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Soybean sprouts are one of the most inexpensive and nutritious food items that can be easily grown year-round. Several studies have been conducted to increase their yield and nutritional values. This study was carried out to examine the effects of Pu-erh tea extracts on the production and nutrients content of soybean sprouts. Soybean seeds were soaked in 1%, 2%, or 3% (w/v) tea extracts, or tap water, before keeping for sprout cultivation; the sprout samples were named PE-1, PE-2, PE-3, and the control, respectively. The sprout yields were increased by up to 17% in PE-2 and PE-3 than in the control. The vitamin C, total free amino acid, total mineral, total isoflavone, total polyphenol, and flavonoid contents as well as the antioxidant potentials of the tea extract-treated sprouts were higher than those of the control. The results indicated that pre-soaking soybean seeds in 2% Pu-erh tea extracts could offer an easy, inexpensive, and efficient way to improve the yield and nutritional value of soybean sprouts.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Green Technology Convergence, Konkuk University, Chungju 27478, Korea; (J.-H.K.); (Y.-H.Y.)
| | - Yong-Han Yoon
- Department of Green Technology Convergence, Konkuk University, Chungju 27478, Korea; (J.-H.K.); (Y.-H.Y.)
| | - Il-Doo Kim
- International Institute of Research & Development, Kyungpook National University, Daegu 41566, Korea;
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea;
| | - Dong-Hyun Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
28
|
Liu R, Zhu T, Yang T, Yang Z, Ren A, Shi L, Zhu J, Yu H, Zhao M. Nitric oxide regulates ganoderic acid biosynthesis by the S-nitrosylation of aconitase under heat stress in Ganoderma lucidum. Environ Microbiol 2020; 23:682-695. [PMID: 32483888 DOI: 10.1111/1462-2920.15109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is an important signalling molecule in stress response of organisms. We previously reported that NO decreases heat stress (HS)-induced ganoderic acid (GA) accumulation in Ganoderma lucidum. To explore the mechanisms by which NO modulates GA biosynthesis under HS, the effect of NO on the reactive oxygen species (ROS) content was examined. The results showed that NO decreased the production of mitochondrial ROS (mitROS) by 60% under HS. Further research revealed that NO reduced the mitROS content by inhibiting aconitase (Acon) activity. The GA content in Acon-silenced (Aconi) strains treated with NO donor did not differ significantly from that in untreated Aconi strains. To study the mechanism by which Acon activity is inhibited, the S-nitrosylation level of Acon was determined. Biotin-switch technology and mass spectrometry analysis were used to show that Acon is S-nitrosylated at the Cys-594 amino acid residue. Substitution of Cys-594 with a Ser, which cannot be S-nitrosylated, abolished the responsiveness of Acon to the NO-induced reduction in its enzymatic activity. These findings demonstrate that NO inhibits Acon activity through S-nitrosylation at Cys-594. In summary, these findings describe mechanism by which NO regulates GA biosynthesis via S-nitrosylation of Acon under HS condition in G. lucidum.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ting Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhengyan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hanshou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
29
|
Zhang X, Bian Z, Yuan X, Chen X, Lu C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Lim YJ, Jeong HY, Gil CS, Kwon SJ, Na JK, Lee C, Eom SH. Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food Chem 2020; 303:125376. [PMID: 31442900 DOI: 10.1016/j.foodchem.2019.125376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/29/2019] [Accepted: 08/17/2019] [Indexed: 01/28/2023]
Abstract
This study investigated the effects of persistent ultraviolet B (UV-B) irradiation on isoflavone accumulation in soybean sprouts. Three malonyl isoflavones were increased by UV-B. Malonylgenistin specifically accumulated upon UV-B exposure, whereas the other isoflavones were significantly increased under both dark conditions and UV-B exposure. The results of isoflavone accumulation to UV-B irradiation time were observed as following: acetyl glycitin rapidly increased and then gradually decreased; malonyl daidzin and malonyl genistin were highly accumulated within an intermediate period; genistein and daidzin were gradually maximized; daidzin, glycitin, genistein, and malonyl glycitin did not increase; and glycitin, acetyl daidzin, and acetyl genistin exhibited trace amounts. Transcriptional analysis of isoflavonoid biosynthetic genes demonstrated that most metabolic genes were highly activated in response to UV-B 24 and UV-B 36 treatments. In particular, it was found that GmCHS6, GmCHS7, and GmCHS8 genes among the eight known genes encoding chalcone synthase were specifically related to UV-B response.
Collapse
Affiliation(s)
- You Jin Lim
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Young Jeong
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan Saem Gil
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong Kuk Na
- Department of Controlled Agriculture, College of Lifelong Learning, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Chanhui Lee
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
31
|
Rather BA, Masood A, Sehar Z, Majid A, Anjum NA, Khan NA. Mechanisms and Role of Nitric Oxide in Phytotoxicity-Mitigation of Copper. FRONTIERS IN PLANT SCIENCE 2020; 11:675. [PMID: 32547583 PMCID: PMC7274197 DOI: 10.3389/fpls.2020.00675] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/29/2020] [Indexed: 05/07/2023]
Abstract
Phytotoxicity of metals significantly contributes to the major loss in agricultural productivity. Among all the metals, copper (Cu) is one of essential metals, where it exhibits toxicity only at its supra-optimal level. Elevated Cu levels affect plants developmental processes from initiation of seed germination to the senescence, photosynthetic functions, growth and productivity. The use of plant growth regulators/phytohormones and other signaling molecules is one of major approaches for reversing Cu-toxicity in plants. Nitric oxide (NO) is a versatile and bioactive gaseous signaling molecule, involved in major physiological and molecular processes in plants. NO modulates responses of plants grown under optimal conditions or to multiple stress factors including elevated Cu levels. The available literature in this context is centered mainly on the role of NO in combating Cu stress with partial discussion on underlying mechanisms. Considering the recent reports, this paper: (a) overviews Cu uptake and transport; (b) highlights the major aspects of Cu-toxicity on germination, photosynthesis, growth, phenotypic changes and nutrient-use-efficiency; (c) updates on NO as a major signaling molecule; and (d) critically appraises the Cu-significance and mechanisms underlying NO-mediated alleviation of Cu-phytotoxicity. The outcome of the discussion may provide important clues for future research on NO-mediated mitigation of Cu-phytotoxicity.
Collapse
|
32
|
Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Zhang X, Bian Z, Li S, Chen X, Lu C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13577-13588. [PMID: 31730344 DOI: 10.1021/acs.jafc.9b05594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light-emitting diode (LED) based light sources, which can selectively and quantitatively provide different spectra, have been frequently applied to manipulate plant growth and development. In this study, the effects of different LED light spectra on the growth, phenolic compounds profile, antioxidant capacity, and transcriptional changes in genes regulating phenolic biosynthesis in soybean microgreens were investigated. The results showed that light illumination decreased the seedling length and yield but increased phenolic compound content. Blue light and ultraviolet-A (UV-A) induced significant increases in total phenolic and total flavonoid content, as compared with the white light control. Sixty-six phenolic compounds were identified in the soybean samples, of which isoflavone, phenolic acid, and flavonol were the main components. Ten phenolic compounds obtained from the orthogonal partial least-squares discriminant analysis (OPLS-DA) were reflecting the effect of light spectra. The antioxidant capacity was consistent with the phenolic metabolite levels, which showed higher levels under blue light and UV-A compared with the control. The highest transcript levels of phenolic biosynthesis-related genes were observed under blue light and UV-A. The transcript levels of GmCHI, GmFLS, and GmIOMT were also upregulated under far-red and red light. Taken together, our findings suggested that the application of LED light could pave a green and effective way to produce phenolic compound-enriched soybean microgreens with high nutritional quality, which could stimulate further investigations for improving plant nutritional value and should have a wide impact on maintaining human health.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Zhonghua Bian
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Shuai Li
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Xin Chen
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| |
Collapse
|
34
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts. Food Chem 2019; 292:372-376. [PMID: 31054689 DOI: 10.1016/j.foodchem.2018.02.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023]
Abstract
In recent years, nitric oxide (NO) has been considered a plant signaling compound involved in antioxidant systems and flavonoid production enhancement. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate NO donor sodium nitroprusside treatment-induced proteomic changes in soybean sprouts. Among the 3033 proteins identified, compared with the control, sodium nitroprusside treatment up- and down-regulated 256 proteins. These proteins were involved in antioxidant system pathways, such as the thioredoxin, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and lipoxygenase (LOX) pathways, including allene oxide synthase and lipoxygenase. In addition, heat shock proteins (HSPs) and flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to sodium nitroprusside treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Technology, Xuzhou University of Technology, Xuzhou, Jiangsu 221000, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
35
|
Neuroprotective effects of a protein tyrosine phosphatase inhibitor against hippocampal excitotoxic injury. Brain Res 2019; 1719:133-139. [PMID: 31128098 DOI: 10.1016/j.brainres.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 11/23/2022]
Abstract
Neuronal excitotoxicity is the neuronal cell death arising from prolonged exposure to glutamate and the associated excessive influx of ions into the cell. Sodium orthovanadate (Na3VO4,) competitively inhibits the protein tyrosine phosphatases that affect intracellular protein phosphorylation. No study has examined the role of protein tyrosine phosphatases in kainic acid (KA)-induced excitotoxic injury using sodium orthovanadate. Thus, the present study was conducted to determine the neuroprotective effects of sodium orthovanadate on KA-induced neuronal death in organotypic hippocampal slice culture. We also performed an in vivo electrophysiology study in Sprague-Dawley rats to observe the function of surviving cells after sodium orthovanadate treatment in KA-induced excitotoxicity. Rats were anaesthetized with sodium pentobarbital and KA was injected unilaterally in CA3 of the hippocampus by microinjection-cannula. Neuronal cell death, as assessed by propidium iodide uptake, was reduced by 10 and 25 μM sodium orthovanadate treatment (24 and 48 h) compared with the KA-only group. Sodium orthovanadate enhanced survival signals by increasing levels of phospho-Akt and superoxide dismutase. In addition, sodium orthovanadate treatment reduced calcineurin level for neuronal protection, which regulates activation of cellular calcium caused by KA-induced injury. In vivo results showed that sodium orthovanadate treatment elicited resistance to KA-induced behavior seizures and significantly reduced the duration of epileptiform discharges. In addition, sodium orthovanadate treatment (25 mM) significantly prevented the increase in power spectra induced by KA injection. These results suggest that sodium orthovanadate decreases the acute effects of KA, thereby inducing neuroprotective effects with reduced reactive oxygen species and cellular Ca2+. Thus, sodium orthovanadate may protect hippocampal neurons against excitotoxicity, and surviving neurons may function to reduce seizures.
Collapse
|
36
|
Zhou J, Ran ZF, Yang XT, Li J. Postharvest UV-B Irradiation Stimulated Ginsenoside Rg 1 Biosynthesis through Nitric Oxide (NO) and Jasmonic Acid (JA) in Panax quinquefolius Roots. Molecules 2019; 24:E1462. [PMID: 31013885 PMCID: PMC6515039 DOI: 10.3390/molecules24081462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
The study highlights the influence and signal transduction mechanism of postharvest UV-B on the production of Rg1 in Panax quinquefolius roots during the drying process. The results showed that postharvest UV-B irradiation induced generation of nitric oxide (NO), jasmonic acid (JA), and ginsenoside Rg1 of P. quinquefolius roots. The UV-B-induced increase of Rg1 was suppressed by NO-specific scavenger (cPTIO) and NOS inhibitors (PBITU), JA synthesis inhibitor (SHAM), and JA synthesis inhibitor (PrGall), indicating that NO and JA played essential parts in UV-B-induced Rg1. External NO inhibitors treatment inhibited UV-B-induced accumulation of NO and JA, which suggested that NO was located upstream of the JA signal pathway. NO-caused Rg1 was inhibited by SHAM and PrGall, implying JA participated in transmitting signal NO to Rg1 accumulation. In other words, NO mediated the postharvest UV-B-induced Rg1 accumulation by the JA-dependent pathway in P. quinquefolius roots during the drying process, which helps us understand the underlying mechanisms involved in UV-B-induced Rg1 production and provides information helpful for P. quinquefolius production.
Collapse
Affiliation(s)
- Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Zhi-Fang Ran
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiao-Tong Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jia Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
37
|
Chen X, Fang X, Zhang Y, Wang X, Zhang C, Yan X, Zhao Y, Wu J, Xu P, Zhang S. Overexpression of a soybean 4-coumaric acid: coenzyme A ligase (GmPI4L) enhances resistance to Phytophthora sojae in soybean. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:304-313. [PMID: 32172740 DOI: 10.1071/fp18111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023]
Abstract
Phytophthora root and stem rot of soybean (Glycine max (L.) Merr.) caused by Phytophthora sojae is a destructive disease worldwide. The enzyme 4-coumarate: CoA ligase (4CL) has been extensively studied with regard to plant responses to pathogens. However, the molecular mechanism of the response of soybean 4CL to P. sojae remains unclear. In a previous study, a highly upregulated 4CL homologue was characterised through suppressive subtractive hybridisation library and cDNA microarrays, in the resistant soybean cultivar 'Suinong 10' after infection with P. sojae race 1. Here, we isolated the full-length EST, and designated as GmPI4L (P. sojae-inducible 4CL gene) in this study, which is a novel member of the soybean 4CL gene family. GmPI4L has 34-43% over all amino acid sequence identity with other plant 4CLs. Overexpression of GmPI4L enhances resistance to P. sojae in transgenic soybean plants. The GmPI4L is located in the cell membrane when transiently expressed in Arabidopsis protoplasts. Further analyses showed that the contents of daidzein, genistein, and the relative content of glyceollins are significantly increased in overexpression GmPI4L soybeans. Taken together, these results suggested that GmPI4L plays an important role in response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, and genistein in soybean.
Collapse
Affiliation(s)
- Xi Chen
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Fang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Youyi Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Wang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Yan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuanling Zhao
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture PR China, Harbin Heilongjiang, China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to UV-B treatment in soybean sprouts. Food Chem 2019; 275:467-473. [PMID: 30724221 DOI: 10.1016/j.foodchem.2018.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 02/03/2023]
Abstract
It has been shown that 15 μW·cm-2 UV-B radiation has the most pronounced effects on γ-aminobutiric acid (GABA), inositol 1,4,5-trisphosphate (IP3) and abscisic acid (ABA) accumulation in 4-day-old soybean sprouts. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) were employed to investigate UV-B treatment-induced proteomic changes in soybean sprouts. Results showed that UV-B treatment effectively regulated proteins involved in GABA biosynthesis, such as glutamate synthase, glutamate decarboxylase (GAD), methionine synthetase, 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase, aminoaldehyde dehydrogenase (AMADH) and inositol phosphate metabolism pathways, including phosphoinositide phospholipase C (PI-PLC), purple acid phosphatase (PAP) and inositol polyphosphate 5-phosphatase. In addition, proteins involved in ABA biosynthesis and signal transduction, such as 9-cis-epoxycarotenoid dioxygenase (NCED), abscisic-aldehyde oxidase (AO), SNF1-related protein kinase (SnRK), protein phosphatase 2C (PP2C), guanine nucleotide-binding protein and calreticulin-3, were also modulated under UV-B treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
39
|
Jiao C, Gu Z. Cyclic GMP mediates abscisic acid-stimulated isoflavone synthesis in soybean sprouts. Food Chem 2019; 275:439-445. [PMID: 30724218 DOI: 10.1016/j.foodchem.2018.09.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The influences of abscisic acid (ABA)-guanosine 3',5'-cyclic monophosphate (cGMP) on UV-B treatment-stimulated isoflavone synthesis in soybean sprouts was explored. It turned out that ABA, with cGMP, up-regulated gene expression and activity of chalcone synthase (CHS) and isoflavone synthase (IFS), and subsequently induced isoflavone biosynthesis under UV-B treatment. Furthermore, data obtained from the isobaric tags for relative and absolute quantification (iTRAQ) analysis showed that there were two core components in ABA response: SNF1-related protein kinase (SnRK) and type 2C protein phosphatase (PP2C), were up and down regulated after UV-B treatment, respectively. UV-B exposure stimulated increment in guanine nucleotide-binding protein and calreticulin expression. Additionally, CHS and IFS protein expression were up regulated under UV-B stress. Overall, UV-B-induced ABA resulted in PP2C inhibition and SnRK2 activation, and up-regulated CHS and IFS expression, leading to enhancement of isoflavone accumulation. cGMP and calreticulin as downstream messengers, mediated ABA-stimulated isoflavone biosynthesis after UV-B exposure.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China..
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
40
|
Ma M, Wang P, Yang R, Zhou T, Gu Z. UV-B mediates isoflavone accumulation and oxidative-antioxidant system responses in germinating soybean. Food Chem 2019; 275:628-636. [PMID: 30724242 DOI: 10.1016/j.foodchem.2018.09.158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
This study investigated the relationships among UV-B radiation dose, isoflavone monomers and the oxidative-antioxidant system in germinating soybean. Results showed that the isoflavone monomers content showed a good fit to the quadratic model with UV-B radiation dose, except for aglycones. UV-B decreased phenylalanine content and up-regulated the key enzymes activities in isoflavone biosynthesis. H2O2, electrolyte leakage, malondialdehyde, T22 and M22 were increased, while T23 and M23 decreased. Microscopic analysis showed excess UV-B radiation resulted in the reduced cell volume, irregular cell shape, and increased cell space. The antioxidant enzymes activities were enhanced by UV-B. These results demonstrated that UV-B could trigger the formation of H2O2, resulting in the oxidative stress. Thus, the antioxidant system, including the enzymatic (enhanced the antioxidant enzymes activities) and nonenzymatic (accumulated isoflavones) were activated to minimize oxidative damage. This study provides theoretical basis for enhancing isoflavone monomer accumulation in plant-source foods by UV-B.
Collapse
Affiliation(s)
- Meng Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
41
|
Ma M, Wang P, Yang R, Gu Z. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B. Food Chem 2018; 250:259-267. [PMID: 29412920 DOI: 10.1016/j.foodchem.2018.01.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/29/2022]
Abstract
In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T23) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0 kDa fraction.
Collapse
Affiliation(s)
- Meng Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
42
|
Jiao C, Zhu L, Gu Z. GSK-3 mediates NO-cGMP-induced isoflavone production in soybean sprouts. Food Res Int 2017; 101:203-208. [PMID: 28941685 DOI: 10.1016/j.foodres.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/19/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
The role of glycogen synthase kinase-3 (GSK-3) in the nitric oxide-guanosine 3',5'-cyclic monophosphate (NO-cGMP)-induced isoflavone production in soybean sprouts was examined. Inhibitors and donors of NO, cGMP, and GSK-3 inhibitor were added to UV-B irradiated sprouts. Results showed that NO, with cGMP, induced the expression of GSK-3 under UV-B radiation. Protein kinase G (PKG) was shown to be involved in NO-cGMP-induced GSK-3 activation. GSK-3 elevated activity and expression levels of chalcone synthase (CHS) and isoflavone synthase (IFS), and increased isoflavone accumulation.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Life Science, Anqing Normal University, Anqing, Anhui 246133, People's Republic of China.
| | - Liangliang Zhu
- College of Life Science, Anqing Normal University, Anqing, Anhui 246133, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
43
|
Du R, Liu J, Sun P, Li H, Wang J. Inhibitory effect and mechanism of Tagetes erecta L. fungicide on Fusarium oxysporum f. sp. niveum. Sci Rep 2017; 7:14442. [PMID: 29089546 PMCID: PMC5663927 DOI: 10.1038/s41598-017-14937-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
Botanical fungicides comprise attractive alternatives to chemical fungicides because of their environmental compatibility. Flavonoids extracted from Tagetes erecta L. have an inhibitory effect on fusarium wilt in watermelons caused by Fusarium oxysporum f. sp. niveum (FON). In this study, we synthesized one of these flavonoids, 2,5-dicyclopentylidene cyclopentanone (Tagetes erecta L. fungicide (TEF)) and assessed its activity against FON. In vitro, TEF inhibited FON growth and killed FON cells directly. TEF also affected FON cell physiology and mycelial structure. In watermelon plants with fusarium wilt, TEF protected the leaf cell structure and improved the germination rate of infected seeds while increasing overall plant resistance. A TEF-resistant mutant (FONM) was created by chemical mutagenesis. FON and FONM were analysed using iTRAQ and RNA-Seq, which identified 422 differentially expressed proteins and 7817 differentially expressed mRNAs in the proteome and transcriptome, respectively. The FONM mutations caused changes in the cell membrane and cell wall, which may constitute the site of action of TEF. Together, these results demonstrate that TEF could effectively control the watermelon fusarium wilt caused by FON, possibly through the inhibition of sterol biosynthesis. The data presented here suggest that TEF represents a new potential botanical anti-fungal drug.
Collapse
Affiliation(s)
- Ruochen Du
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China
| | - Jiandong Liu
- College of Life Science, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China
| | - Panpan Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China.
| | - Jinsheng Wang
- College of Life Science, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China.
| |
Collapse
|
44
|
Kim ID, Dhungana SK, Park YS, Kim DJ, Shin DH. Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation. Molecules 2017; 22:E1462. [PMID: 28869525 PMCID: PMC6151661 DOI: 10.3390/molecules22091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Soybean sprouts are a major food item in Korea. Various studies have been carried out to enhance their yield and nutritional values. The objective of the present study was to examine the influence of persimmon fruit powder and Indolbi, a synthetic plant growth regulator, on the yield and nutritional value of soybean sprouts. Seeds were soaked in tap water containing 0.5%, 1.0%, 2.5% and 5.0% (w/v) persimmon fruit powder and the samples were named as PT-1, PT-2, PT-3, and PT-4, respectively. The yield increment was almost doubled in PT-3 and PT-4 than in the Indolbi treated sprouts on basis of the control. Vitamin C, isoflavones, and total phenolic contents as well as antioxidant potentials (determined by 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radical scavenging assays) were also significantly (p < 0.05) higher in PT-3 compared to the Indolbi treatment and the control. However, total free amino acid and magnesium contents of Indolbi- applied sprouts were higher than in the fruit powder treatments. The overall results of the present study showed that persimmon fruit powder can be an option to enhance the yield and nutritional value of soybean sprouts since, due to potential health hazards, the use of synthetic chemicals like Indolbi is less preferred than the natural products.
Collapse
Affiliation(s)
- Il-Doo Kim
- International Institute of Agricultural Research & Development, Kyungpook National University, Daegu 41566, Korea.
| | | | - Yong-Sung Park
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong Joon Kim
- Department of Tourism Management, Yeungnam University College, Daegu 42415, Korea.
| | - Dong-Hyun Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
45
|
Zhang C, Wang X, Zhang F, Dong L, Wu J, Cheng Q, Qi D, Yan X, Jiang L, Fan S, Li N, Li D, Xu P, Zhang S. Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards Phytophthora sojae infection. Sci Rep 2017; 7:7242. [PMID: 28775360 PMCID: PMC5543151 DOI: 10.1038/s41598-017-07832-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/16/2017] [Indexed: 01/25/2023] Open
Abstract
Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by Phytophthora sojae is a destructive disease worldwide. Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes related to plant responses to biotic and abiotic stresses. However, the molecular mechanism of PAL in soybean in response to P. sojae is largely unclear. Here, we characterize a novel member of the soybean PAL gene family, GmPAL2.1, which is significantly induced by P. sojae. Overexpression and RNA interference analysis demonstrates that GmPAL2.1 enhances resistance to P. sojae in transgenic soybean plants. In addition, the PAL activity in GmPAL2.1-OX transgenic soybean is significantly higher than that of non-transgenic plants after infection with P. sojae, while that in GmPAL2.1-RNAi soybean plants is lower. Further analyses show that the daidzein, genistein and salicylic acid (SA) levels and the relative content of glyceollins are markedly increased in GmPAL2.1-OX transgenic soybean. Taken together, these results suggest the important role of GmPAL2.1 functioning as a positive regulator in the soybean response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, genistein and SA.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Wang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, Heilongjiang, China
| | - Feng Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, Heilongjiang, China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dongyue Qi
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Yan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ninghui Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Dongmei Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
46
|
Jiao C, Wang P, Yang R, Tian L, Gu Z. IP3 Mediates Nitric Oxide-Guanosine 3',5'-Cyclic Monophosphate (NO-cGMP)-Induced Isoflavone Accumulation in Soybean Sprouts under UV-B Radiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8282-8288. [PMID: 27768311 DOI: 10.1021/acs.jafc.6b02633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, to investigate the role of inositol 1,4,5-trisphosphate (IP3) in nitric oxide-guanosine 3',5'-cyclic monophosphate (NO-cGMP)-induced isoflavone accumulation in soybean sprouts under UV-B radiation, the sprouts were treated with donors and inhibitors of NO and cGMP as well as IP3 inhibitor. Results showed that NO, with cGMP as a second messenger, stimulates IP3 accumulation under UV-B radiation. Consistent with the increase in IP3 content, the up-regulation of gene and protein expression of phosphoinositide-specific phospholipase C (PI-PLC) in response to sodium nitroprusside (SNP) (exogenous NO donor) and 8-Br-cGMP (cGMP analogue) was also observed. In addition, protein kinase G (PKG) participated in NO-cGMP-induced IP3 production. IP3 induced by the NO-cGMP pathway was involved in isoflavone synthesis by elevating the activity and gene and protein expressions of chalcone synthase (CHS) and isoflavone synthase (IFS). Overall, IP3 mediates NO-cGMP-induced isoflavone accumulation in soybean sprouts under UV-B stress.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Lu Tian
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
47
|
Jiao C, Yang R, Gu Z. Cyclic ADP-ribose and IP3 mediate abscisic acid-induced isoflavone accumulation in soybean sprouts. Biochem Biophys Res Commun 2016; 479:530-536. [PMID: 27664703 DOI: 10.1016/j.bbrc.2016.09.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
Abstract
In this study, the roles of ABA-cADPR-Ca2+ and ABA-IP3-Ca2+ signaling pathways in UV-B-induced isoflavone accumulation in soybean sprouts were investigated. Results showed that abscisic acid (ABA) up regulated cyclic ADP-ribose (cADPR) and inositol 1,4,5-trisphosphate (IP3) levels in soybean sprouts under UV-B radiation. Furthermore, cADPR and IP3, as second messengers of UV-B-triggered ABA, induced isoflavone accumulation by up-regulating proteins and genes expression and activity of isoflavone biosynthetic-enzymes (chalcone synthase, CHS; isoflavone synthase, IFS). After Ca2+ was chelated by EGTA, isoflavone content decreased. Overall, ABA-induced cADPR and IP3 up regulated isoflavone accumulation which was mediated by Ca2+ signaling via enhancing the expression of proteins and genes participating in isoflavone biosynthesis in soybean sprouts under UV-B radiation.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|