1
|
Wang J, Ren Y, Ye X, Zhang H, Tian J. In vitro digestion and fermentation of the whole goji berry: Bioactive ingredients change and impacts on human gut microbiota. J Food Sci 2024; 89:6465-6480. [PMID: 39289810 DOI: 10.1111/1750-3841.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Goji berry (Lycium barbarum L.) is a nutrient-rich fruit and has received enormous interest for its health benefits. The beneficial effects of goji berry are linked to the absorption of bioactive compounds within the gastrointestinal digestion process and colon fermentation. Nonetheless, how certain bioactive compounds were released, and metabolism changed of the consumption of whole goji berries were still unclear. Therefore, the present study aimed to evaluate the digestion characteristics of key bioactive compounds in whole goji berries with an in vitro digestion model, and the effects of whole goji berries on the structure of gut microbiota were also investigated. Results showed that a significant release of carbohydrates during the digestion process, peaking within the first 15 min of the intestinal phase (421.4 ± 5.82 mg GE/g, dry weight, respectively), was observed, and the phenolic release reached the highest in the first 15 min of the gastric phase. Meanwhile, the bioaccessibilities of phenolic compounds and carbohydrates were determined to be 63.87% and 80.40%, respectively, after intestinal digestion. In addition, the undigested fractions of goji berries could be further fermented to produce short-chain fatty acids, which decreased the colon pH value (from 7.38 to 6.71) as well as the Firmicutes/Bacteroidetes ratio. Moreover, the goji berries regulated the composition of gut microbiota by promoting beneficial bacteria such as Bacteroides, Parabacteroides, and Paraclostridium, whereas inhibiting the proliferation of harmful bacteria (e.g., Fusobacterium). Our results indicated that the goji berry exhibited significant bioactivity during the digestion and fermentation stage and might provide some new insights into the utilization of goji berries in healthy food processing.
Collapse
Affiliation(s)
- Jinghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Food & Health Research Center, Zhejiang University Zhongyuan Institute, Zhengzhou, China
| | | | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Rice Food Processing Research Center, Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi, China
| |
Collapse
|
2
|
Zhou S, Tang X, Hegyi F, Nagy A, Takács K, Zalán Z, Chen G, Du M. In vitro digestion and fermentation characteristics of soluble dietary fiber from adlay (Coix lacryma-jobi L. var. ma-yuen Staft) bran modified by steam explosion. Food Res Int 2024; 192:114747. [PMID: 39147484 DOI: 10.1016/j.foodres.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Adlay bran is known for its nutrient-rich profile and multifunctional properties, and steam explosion (SE) is an emerging physical modification technique. However, the specific effects of SE on the activity composition and antioxidant capacity of adlay bran soluble dietary fiber (SDF) during in vitro digestion, as well as its influence on gut microbiota during in vitro fermentation, remain inadequately understood. This paper reports the in vitro digestion and fermentation characteristics of soluble dietary fiber from adlay bran modified by SE (SE-SDF). Compared with the untreated samples (0-SDF), most of the phenolic compounds and antioxidant capacity were significantly increased in the SE-SDF digests. Additionally, SE was beneficial for adlay bran SDF to increase the content of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in fermentation broth during in vitro fermentation. SE-SDF could promote the growth of beneficial bacteria while inhibiting the proliferation of pathogenic microbes. Our research indicates that SE-SDF shows strong antioxidant properties after in vitro digestion and plays a pivotal role in regulating gut microbiota during in vitro fermentation, ultimately enhancing human intestinal health.
Collapse
Affiliation(s)
- Shuxin Zhou
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Xinjing Tang
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - András Nagy
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Krisztina Takács
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Lasota M, Lechwar P, Kukula-Koch W, Czop M, Czech K, Gaweł-Bęben K. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts. Molecules 2024; 29:1133. [PMID: 38474645 DOI: 10.3390/molecules29051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.
Collapse
Affiliation(s)
- Magdalena Lasota
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Paulina Lechwar
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Czech
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| |
Collapse
|
4
|
Sęczyk Ł, Kołodziej B. Bioaccessibility of Rosmarinic Acid and Basil ( Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model-The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment. Molecules 2024; 29:901. [PMID: 38398652 PMCID: PMC10892404 DOI: 10.3390/molecules29040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study is to determine the effect of endogenous plant matrix components, dose and digestion-related factors on the bioaccessibility of rosmarinic acid and basil co-compounds in in vitro digestion conditions. Different forms of administration, i.e., basil raw plant material, dry extract, and isolated rosmarinic acid at various doses, were applied for the digestion experiment. To evaluate the contribution of biochemical and physicochemical digestion factors, samples were subjected to a full digestion process or treated only with a digestion fluid electrolyte composition without using biochemical components (i.e., digestion enzymes and bile salts), and bioaccessibility was monitored at the gastric and intestinal steps of digestion. The results showed that the components of the endogenous raw plant matrix significantly limited the bioaccessibility of rosmarinic acid and basil co-compounds, especially at the gastric stage of digestion. Physicochemical digestion factors were mainly responsible for the bioaccessibility of basil phytochemicals. Higher doses allowed maintenance of bioaccessibility at a relatively similar level, whereas the most negative changes in bioaccessibility were induced by the lowest doses. In conclusion, the determination of the bioaccessibility of bioactive phytochemicals from basil and factors influencing bioaccessibility may help in better prediction of the pro-health potential of this plant.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland;
| | | |
Collapse
|
5
|
Martins-Gomes C, Nunes FM, Silva AM. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants (Basel) 2024; 13:65. [PMID: 38247489 PMCID: PMC10812469 DOI: 10.3390/antiox13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Chen H, Shi Y, Wang L, Hu X, Lin X. Phenolic profile and α-glucosidase inhibitory potential of wampee (Clausena lansium (Lour.) Skeels) peel and pulp: In vitro digestion/in silico evaluations. Food Res Int 2023; 173:113274. [PMID: 37803586 DOI: 10.1016/j.foodres.2023.113274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
To investigate the changes in phenolics, flavonoids, and their bio-activities of wampee (Clausena lansium (Lour.) Skeels) during digestion, the peel and pulp were subjected to simulated in vitro digestion, encompassing oral, gastric, small intestine, and large intestine digestion stages. The peel exhibited a total release of 91.93 mg GAE/g DW of phenolics and 61.86 mg RE/g DW of flavonoids, whereas the pulp displayed a release of 27.83 mg GAE/g DW of phenolics and 8.94 mg RE/g DW of flavonoids. Notably, the phenolics and flavonoids were mostly released during the oral digestion stage for peel, while they were mostly released during the small intestine digestion stage for pulp. The results of the targeted flavonoids analysis indicated that rutin and l-epicatechin were the two most widely released compounds in each digestion step. Moreover, myricetin has been identified as the best inhibitor against α-glucosidase, probably because it formed the most H-bonds, 8, with 6 catalytic residues, which was the highest number. Furthermore, the soluble substances released from the peel exhibited significantly higher antioxidant activities and inhibitory activity against α-glucosidase (p < 0.05) compared to those from the pulp. Positive correlations were observed between the total phenolic content or total flavonoid content and the antioxidant activities (r > 0.73 (peel), > 0.61 (pulp)), as well as α-glucosidase inhibitory activity (r < - 0.48 (peel), < -0.64 (pulp)) of peel and pulp. In conclusion, these findings provide valuable insights into the digestive characteristics and health benefits of both wampee peel and pulp.
Collapse
Affiliation(s)
- Hua Chen
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Yousheng Shi
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
7
|
Rababah TM, Al-U’datt MH, Angor M, Gammoh S, Abweni F, Magableh G, Almajwal A, Yücel S, AL-Rayyan Y, AL-Rayyan N. Effect of Drying and Freezing on the Phytochemical Properties of Okra during Storage. ACS OMEGA 2023; 8:34448-34457. [PMID: 37779931 PMCID: PMC10536064 DOI: 10.1021/acsomega.3c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
Okra (Abelmoschus esculentus L.) is known for its high nutritional value, including its content of phytochemicals. This study aims to investigate the effect of drying and freezing conditions on the phytochemical content of okra. Our results indicated that both air-drying and freezing okra during 6 months of storage showed a significant decrease in total phenolic content, flavonoid content, anthocyanin content, and antioxidant activity. Furthermore, higher levels of phytochemicals were found for okra samples treated with Na2SO4 solution when compared to untreated okra. The freezing process appeared to better preserve the content of the investigated phytochemicals when compared to the decrease after drying. Our research has determined that both immersing and freezing okra samples consistently yielded better results in the preservation of phytochemical properties over time, compared to other methods. This study is important for the food industry, as it highlights the importance of proper storage methods to retain the nutritional value of okra.
Collapse
Affiliation(s)
- Taha M. Rababah
- Department
of Nutrition and Food Technology, Jordan
University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muhammad H. Al-U’datt
- Department
of Nutrition and Food Technology, Jordan
University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Malak Angor
- Nutrition
and Food Technology, Al-Balqa Applied University, Salt 19117, Jordan
| | - Sana Gammoh
- Department
of Nutrition and Food Technology, Jordan
University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Faten Abweni
- Department
of Nutrition and Food Technology, Jordan
University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ghazi Magableh
- Industrial
Engineering Department, Yarmouk University, P.O. Box 21163, Irbid 21163, Jordan
| | - Ali Almajwal
- Department
of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sevil Yücel
- Yildiz
Technical University, Istanbul 34210, Turkey
| | - Yara AL-Rayyan
- College
of
Agriculture and Life Sciences, University
of Wisconsin-Madison, Madison, Wisconsin 53706-1314, United States
| | - Numan AL-Rayyan
- School
of Medicine and Public Health, University
of Wisconsin-Madison, Madison, Wisconsin 53706-1314, United States
- National
Agricultural Research Center, Amman 19381, Jordan
| |
Collapse
|
8
|
Song G, Guo X, Li Q, Wang D, Yuan T, Li L, Shen Q, Zheng F, Gong J. Lipidomic fingerprinting of plasmalogen-loaded zein nanoparticles during in vitro multiple-stage digestion using rapid evaporative ionization mass spectrometry. Int J Biol Macromol 2023; 237:124193. [PMID: 36990418 DOI: 10.1016/j.ijbiomac.2023.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Plasmalogens (Pls) as the hydrophobic bioactive compound have shown potential in enhancing neurological disorders. However, the bioavailability of Pls is limited because of their poor water solubility during digestion. Herein, the hollow dextran sulfate/chitosan - coated zein nanoparticles (NPs) loaded with Pls was prepared. Subsequently, a novel in situ monitoring method utilizing rapid evaporative ionization mass spectrometry (REIMS) coupled with electric soldering iron ionization (ESII) was proposed to assess the lipidomic fingerprint alteration of Pls-loaded zein NPs during in vitro multiple-stage digestion in real time. A total of 22 Pls in NPs were structurally characterized and quantitatively analyzed, and the lipidomic phenotypes at each digestion stage were evaluated by multivariate data analysis. During multiple-stage digestion, Pls were hydrolyzed to lyso-Pls and free fatty acids by phospholipases A2, while the vinyl ether bond was retained at the sn-1 position. The result revealed that the contents of Pls groups were significantly reduced (p < 0.05). The multivariate data analysis results indicated that the ions at m/z 748.28, m/z 750.69, m/z 774.38, m/z 836.58, and etc. were the significant candidate contributors for monitoring the variation of Pls fingerprints during digestion. Results demonstrated that the proposed method exhibited potential for real-time tracking the lipidomic characteristics of nutritional lipid NPs digestion in the human gastrointestinal tract.
Collapse
|
9
|
Song SS, Wang RY, Li ZH, Yang Y, Wang TT, Qing LS, Luo P. Role of simulated in vitro gastrointestinal digestion on biotransformation and bioactivity of astragalosides from Radix Astragali. J Pharm Biomed Anal 2023; 231:115414. [PMID: 37141677 DOI: 10.1016/j.jpba.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Radix Astragali (RA) is commonly used in Asian herbal therapy or food supply, and astragalosides and flavonoids are its major components with diverse pharmaceutical effects. To provide new information on the potential cardiovascular benefits of RA administered orally, the bioaccessibility of these compounds with relevant in vitro digestion parameters was determined for four digestion phases (oral, gastric, small and large intestines) by ultrahigh-performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, we compared the effects of digestion products on advanced glycation end products (AGEs)-induced intracellular reactive oxygen species (ROS) levels in a human arterial endothelial cells (HAECs) model, and studied the potential of RA against oxidative stress-related cardiovascular disease. The changes of saponins and flavonoids composition and antioxidant activity after digestion in intestines were mainly due to the astragaloside IV (AS-IV) biosynthesis involving saponins acetyl isomerization and deacetylation, and the flavonoid glycosides converted to aglycone by deglycosylation processes. All these results suggest that acetyl biotransformation of RA in small intestine directly influenced the response to oxidative stress, and might provide a reference for elucidation of the multi-component action after oral RA in cardiovascular health care.
Collapse
Affiliation(s)
- Shan-Shan Song
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Run-Yue Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Hua Li
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Yi Yang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Tian-Tian Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau.
| |
Collapse
|
10
|
Vacca M, Pinto D, Annunziato A, Ressa A, Calasso M, Pontonio E, Celano G, De Angelis M. Gluten-Free Bread Enriched with Artichoke Leaf Extract In Vitro Exerted Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2023; 12:antiox12040845. [PMID: 37107220 PMCID: PMC10135093 DOI: 10.3390/antiox12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to its high nutritional value and broad beneficial effects, the artichoke plant (Cynara cardunculus L.) is an excellent healthy food candidate. Additionally, the artichoke by-products are usually discarded even though they still contain a huge concentration of dietary fibers, phenolic acids, and other micronutrients. The present work aimed to characterize a laboratory-made gluten-free bread (B) using rice flour supplemented with a powdered extract from artichoke leaves (AEs). The AE, accounting for the 5% of titratable chlorogenic acid, was added to the experimental gluten-free bread. Accounting for different combinations, four different bread batches were prepared. To evaluate the differences, a gluten-free type-II sourdough (tII-SD) was added in two doughs (SB and SB-AE), while the related controls (YB and YB-AE) did not contain the tII-SD. Profiling the digested bread samples, SB showed the lowest glycemic index, while SB-AE showed the highest antioxidant properties. The digested samples were also fermented in fecal batches containing viable cells from fecal microbiota samples obtained from healthy donors. Based on plate counts, no clear tendencies emerged concerning the analyzed microbial patterns; by contrast, when profiling volatile organic compounds, significant differences were observed in SB-AE, exhibiting the highest scores of hydrocinnamic and cyclohexanecarboxylic acids. The fecal fermented supernatants were recovered and assayed for healthy properties on human keratinocyte cell lines against oxidative stress and for effectiveness in modulating the expression of proinflammatory cytokines in Caco-2 cells. While the first assay emphasized the contribution of AE to protect against stressor agents, the latter enlightened how the combination of SB with AE decreased the cellular TNF-α and IL1-β expression. In conclusion, this preliminary study suggests that the combination of AE with sourdough biotechnology could be a promising tool to increase the nutritional and healthy features of gluten-free bread.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project-HMPA, Giuliani SpA, 20129 Milan, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Arianna Ressa
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
11
|
Hossain A, Shahidi F. Persimmon Leaves: Nutritional, Pharmaceutical, and Industrial Potential-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:937. [PMID: 36840285 PMCID: PMC9965245 DOI: 10.3390/plants12040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Persimmon is a delicious fruit, and its leaves are considered a valuable ingredient in food, beverage, pharmaceutical, and cosmetic sectors. Traditionally, persimmon leaves (PL) are used as a functional tea in Asian culture to cure different ailments, and are also incorporated into various food and cosmeceutical products as a functional ingredient. PL mainly contain flavonoids, terpenoids, and polysaccharides, along with other constituents such as carotenoids, organic acids, chlorophylls, vitamin C, and minerals. The major phenolic compounds in PL are proanthocyanidins, quercetin, isoquercetin, catechin, flavonol glucosides, and kaempferol. Meanwhile, ursolic acid, rotungenic acid, barbinervic acid, and uvaol are the principal terpenoids. These compounds demonstrate a wide range of pharmacological activities, including antioxidant, anticancer, antihypertensive, antidiabetic, anti-obesity, anti-tyrosinase, antiallergic, and antiglaucoma properties. This review summarizes the latest information on PL, mainly distribution, traditional uses, industrial potential, and bioactive compounds, as well as their potential action mechanisms in exhibiting biological activities. In addition, the effect of seasonality and geographical locations on the content and function of these biomolecules are discussed.
Collapse
|
12
|
Effect of Processing and In Vitro Digestion on Bioactive Constituents of Powdered IV Range Carrot ( Daucus carota, L.) Wastes. Foods 2023; 12:foods12040731. [PMID: 36832803 PMCID: PMC9955751 DOI: 10.3390/foods12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Daucus carota L. is an important food crop utilized worldwide and a rich source of bioactive compounds. Carrot processing generates residues which are discarded or underused, for which using them as a source for obtaining new ingredients or products is an opportunity for the development of healthier and more sustainable diets. In the present study, the impact of different milling and drying procedures and in vitro digestion on the functional properties of carrot waste powders was evaluated. Carrot waste was transformed into powders by disruption (grinding vs. chopping), drying (freeze-drying or air-drying at 60 or 70 °C) and final milling. Powders were characterized in terms of physicochemical properties (water activity, moisture content, total soluble solids and particle size) nutraceuticals (total phenol content, total flavonoid content antioxidant activity by DPPH and ABTS methods, as well as carotenoid content (α-carotene, β-carotene, lutein, lycopene). Antioxidants and carotenoid content during in vitro gastrointestinal digestion were also evaluated; the latter in different matrices (directly, in water, in oil, and in oil-in-water emulsion). Processing allowed to reduce water activity of samples and obtain powders rich in antioxidant compounds and carotenoids. Both disruption and drying had a significant impact on powders' properties freeze-drying led to finer powders with higher carotenoid content but lower antioxidant values, whereas air-drying implied chopped air-dried powders exhibited higher phenols content and improved antioxidant activity. Simulated in vitro digestion studies revealed that digestion helps release bioactive compounds which are bound to the powder structure. The solubilization of carotenoids in oil was low, but fat co-ingestion notably increased their recovery. According to the results, carrot waste powders containing bioactive compounds could be proposed as functional ingredients to increase the nutritional value of foods, thus contributing to the concepts of more sustainable food systems and sustainable healthy diets.
Collapse
|
13
|
Rasera GB, de Camargo AC, de Castro RJS. Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Compr Rev Food Sci Food Saf 2023; 22:260-286. [PMID: 36385735 DOI: 10.1111/1541-4337.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
14
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
15
|
Qureshi MS, Jamil QA, Akhtar N, Akhtar N. Formulation and characterization of Anacyclus Pyrethrum Emulgels and its in vitro and in vivo evaluation as cosmeceutical product. J Cosmet Dermatol 2022; 21:7116-7130. [PMID: 36136047 DOI: 10.1111/jocd.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Plants containing high phenolic and flavonoids contents used widely as antioxidant agent by reducing skin photo damaging effects and play important role in skin rejuvenating. AIMS This study was performed to explore the cosmetic effects of Anacyclus Pyrethrum extract and to develop stable oil in water (O/W) emulsion base gel loaded with Anacyclus Pyrethrum 10% extract. OBJECTIVE To explore and quantify phenols and flavonoids present in Anacyclus Pyrethrum extract and determine its cosmetic effects on human skin. METHOD Emulgel formulation were developed by mixing o/w emulsion with carbopol gelling agent loaded with Anacyclus Pyrethrum (AP) extract and base gel without AP extract. In vitro study was done for the evaluation of color change, liquefaction, hardness, and pH change at different storage condition for the duration of 12 weeks. For in vivo study, emulgel applied on 13 healthy human volunteer's cheeks to evaluate its cosmetics effects and compared with placebo (base). Facial parameters including skin melanin, redness, sebum, moisture content, and skin elasticity were determined by using mexameter, sebumeter, corneometer, elastometer for the study duration of 12 weeks. RESULTS Total phenolic content in Anacyclus Pyrethrum extract was 80.04 ± 0.0043 mg GAE/g, and flavonoids were 54.64 ± 0.0076 mg QE/g. Anacyclus Pyrethrum extract found significantly effective in reducing skin photo-damage effects (p ≤ 0.05) as compared base gel. CONCLUSION Anacyclus Pyrethrum extract being rich source of flavonoid and phenolic content, acts as strong antioxidant to protect skin against photo-damaging effect and improve skin conditions.
Collapse
Affiliation(s)
| | - Qazi Adnan Jamil
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naveed Akhtar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
16
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
17
|
Zhu Y, Bai J, Qian X, Yang X, Zhou X, Zhao Y, Dong Y, Xiao X. Effect of superfine grinding on physical properties, bioaccessibility, and anti-obesity activities of bitter melon powders. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4473-4483. [PMID: 35122268 DOI: 10.1002/jsfa.11802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bitter melon is widely applied to the treatment of diabetes and obesity, but few studies focus on the processing procedure of bitter melon. The differences in physical properties, bioaccessibility, and anti-obesity activity of bitter melon powder (BMP) produced with or without superfine grinding were investigated to optimize an effective processing procedure. RESULTS Results showed that superfine grinding could improve the physical properties of BMP, represented by greater bulk density, lower water-holding capacity, and higher bioactive compounds' solubilities. Superfine grinding remarkably affected the bioaccessibility of phenolics and the antioxidant capacity of bitter melon during in vitro digestion. Meanwhile, after a 4 week treatment, 25 μm BMP showed a greater anti-obesity activity with reduction in the serum insulin levels from 16.47 to 13.10 mIU L-1 , reversing high-fat-diet-induced glucose intolerance, decreasing levels of serum lipids and hepatic lipid accumulation compared with the high-fat diet group. CONCLUSION In conclusion, superfine grinding was beneficial for improving the physical properties and bioaccessibility, simultaneously facilitating the anti-obesity activity of bitter melon, which will provide a reference for direct utilization of bitter melon as a health food to relieve symptoms of obesity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiwen Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xue Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinyu Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Yu XM, Wang J, Gao R, Gong BC, Ai CX. Integrated Metabolomic-Transcriptomic Analysis Reveals Diverse Resource of Functional Ingredients From Persimmon Leaves of Different Varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:904208. [PMID: 35693179 PMCID: PMC9175000 DOI: 10.3389/fpls.2022.904208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Persimmon leaves are used for making persimmon leaf tea or as functional ingredients due to their enrichment in flavonoids, the beneficial mineral contents, and favorable flavors contributed by volatile aroma compounds. The varieties/cultivars had a significant influence on the quality and flavor of persimmon leaf tea. In this study, the integrated metabolomic-transcriptomic analysis was conducted to investigate the potential in flavonoid biosynthesis, mineral absorption, and degradation of aromatic compounds from tender leaves of "Diospyros kaki. Heishi" (HS), "Diospyros kaki Thunb. Nishimurawase" (NM), and "Diospyros kaki Thunb. Taifu" (TF), using rootstock "Diospyros Lotus Linn" (DL) as the control. The metabolomic analysis showed that 382, 391, and 368 metabolites were differentially accumulated in the comparison of DL vs. HS, DL vs. NM, and DL vs. TF, respectively, and 229 common metabolites were obtained by comparative analysis. By RNA sequencing, 182,008 unigenes with 652 bp of mean length were annotated and 2,598, 3,503, and 3,333 differentially expressed genes (DEGs) were detected from the comparison of DL vs. HS, DL vs. NM, and DL vs. TF, respectively. After the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, 6, 6, and 3 DEGs [with | log2(fold change)| ≥ 1 simultaneously in the three comparisons] involved in flavonoid biosynthesis, mineral absorption, and degradation of aromatic compounds, respectively, were selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR) validation and the consistent trends of the relative expression level of each DEG with RNA sequencing (RNA-seq) data were observed. Based on the transcriptomic analysis and qRT-PCR validation, it was observed that the leaves of HS, NM, and TF had the greatest level of mineral absorption, flavonoid biosynthesis, and degradation of aromatic compounds, respectively. In addition, a positive correlation between the 15 DEGs and their metabolites was observed by the conjoint analysis. Thus, the tender leaves of HS, NM, and TF could be recommended for the production of persimmon leaf tea rich in mineral elements, flavonoid, and aroma compounds, respectively.
Collapse
Affiliation(s)
- Xian-Mei Yu
- Shandong Institute of Pomology, Tai’an, China
| | - Jie Wang
- Shandong Institute of Pomology, Tai’an, China
| | - Rui Gao
- Shandong Institute of Pomology, Tai’an, China
| | - Bang-Chu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | | |
Collapse
|
19
|
Particle Size Effect of Integral Carob Flour on Bioaccessibility of Bioactive Compounds during Simulated Gastrointestinal Digestion. Foods 2022; 11:foods11091272. [PMID: 35563995 PMCID: PMC9101685 DOI: 10.3390/foods11091272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Carob fruit is native to the Mediterranean region and produced mainly in Portugal, Italy, Morocco and Turkey. The production of the carob fruit in Portugal is highly extensive and sustainable. Currently, carob flour (CF) production is mainly achieved after pulp separation, despite it having been demonstrated that the seeds improve the extraction efficiency of bioactive compounds such as polyphenols, promoting human health. This study aimed to produce an integral CF through an innovative process and assess its physicochemical and bioactive properties at different particle sizes throughout simulated gastrointestinal tract (GIT) digestion. The sugar content profile obtained throughout GIT digestion indicated that sucrose, the sugar present at the highest concentration in undigested CF, was digested and broken down into simple sugars, namely glucose and fructose. The total phenolic content (TPC) and antioxidant activity obtained for the ≤100 µm fraction were in accordance and gastric digestion promoted an increase in the TPC value compared to the undigested sample. The >100 µm fractions displayed a distinct profile from the ≤100 µm fraction. This study showed that the particle size affects the sugar, antioxidant and total phenolic content of CFs and also their gastrointestinal tract digestion. The ≤100 µm fraction demonstrated the most suitable profile as a functional food ingredient.
Collapse
|
20
|
Dou ZM, Chen C, Fu X, Liu RH. A dynamic view on the chemical composition and bioactive properties of mulberry fruit using an in vitro digestion and fermentation model. Food Funct 2022; 13:4142-4157. [PMID: 35316313 DOI: 10.1039/d1fo03505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry is a kind of fruit rich in nutrients, however, the beneficial effects of mulberry fruits are related not only to the amount consumed, but also to the bioavailability of these nutrients in the organism. Hence, the aim of this study was to evaluate the bioaccessibility of main bioactive compounds from mulberry fruit using an in vitro digestion model, the changes in bioactivities as well as intestinal flora were also investigated. The results showed that the particle size of the mulberry fruit was gradually reduced (from 196.87 to 60.85 μm), as well as the phenolics and carbohydrates were significantly released during the digestion and maximized in the first 15 min in the intestinal phase (1752 ± 2.80 mg GAE per 100 g, DW; 277.402 ± 2.80 mg GE per 100 g, DW, respectively). Meanwhile, the bioaccessibility indices for phenolic compounds and carbohydrates were 55.49% and 84.62%. The antioxidant activity and α-glucosidase inhibitory effect of the mulberry fruit were positively correlated with their total content of released phenolic compounds. And the phenolic compounds (2,4,6-trihydroxybenzoic acid, cyanidin-3-O-glucoside, 3,4-dihydroxybenzoic acid and gallic acid) were the main compounds that inhibit the α-glucosidase activity by binding to its active cavity through hydrogen bonds. In addition, the mulberry fruit undigested fractions could be further fermented by intestinal microorganisms to produce short-chain fatty acids (SCFAs), which decreased the colon pH value (from 5.93 to 4.79) and the Firmicutes/Bacteroidetes ratio which was beneficial for obesity. Our results indicated that the mulberry fruit exhibited good bioactivity during digestion and fermentation, and could be a promising candidate as a dietary source of functional foods.
Collapse
Affiliation(s)
- Zu-Man Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Rui-Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Sánchez-Gutiérrez M, Gómez-García R, Carrasco E, Bascón-Villegas I, Rodríguez A, Pintado M. Quercus ilex leaf as a functional ingredient: Polyphenolic profile and antioxidant activity throughout simulated gastrointestinal digestion and antimicrobial activity. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Aksoy AS, Arici M, Yaman M. The effect of hardaliye on reducing the formation of malondialdehyde during in vitro gastrointestinal digestion of meat products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Caponio GR, Noviello M, Calabrese FM, Gambacorta G, Giannelli G, De Angelis M. Effects of Grape Pomace Polyphenols and In Vitro Gastrointestinal Digestion on Antimicrobial Activity: Recovery of Bioactive Compounds. Antioxidants (Basel) 2022; 11:567. [PMID: 35326217 PMCID: PMC8944823 DOI: 10.3390/antiox11030567] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Grape pomace (GP), a major byproduct obtained from the winemaking process, is characterized by a high amount of phenolic compounds and secondary plant metabolites, with potential beneficial effects on human health. Therefore, GP is a source of bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activity. As people are paying more attention to sustainability, in this work, we evaluate two different extractions (aqueous and hydroalcoholic) of GP bioactive compounds. In vitro simulated gastrointestinal digestion of the GP extracts was performed to improve the bioavailability and bioaccessibility of polyphenols. The antioxidant activity (ABTS and DPPH assays) and the phenolic characterization of the extracts by UHPLC-DAD were evaluated. The antimicrobial effects of GP antioxidants in combination with a probiotic (Lactiplantibacillus plantarum) on the growth of pathogenic microorganisms (Escherichia coli, Bacillus megaterium, and Listeria monocytogenes) were evaluated. As a result, an increase of antioxidant activity of aqueous GP extracts during the gastrointestinal digestion, and a contextual decrease of hydroalcoholic extracts, were detected. The main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, flavonoids, and stilbenes. Despite lower antioxidant activity, due to the presence of antimicrobial active compounds, the aqueous extracts inhibited the growth of pathogens.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (G.G.)
| | - Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (G.G.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| |
Collapse
|
24
|
Dou Z, Chen C, Huang Q, Fu X. In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chem 2022; 370:131001. [PMID: 34509148 DOI: 10.1016/j.foodchem.2021.131001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 01/22/2023]
Abstract
In vitro digestion and fermentation of blackberry fruit was investigated, and results showed that the phenolics were mainly released in gastric phase while carbohydrates in small intestinal phase. The bioaccessibility for phenolics and carbohydrates were 42.80% and 69.30%, indicating most of phenolics still remain in colon and available for intestinal flora. The total phenolics released during the digestion account for the improvement of antioxidant and hypoglycemic activities. Especially, cyanidin-3-O-glucoside with higher released amount and bioaccessibility index (63.21%), exhibited the strongest α-glucosidase inhibitory activity. After fermentation, the non-digestible fractions of blackberry affected the ecosystem of the intestinal tract by decreasing the colonic pH (△pH = 1.10), enhancing the production of SCFAs and modulating gut microbiota composition (the ratio of Firmicute/Bacteroidetes decreased from13.18 to 0.87). The results provided insights into the digestive properties and health benefits of blackberry fruit after consumption.
Collapse
Affiliation(s)
- Zuman Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
25
|
M. González C, Hernando I, Moraga G. In Vitro and In Vivo Digestion of Persimmon and Derived Products: A Review. Foods 2021; 10:foods10123083. [PMID: 34945634 PMCID: PMC8701093 DOI: 10.3390/foods10123083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
The link between nutrition and health has focused on the strategy of diet-based programs to deal with various physiological threats, such as cardiovascular disease, oxidative stress, and diabetes. Therefore, the consumption of fruits and vegetables as a safeguard for human health is increasingly important. Among fruits, the intake of persimmon is of great interest because several studies have associated its consumption with health benefits due to its high content of bioactive compounds, fiber, minerals, and vitamins. However, during digestion, some changes take place in persimmon nutritional compounds that condition their subsequent use by the human body. In vitro studies indicate different rates of recovery and bioaccessibility depending on the bioactive compound and the matrix in which they are found. In vivo studies show that the pharmacological application of persimmon or its functional components, such as proanthocyanidins, can help to prevent hyperlipidemia and hyperglycemia. Thus, persimmon and persimmon derived products have the potential to be a fruit recommended for diet therapy. This review aims to compile an updated review of the benefits of persimmon and its derived products, focusing on the in vitro and in vivo digestibility of the main nutrients and bioactive compounds.
Collapse
|
26
|
|
27
|
Liu Y, Liu Y, Zhang J, Hou H. Effects of degree of milling on phenolics and antioxidant activity of cooked rice during in vitro digestion. Cereal Chem 2021. [DOI: 10.1002/cche.10501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanxiaoxue Liu
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Yuqian Liu
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Jinli Zhang
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Hanxue Hou
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| |
Collapse
|
28
|
Ketnawa S, Hamanaka D, Wongpoomchai R, Ogawa Y, Setha S. Low intensity of high pressure processing increases extractable recovery of polyphenols and antioxidant activities of non-astringent persimmon fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Lim WXJ, Gammon CS, von Hurst P, Chepulis L, Page RA. A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups. Nutrients 2021; 13:nu13113733. [PMID: 34835989 PMCID: PMC8624625 DOI: 10.3390/nu13113733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Phenolic-rich plant extracts have been demonstrated to improve glycemic control in individuals with prediabetes. However, there is increasing evidence that people with prediabetes are not a homogeneous group but exhibit different glycemic profiles leading to the existence of prediabetes subgroups. Prediabetes subgroups have been identified as: isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), and combined impaired fasting glucose and glucose intolerance (IFG/IGT). The present review investigates human clinical trials examining the hypoglycemic potential of phenolic-rich plant extracts in prediabetes and prediabetes subgroups. Artemisia princeps Pampanini, soy (Glycine max (L.) Merrill) leaf and Citrus junos Tanaka peel have been demonstrated to improve fasting glycemia and thus may be more useful for individuals with IFG with increasing hepatic insulin resistance. In contrast, white mulberry (Morus alba Linn.) leaf, persimmon (Diospyros kaki) leaf and Acacia. Mearnsii bark were shown to improve postprandial glycemia and hence may be preferably beneficial for individuals with IGT with increasing muscle insulin resistance. Elaeis guineensis leaf was observed to improve both fasting and postprandial glycemic measures depending on the dose. Current evidence remains scarce regarding the impact of the plant extracts on glycemic control in prediabetes subgroups and therefore warrants further study.
Collapse
Affiliation(s)
- Wen Xin Janice Lim
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Cheryl S. Gammon
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
| | - Pamela von Hurst
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand;
| | - Lynne Chepulis
- Waikato Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton 3216, New Zealand;
| | - Rachel A. Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0632, New Zealand
- Correspondence: ; Tel.: +64-4-801-5799 (ext. 63462)
| |
Collapse
|
30
|
Colombo R, Ferron L, Frosi I, Papetti A. Advances in static in vitro digestion models after the COST action Infogest consensus protocol. Food Funct 2021; 12:7619-7636. [PMID: 34250533 DOI: 10.1039/d1fo01089a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro digestion models are essential to predictively evaluate the bioaccessibility and bioactivity of food molecules or natural products. Dynamic models better simulate the gastrointestinal conditions as they reproduce similar physiological environments. Despite this, static methods, also known as biochemical methods, represent a simple and useful approach for the study of different types of molecules, with a broad applicability in the nutritional, pharmaceutical, and toxicological fields. In addition, static models can be validated, avoiding the disadvantage of a difficult reproducibility of dynamic in vitro systems and inter-individual variations of in vivo experiments. A crucial point in the standardization of static models was the COST Action Infogest in 2014, which elaborated an international consensus static digestion method to harmonize experimental conditions and has general guidelines, thus allowing the comparison of studies and data. The aim of our review is to underline the impact of the Infogest consensus method and the development and evolution of in vitro static methods in the following years, with a focus on food applications.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100, Pavia, Italy.
| | | | | | | |
Collapse
|
31
|
Whey and soy proteins as wall materials for spray drying rosemary: Effects on polyphenol composition, antioxidant activity, bioaccessibility after in vitro gastrointestinal digestion and stability during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum ( Spondias purpurea L.) Ecotypes. Foods 2021; 10:foods10091995. [PMID: 34574105 PMCID: PMC8471911 DOI: 10.3390/foods10091995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
Spondias purpurea L. plum is a source of antioxidant compounds. Nevertheless, once they are consumed and go through the digestive system, these compounds may undergo changes that modify their bioaccessibility. This study aimed to evaluate the effect of in vitro gastrointestinal digestion on the total content of carotenoids (TCC), ascorbic acid (AA), phenolic compounds (TPC), flavonoids (TFC), anthocyanins (TAC), and antioxidant capacity (ABTS, DPPH) of 12 plum Spondias purpurea L. ecotypes. The plum samples were subjected to the InfoGest in vitro digestion model. TCC, AA, TPC, TFC, TAC, ABTS, and DPPH were significantly different (p ≤ 0.05) in each in vitro digestion stage. The gastric stage released the highest content of AA (64.04–78.66%) and TAC (128.45–280.50%), whereas the intestinal stage released the highest content of TCC (11.31–34.20%), TPC (68.61–95.36%), and TFC (72.76–95.57%). Carotenoids were not identified in the gastric stage whilst anthocyanins were lost at the end of the intestinal digestion. At the gastric stage, AA presented a positive and high correlation with ABTS (r: 0.83) and DPPH (r: 0.84), while, in the intestinal stage, TPC and TFC presented positive and high correlation with ABTS (r ≥ 0.8) and DPPH (r ≥ 0.8), respectively.
Collapse
|
33
|
de Morais Sousa M, de Lima A, Araujo BQ, dos Santos Rocha M, dos Santos Monção Filho E, de Sousa RP, das Graças Lopes Citó AM, Sattler JAG, de Almeida-Muradian LB, do Nascimento Nogueira N. Multi-response Optimization of a Solvent System for the Extraction of Antioxidants Polyphenols from Jambolan Fruit (Syzygium cumini (L.) Skeels). FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Bhadresha KP, Jain NK, Rawal RM. Assessing the Protective Effect of Moringa oleifera Extract against Bone Metastasis: An In Vitro Simulated Digestion Approach. Nutr Cancer 2021; 74:1023-1036. [PMID: 34170200 DOI: 10.1080/01635581.2021.1933099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moringa oleifera possesses numerous advantageous effects like anti-microbial, antioxidant, and anti-inflammatory, leaves contain a high multiplicity of the bioactive compound; however, little is identified about its bioaccessibility. The objective of this study was to assess the bioefficacy, bioaccessible and anticancer activity of Moringa oleifera in a PC3 cell line before and after simulated in vitro digestion. Digested and non-digested extracts were prepared and evaluated for total polyphenols, flavonoids, and total antioxidant capacity by spectrophotometric analysis and LCMS analysis. Cell viability, apoptosis, colony formation, cell cycle, Glutathione level, and gene expression study were tested with Moringa oleifera (MO) and digested Moringa oleifera (DMO). Results revealed that total polyphenols, total flavonoids, and TAC were significantly (P < 0.05) reduced after in vitro digestion. Furthermore, biological activity against the PC3 cell line showed that DMO extracts significant cytotoxic and reduced cell vitality compared to the MO. In addition, DMO extract had a noteworthy effect in apoptosis and inhibiting the colony formation ability; while cell cycle was blocked in S phase by both extracts but significant effect showed in DMO. These studies have increased understanding of the influence of in vitro simulation digestion on the biological activity effect of M. oleifera against prostate cancer bone metastasis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1933099 .
Collapse
Affiliation(s)
- Kinjal P Bhadresha
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Nayan K Jain
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
35
|
Seke F, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Effect of Freeze Drying and Simulated Gastrointestinal Digestion on Phenolic Metabolites and Antioxidant Property of the Natal Plum ( Carissa macrocarpa). Foods 2021; 10:foods10061420. [PMID: 34207411 PMCID: PMC8235007 DOI: 10.3390/foods10061420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Natal plums (Carissa macrocarpa) are a natural source of bioactive compounds, particularly anthocyanins, and can be consumed as a snack. This study characterized the impact of freeze drying and in vitro gastrointestinal digestion on the phenolic profile, antioxidant capacity, and α-glucosidase activity of the Natal plum (Carissa macrocarpa). The phenolic compounds were quantified using high performance liquid chromatography coupled to a diode-array detector HPLC-DAD and an ultra-performance liquid chromatograph (UPLC) with a Waters Acquity photodiode array detector (PDA) coupled to a Synapt G2 quadrupole time-of-flight (QTOF) mass spectrometer. Cyanidin-3-O-β-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside (Cy-3-G) were the dominant anthocyanins in the fresh and freeze-dried Natal plum powder. Freeze drying did not affect the concentrations of both cyanidin compounds compared to the fresh fruit. Both cyanidin compounds, ellagic acid, catechin, epicatechin syringic acid, caffeic acid, luteolin, and quercetin O-glycoside from the ingested freeze-dried Natal plum powder was quite stable in the gastric phase compared to the small intestinal phase. Cyanidin-3-O-β-sambubioside from the ingested Natal plum powder showed bioaccessibility of 32.2% compared to cyanidin-3-O-glucoside (16.3%). The degradation of anthocyanins increased the bioaccessibility of gallic acid, protocatechuic acid, coumaric acid, and ferulic acid significantly, in the small intestinal digesta. The ferric reducing antioxidant power (FRAP), 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) activities, and inhibitory effect of α-glucosidase activity decreased in the small intestinal phase. Indigenous fruits or freeze-dried powders with Cy-3-Sa can be a better source of anthocyanin than Cy-3-G due to higher bioaccessibility in the small intestinal phase.
Collapse
Affiliation(s)
- Faith Seke
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.S.); (R.M.S.)
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (V.E.M.); (T.S.)
| | - Tinotenda Shoko
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (V.E.M.); (T.S.)
| | - Retha M. Slabbert
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.S.); (R.M.S.)
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, St Lucia, QLD 4069, Australia;
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (V.E.M.); (T.S.)
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, St Lucia, QLD 4069, Australia;
- Correspondence:
| |
Collapse
|
36
|
Sousa MDM, Lima RMTD, Lima AD, Reis AC, Cavalcante AADCM, Sattler JAG, Almeida-Muradian LBD, Lima Neto JDS, Moreira-Araujo RSDR, Nogueira NDN. Antioxidant action and enzyme activity modulation by bioaccessible polyphenols from jambolan (Syzygium cumini (L.) Skeels). Food Chem 2021; 363:130353. [PMID: 34147898 DOI: 10.1016/j.foodchem.2021.130353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Jambolan is rich in antioxidant polyphenols; however, the bioactivity of these compounds remains poorly investigated. We compared changes in polyphenols and antioxidant capacity by ABTS and FRAP assays of jambolan pulp during in vitro digestion and chemical extraction and evaluated the effects of these changes on oxidative stress in wild and mutant Saccharomyces cerevisiae. Digestion and chemical extraction were performed with enzyme saline solutions, deionized water, and 50% (v/v) aqueous acetone solution. Caffeic, quinic, gallic, and ellagic acids, isomers of myricetin, catechin, and anthocyanins are bioaccessible during gastric digestion. In the duodenum, flavonoids and proanthocyanidins remained stable when the pH changed from acidic to neutral/alkaline, whereas anthocyanins were degraded when exposed to pH 7. In the colon, anthocyanins were not identified. The antioxidant activity of bioaccessible fractions is correlated with non-anthocyanin flavonoids and proanthocyanidins, reflected in the modulation of antioxidant enzymes of S. cerevisiae. The digestion process favors the release of bio-polyphenols from jambolan with preventive, scavenger, and reparative antioxidant action. They also stimulate the production and activity of Sod and Cat, strengthening the endogenous antioxidant system.
Collapse
Affiliation(s)
- Mariana de Morais Sousa
- Department of Hospitality, Leisure and Food Production, Federal Institute of Piauí, Teresina Zona Sul Campus, São Pedro, Teresina, Piauí, Brazil.
| | - Rosália Maria Tôrres de Lima
- Department of Hospitality, Leisure and Food Production, Federal Institute of Piauí, Teresina Zona Sul Campus, São Pedro, Teresina, Piauí, Brazil.
| | - Alessandro de Lima
- Department of Hospitality, Leisure and Food Production, Federal Institute of Piauí, Teresina Zona Sul Campus, São Pedro, Teresina, Piauí, Brazil.
| | - Antonielly Campinho Reis
- Department of Pharmacy, Federal University of Piauí, Ministro Petrônio Portela Campus, Ininga, Teresina, Piauí, Brazil.
| | | | - José Augusto Gasparotto Sattler
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - Lígia Bicudo de Almeida-Muradian
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - José de Sousa Lima Neto
- Laboratory of Organic Geochemistry, Federal University of Piauí, Ministro Petrônio Portela Campus, Ininga, Teresina, Piauí, Brazil.
| | | | - Nadir do Nascimento Nogueira
- Departament of Nutrition, Federal University of Piauí, Ministro Petrônio Portela Campus, Ininga, Teresina, Piauí, Brazil.
| |
Collapse
|
37
|
Ma Y, Gao J, Wei Z, Shahidi F. Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow colored pea hulls. Food Chem 2021; 337:127606. [PMID: 32799168 DOI: 10.1016/j.foodchem.2020.127606] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
To explore the effect of digestion on pea hull phenolics, an in vitro model consisting sequential oral, gastric, small and large intestinal digestions was applied to pea hulls. The phenolic content and antioxidant activity of the samples collected from these digestion steps were determined. The phenolics in these samples generally decreased in the order of sequential digestions in both red and yellow hull series, and no significant increase of total phenolic content (TPC), total flavonoid content (TFC) and individual phenolics were found in most digested groups compared with the corresponding control groups. The antioxidant activity of the samples generally changed according to their TPC and strong correlations (r > 0.92, p < 0.001) existed between them in red hull series. The present study implies that phenolics are released gradually from pea hulls during in vitro digestion and their release was mainly due to the pH of the digestion.
Collapse
Affiliation(s)
- Yilong Ma
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Jie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
38
|
Prebiotic-alginate edible coating on fresh-cut apple as a new carrier for probiotic lactobacilli and bifidobacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110483] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Acevedo-Fani A, Ochoa-Grimaldo A, Loveday SM, Singh H. Digestive dynamics of yoghurt structure impacting the release and bioaccessibility of the flavonoid rutin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Ketnawa S, Reginio FC, Thuengtung S, Ogawa Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: a review. Crit Rev Food Sci Nutr 2021; 62:4684-4705. [PMID: 33511849 DOI: 10.1080/10408398.2021.1878100] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenolic compounds, omnipresent in plants, are a crucial part of the human diet and are of considerable interest due to their antioxidant properties and other potential beneficial health effects, for instance, antidiabetic, antihypertensive, anti-inflammatory, and anticancer properties. The consumption of a variety of plant-based foods containing various phenolic compounds has increased due to published scientific verification of several health benefits. The release of phenolic compounds and change in their bioactivities examined through in vitro simulated gastrointestinal digestion could provide information on the biological potency of bioactive components, which will allow us to elucidate their metabolic pathways and bioactivities at target sites. This review reports on the recent research results focused on changes during the gastro and/or intestinal phase. The effect of digestive enzymes and digestive pH conditions during simulated digestion accounted for the variations in bioaccessibility and bioavailability of phenolic antioxidants as well as the corresponding antioxidant activities were also summarized and presented in the review.
Collapse
Affiliation(s)
- Sunantha Ketnawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Florencio Collado Reginio
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan.,Institute of Food Science and Technology, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Sukanya Thuengtung
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
41
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021; 13:pharmaceutics13020145. [PMID: 33499333 PMCID: PMC7912052 DOI: 10.3390/pharmaceutics13020145] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Non-communicable chronic diseases (NCDs) are nowadays the principal cause of death, especially in most industrialized nations. These illnesses have increased exponentially with the consumption of diets very high in fat and sugar, not to mention stress and physical inactivity among other factors. The potential impact of suboptimal diets on NCDs’ morbidity and mortality rates brings to the forefront the necessity for a new way of improving dietary habits. The literature provides extensive scientific work that presents evidence that phenolic compounds from diets have antioxidant, anti-inflammatory and antiproliferative activities that impact human health. Gut microbiota modulation by some phenolic compounds leads to favorable changes in abundance, diversity, and in the immune system. However, polyphenol’s limited bioavailability needs to be overcome, highlighting their application in new delivery systems and providing their health benefits in well-established ways such as health maintenance, treatment or adjuvant to conventional pharmacological treatments. In this context, novel dietary approaches, including new food supplements, have emerged to prevent diseases and preserve health.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Correspondence: ; Tel.: +351-96-3654-899
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
42
|
Lou X, Guo X, Wang K, Wu C, Jin Y, Lin Y, Xu H, Hanna M, Yuan L. Phenolic profiles and antioxidant activity of Crataegus pinnatifida fruit infusion and decoction and influence of in vitro gastrointestinal digestion on their digestive recovery. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Wang T, Liu L, Rakhmanova A, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Stability of bioactive compounds and in vitro gastrointestinal digestion of red beetroot jam: Effect of processing and storage. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Iftikhar M, Zhang H, Iftikhar A, Raza A, Khan M, Sui M, Wang J. Comparative assessment of functional properties, free and bound phenolic profile, antioxidant activity, and in vitro bioaccessibility of rye bran and its insoluble dietary fiber. J Food Biochem 2020; 44:e13388. [PMID: 32754957 DOI: 10.1111/jfbc.13388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
Abstract
In cereals, 95% of dietary fiber is associated with phenolic compounds. The present study examined the functional properties, phenolic composition, antioxidant activity, and in vitro bioaccessibility of phenolics and flavonoids present in rye bran (RB) and its insoluble dietary fiber (IDF). Compared to RB, higher functional properties (WHC, WRC, and OHC) were represented by IDF due to its porous structure. The IDF contained lower free but higher bound phenolics and flavonoids content as compared to RB, whereas highest total phenolics (556.6 mg GAE/100 g) and flavonoids (378.3 mg RE/100 g) content were observed in IDF. Results had identified significant differences (p < .05) in phenolic acids composition between RB and IDF determined by HPLC-MS and the total phenolic acids were higher in IDF. The antioxidant capacity of IDF was higher than RB in DPPH, FRAP, ABTS, and reducing power assay. However, the in vitro phenolics and flavonoids bioaccessibility of IDF was much lower because of its high content of bound phenolics and flavonoids. PRACTICAL APPLICATIONS: A successful comparative study between RB and its IDF has been conducted in this research work that edifies the health benefits associated with the phytochemicals linked with RB and IDF. The present study also carries rich information regarding the cereal chemistry of RB that truly facilitates the food developers to specifically focus on the bioaccessibility of phenolic compounds present in IDF and RB. The findings about the functional properties and antioxidant capacities of RB and its IDF can also open new research horizons when dealing with food product development tasks, specifically related to therapeutic and medically tailored meals for the targeted customers.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical sciences, The University of Faisalabad (TUF), Faisalabad, Pakistan
| | - Ali Raza
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Majid Khan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Miao Sui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
45
|
Plante AM, McCarthy AL, O'Halloran F. Cheese as a functional food for older adults: comparing the bioactive properties of different cheese matrices following simulated gastrointestinal in vitro digestion. Int J Food Sci Nutr 2020; 72:456-469. [PMID: 32967486 DOI: 10.1080/09637486.2020.1825644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related changes to the gastrointestinal tract (GIT) can impact how food is digested. Studying the effects of these changes can help identify functional foods for older adults. Cheese was digested using two simulated gastrointestinal in vitro digestion (SGID) models representing adult and elderly gastro-intestinal conditions. Antioxidant capacity was measured using DPPH, FRAP and TPC assays. The ability of cheese to inhibit digestive enzymes was determined by the α-glucosidase and lipase inhibition assays. Digestive aging influenced the bioactivity of cheese, as elderly digestates had significantly lower (p < 0.05) antioxidant, α-glucosidase and lipase inhibitory properties compared to adult digestates. However, soft cheese (feta, goats', brie) demonstrated greatest potential with comparable radical scavenging properties and lipase inhibition, greatest FRAP and α-glucosidase inhibitory potential. Despite age-related changes, the bioactive properties of cheese were evident following digestion with an older adult SGID model, suggesting cheese has potential as a functional food for older adults.
Collapse
Affiliation(s)
- Aimee M Plante
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Aoife L McCarthy
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Fiona O'Halloran
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| |
Collapse
|
46
|
Balakrishnan G, Schneider RG. Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Li CX, Zhao XH, Zuo WF, Zhang TL, Zhang ZY, Chen XS. Phytochemical profiles, antioxidant, and antiproliferative activities of red-fleshed apple as affected by in vitro digestion. J Food Sci 2020; 85:2952-2959. [PMID: 32790197 DOI: 10.1111/1750-3841.15358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to characterize the phenolic profiles in the extracts and digesta (after in vitro digestion) of different red-fleshed apple fruit parts and to assess the effects of digestion on the in vitro antioxidant capacity and antiproliferative activity. The main polyphenols were identified by UPLC-MS/MS and HPLC. Our results indicate that the digesta had less total phenolics, flavonoids, and anthocyanins, but more free phenolic acids, than the extracts. An analysis of the in vitro antioxidant capacity (including ABTS radical scavenging activity, DPPH radical-scavenging capacity, ferric reducing antioxidant power [FRAP], and cellular antioxidant activity [CAA]) revealed that the digestion decreased the ABTS, DPPH, and FRAP values, but increased the CAA values, relative to the corresponding values for extracts. These results suggest that the digestion improved the effectiveness of the phenolic substances. Moreover, our findings imply that the digestion promoted the antiproliferative activity of red-fleshed apple peels and flesh relative to the extracts. Future in vivo investigations are warranted based on the results of the current study. PRACTICAL APPLICATION: The effects of an in vitro digestion on the phenolic compounds as well as the antioxidative and antiproliferative activities of red-fleshed apple were evaluated. The resulting data may clarify the bioavailability of the polyphenols in red-fleshed apple and enable scientists and consumers to exploit natural polyphenols.
Collapse
Affiliation(s)
- Cui Xia Li
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, 271021, China.,State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Xian Hua Zhao
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, 271021, China
| | - Wei Fang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Tian Liang Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Zong Ying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Xue Sen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| |
Collapse
|
48
|
Bas-Bellver C, Andrés C, Seguí L, Barrera C, Jiménez-Hernández N, Artacho A, Betoret N, Gosalbes MJ. Valorization of Persimmon and Blueberry Byproducts to Obtain Functional Powders: In Vitro Digestion and Fermentation by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8080-8090. [PMID: 32633956 DOI: 10.1021/acs.jafc.0c02088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Globalization of fruit and vegetable markets generates overproduction, surpluses, and potentially valuable residues. The valorization of these byproducts constitutes a challenge, to ensure sustainability and reintroduce them into the food chain. This work focuses on blueberry and persimmon residues, rich in polyphenols and carotenoids, to obtain powders with high added value to be used as ingredients in food formulation. These powders have been characterized, and the changes in the bioactive compounds in in vitro gastrointestinal digestion have been evaluated. The results indicated that the type of residue, the drying process, as well as the content and type of fiber determine the release of antioxidants during digestion. In vitro colonic fermentations were also performed, and it was observed that the characteristics of digested powders had an effect on the composition of the growing microbial community. Thus, carotenoids and anthocyanins maintain an interplay with microbiota that could be beneficial for human health.
Collapse
Affiliation(s)
- Claudia Bas-Bellver
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Cristina Andrés
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Lucía Seguí
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Cristina Barrera
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Nuria Jiménez-Hernández
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes, Universitat de València, 46010 València, Spain
- CIBER en Epidemiologı́a y Salud Pública, 28029 Madrid, Spain
| | - Alejandro Artacho
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes, Universitat de València, 46010 València, Spain
| | - Noelia Betoret
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - María José Gosalbes
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes, Universitat de València, 46010 València, Spain
- CIBER en Epidemiologı́a y Salud Pública, 28029 Madrid, Spain
| |
Collapse
|
49
|
Xiong J, Chan YH, Rathinasabapathy T, Grace MH, Komarnytsky S, Lila MA. Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chem 2020; 331:127279. [PMID: 32563800 DOI: 10.1016/j.foodchem.2020.127279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Stability of protein-polyphenol aggregate particles, created by complexing polyphenols from blueberry and muscadine grape pomaces with a rice-pea protein isolate blend, was evaluated in an in vitro gastrointestinal model. Recovery index (RI; % total phenolics present post-digestion) was 69% and 62% from blueberry and muscadine grape protein-polyphenol particles, compared to 23% and 31% for the respective pomace extracts. Anthocyanins RI was 52% and 42% from particles (6% and 13% from pomace extracts), and proanthocyanidins RI was 77% and 73% from particles (25% and 14% from pomace extracts), from blueberry and grape, respectively. Protein-polyphenol particle digests retained 1.5 to 2-fold higher antioxidant capacity and suppressed the expression of pro-inflammatory cytokines, iNOS, IL6, and IL1β, compared to unmodified extract digests, which only suppressed IL6. Protein-polyphenol particles as a delivery vehicle in foods may confer better stability during gastrointestinal transit, allow protected polyphenols to reach the gut microbiota, and preserve polyphenol bioactivity.
Collapse
Affiliation(s)
- Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Yu Hsuan Chan
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA; School of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Slavko Komarnytsky
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
50
|
Holkem AT, Favaro-Trindade CS, Lacroix M. Study of anticancer properties of proanthocyanidin-rich cinnamon extract in combination with Bifidobacterium animalis subsp. lactis BLC1 and resistance of these free and co-encapsulated materials under in vitro simulated gastrointestinal conditions. Food Res Int 2020; 134:109274. [PMID: 32517954 DOI: 10.1016/j.foodres.2020.109274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/25/2022]
Abstract
Bifidobacterium animalis subsp. lactis (BLC1) and proanthocyanidin-rich cinnamon extract (PRCE) have many beneficial health properties. However, they are very sensitive materials; co-encapsulation is one alternative to protect them. Therefore, the objective of this work was to evaluate the anticancer properties of free PRCE and in combination with BLC1 and the resistance of these free and co-encapsulated materials under in vitro simulated gastrointestinal conditions. In terms of anticancer proprieties, PRCE had an IC50 value close to 30 mg extract/mL for Hepa 1c1c7 and HT-29 cells and resulted in a significantly higher percentage (p ≤ 0.05) of total apoptotic and necrotic cells compared to treatment in combination with BLC1 (PRCE + BLC1), with values above 31.66% in both cells. For the quinone reductase (QR) assay, there was a significant increase only for PRCE + BLC1 treatment, with a fold induction of 5.11 ± 0.56 for HT-29. The resistance of the encapsulated materials was greater than for the free form after 240 min of simulated gastrointestinal conditions. The combination of these materials in a microcapsule is advantageous because it protects them under gastrointestinal conditions, allowing them to be released into the intestine and act in the early stages of colon cancer.
Collapse
Affiliation(s)
- Augusto Tasch Holkem
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil; Research Laboratory in Sciences Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil
| | - Monique Lacroix
- Research Laboratory in Sciences Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|