1
|
Henninger C, Stadelmann T, Heid D, Ochsenreither K, Eisele T. Ion chromatography coupled with optical emission spectrometry (IC-ICP-OES) methodology for the analysis of inositol phosphates in food and feed. Food Chem 2025; 463:141437. [PMID: 39413724 DOI: 10.1016/j.foodchem.2024.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
This study presents the development of ion chromatography coupled with inductively coupled plasma optical emission spectrometry (IC-ICP-OES) for the simultaneous determination and quantification of inositol phosphates (InsPx). Using a CarboPac PA100 column with a nitric acid-water gradient, 28 InsPx isomers (InsP6 to InsP2) were separated within 33 min. The method eliminates baseline drift and post-column derivatization thereby simplifying detection and quantification. It achieves low detection limits of 63 μg/L P across a range of 63-3200 μg/L P. Various extraction and sample preparation methods for food and feed matrices were tested, including acidic and alkaline agents, C18 SPE and spin concentrators. The analysis shows intra-day and intra-laboratory reproducibility with deviations smaller than 1 % for standard solutions and under 4 % for feed samples (80 % recovery rate of phytate). This methodology is applicable to explore enzymatic degradation pathways and the analysis of InsPx in complex food and animal feed matrices.
Collapse
Affiliation(s)
- Corinna Henninger
- Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Badstraße 24, 77652 Offenburg, Germany; Karlsruhe Institute of Technology (KIT), Department of Chemical and Process Engineering, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Tobias Stadelmann
- Picea Biosolutions GmbH, Carl-Benz-Straße 30, 77797 Ohlsbach, Germany
| | - Daniel Heid
- Picea Biosolutions GmbH, Carl-Benz-Straße 30, 77797 Ohlsbach, Germany
| | - Katrin Ochsenreither
- Karlsruhe Institute of Technology (KIT), Department of Chemical and Process Engineering, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Thomas Eisele
- Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Badstraße 24, 77652 Offenburg, Germany.
| |
Collapse
|
2
|
Li B, Zhou Y, Wen L, Yang B, Farag MA, Jiang Y. The occurrence, role, and management strategies for phytic acid in foods. Compr Rev Food Sci Food Saf 2024; 23:e13416. [PMID: 39136997 DOI: 10.1111/1541-4337.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
Collapse
Affiliation(s)
- Bailin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Peng X, Li H, Xu W, Yang Q, Li D, Fan T, Li B, Ding J, Ku W, Deng D, Zhu F, Xiao L, Wang R. The AtMINPP Gene, Encoding a Multiple Inositol Polyphosphate Phosphatase, Coordinates a Novel Crosstalk between Phytic Acid Metabolism and Ethylene Signal Transduction in Leaf Senescence. Int J Mol Sci 2024; 25:8969. [PMID: 39201658 PMCID: PMC11354338 DOI: 10.3390/ijms25168969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.
Collapse
Affiliation(s)
- Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Qian Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Tingting Fan
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Bin Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Junhui Ding
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| |
Collapse
|
4
|
Şimşek Kuş N. Biological Properties of Cyclitols and Their Derivatives. Chem Biodivers 2024; 21:e202301064. [PMID: 37824100 DOI: 10.1002/cbdv.202301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Cyclitols are polyhydroxy cycloalkanes, each containing at least three hydroxyls attached to a different ring carbon atom. The most important cyclitol derivatives are inositols, quercitols, conduritols and pinitols, which form a group of naturally occurring polyhydric alcohols and are widely found in plants. In addition, synthetic production of cyclitols has gained importance in recent years. Cylitols are molecules synthesized in plants as a precaution against salt or water stress. They have important functions in cell functioning as they exhibit important properties such as membrane biogenesis, ion channel physiology, signal transduction, osmoregulation, phosphate storage, cell wall formation and antioxidant activity. The biological activities of these very important molecules, obtained both synthetically and from the extraction of plants, are described in this review.
Collapse
Affiliation(s)
- Nermin Şimşek Kuş
- Department of Chemistry, Faculty of Sciences, Mersin University, Yenişehir, Mersin, Turkey
| |
Collapse
|
5
|
Lim SM, Choi DS, Chung MN, Lee JS, Kang YS, Choi KH, Moon JY, Nam SS, Jung MY. High impacts of cultivar and home-cooking practice on the content of free myo-inositol, a bioavailable health-promoting cyclitol, in sweet potato. J Food Sci 2023; 88:772-783. [PMID: 36633256 DOI: 10.1111/1750-3841.16456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Free myo-inositol is a bioavailable form of a cyclitol having various health-promoting activities. The impact of cultivar and home-cooking practice on the content of free myo-inositol in sweet potatoes (12 cultivars grown in 2 different locations) was studied. A GC-MS/MS method following in situ trimethylsilylation was established and validated to determine free myo-inositol. The established analytical method was sensitive, precise, and accurate. It was found that free myo-inositol content in sweet potato varied greatly (sevenfolds) with cultivar, ranging from 377.1 to 2628.3 mg/kg dw. A cultivar Poongwon-mi was found to be an exceptionally rich source of free myo-inositol (2628.3 mg/kg dw). Home-cooking practice markedly increased free myo-inositol content (maximum 240%). Baking showed the highest impact on the increase in free myo-inositol, followed by steaming, microwave cooking, and boiling, in decreasing order. This represents the first report of the remarkably high impact of cultivar and home-cooking practice on the free myo-inositol content in sweet potato. PRACTICAL APPLICATION: The free myo-inositol content in sweet potato varied greatly with the cultivars. Poongwon-mi contained a surprisingly high content of free myo-inositol. Home-cooking dramatically increased the free myo-inositol content.
Collapse
Affiliation(s)
- Su Min Lim
- Department of Food Science and Biotechnology, Graduate School, Woosuk University, Wanju-gun Jeonbuk Province, Republic of Korea
| | - Dong Seong Choi
- Department of Food Science and Biotechnology, Graduate School, Woosuk University, Wanju-gun Jeonbuk Province, Republic of Korea
| | - Mi-Nam Chung
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan, Jeonnam, Republic of Korea
| | - Jae-Sun Lee
- Chungbuk Agricultural Research & Extension Services, Cheongju, Chungbuk, Republic of Korea
| | - Young-Sik Kang
- Chungnam Agricultural Research & Extension Services, Yesan Chungcheong, Republic of Korea
| | - Kyu-Hwan Choi
- Jeonbuk Agricultural Research & Extension Services, Iksan, Jeonbuk, Republic of Korea
| | - Jin-Young Moon
- Gyeongnam Agricultural Research & Extension Services, Jinju Gyeongsang, Republic of Korea
| | - Sang-Sik Nam
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan, Jeonnam, Republic of Korea
| | - Mun Yhung Jung
- Department of Food Science and Biotechnology, Graduate School, Woosuk University, Wanju-gun Jeonbuk Province, Republic of Korea
| |
Collapse
|
6
|
Ito M, Fujii N, Kohara S, Hori S, Tanaka M, Wittwer C, Kikuchi K, Iijima T, Kakimoto Y, Hirabayashi K, Kurotaki D, Jessen HJ, Saiardi A, Nagata E. Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP 7 metabolism in the enteric nervous system. J Biol Chem 2023; 299:102928. [PMID: 36681123 PMCID: PMC9957762 DOI: 10.1016/j.jbc.2023.102928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shuho Hori
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | | | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
7
|
Siracusa L, Napoli E, Ruberto G. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022; 27:1525. [PMID: 35268625 PMCID: PMC8912080 DOI: 10.3390/molecules27051525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inositols (Ins) are natural compounds largely widespread in plants and animals. Bio-sinthetically they derive from sugars, possessing a molecular structure very similar to the simple sugars, and this aspect concurs to define them as primary metabolites, even though it is much more correct to place them at the boundary between primary and secondary metabolites. This dichotomy is well represented by the fact that as primary metabolites they are essential cellular components in the form of phospholipid derivatives, while as secondary metabolites they are involved in a plethora of signaling pathways playing an important role in the surviving of living organisms. myo-Inositol is the most important and widespread compound of this family, it derives directly from d-glucose, and all known inositols, including stereoisomers and derivatives, are the results of metabolic processes on this unique molecule. In this review, we report the new insights of these compounds and their derivatives concerning their occurrence in Nature with a particular emphasis on the plant of the Mediterranean area, as well as the new developments about their biological effectiveness.
Collapse
Affiliation(s)
| | | | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| |
Collapse
|
8
|
Tanilas K, Kriščiunaite T. Development of LC-MS-ESI-TOF method for quantification of phytates in food using 13C-labelled maize as internal standard. Anal Bioanal Chem 2022; 414:1539-1552. [PMID: 35024913 DOI: 10.1007/s00216-021-03770-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
In this work, the LC-MS-ESI-TOF method for simultaneous determination of phytates (inositol mono-, bis-, tris-, tetrakis-, pentakis-, and hexakisphosphates, abbreviated to IP1, IP2, IP3, IP4, IP5, and IP6, respectively) in food samples was developed and validated. The suitability of U-13C-labelled maize as a source for labelled internal standards for quantification of phytates was elucidated. The effectiveness of liberating IP1, IP2, IP3, IP4, and IP5 from phytic acid extracted form U-13C-labelled maize was evaluated for a variety of hydrolysis conditions, including enzymatic and acid hydrolysis. Enzymatic degradation of phytic acid using phytase (PHYZYME XP 5000 L) was very effective; phytic acid was degraded to lower phytates, but their distribution was unequal. Chemical hydrolysis was conducted under acidic conditions using hydrochloric acid and elevated temperatures up to 140 °C. The highest yields of IP4, IP5, and IP6 and of IP1, IP2, and IP3 were achieved by chemical hydrolysis at 105 °C for 7 h and 24 h, respectively. Thus, a combination of these two chemical treatments was selected for internal standard production. The developed LC-MS-ESI-TOF method was tested and successfully validated using plant-based food samples with different distribution of phytates. With this method, different forms of phytates in foods were separated and quantified simultaneously within 20 min. The high accuracy and precision of the developed method were guaranteed using respective labelled internal standards derived from U-13C-labelled maize.
Collapse
Affiliation(s)
- Kristel Tanilas
- Centre of Food and Fermentation Technologies (TFTAK), Akadeemia tee 15a, 12618, Tallinn, Estonia.
| | - Tiina Kriščiunaite
- Centre of Food and Fermentation Technologies (TFTAK), Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|
9
|
Calvo MS, Uribarri J. Perspective: Plant-based Whole-Grain Foods for Chronic Kidney Disease: The Phytate-Phosphorus Conundrum. Adv Nutr 2021; 12:2056-2067. [PMID: 34192744 PMCID: PMC8634414 DOI: 10.1093/advances/nmab066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Restriction of dietary phosphorus intake is an important component of good clinical practice in kidney failure patients, particularly after dialysis initiation. Greater consumption of predominantly plant-based diets, including phytate-rich foods, is increasingly recommended for health maintenance/disease prevention in this population, with the implicit assumption that phytate-phosphorus in whole-grain cereals, legumes, pulses, and nuts is poorly absorbed. Review of human interventions with diets high in phytate-phosphorus indeed suggests an absorption of at least 50%, still less than animal protein-bound phosphorus, but higher than the generally believed 10-30%. Factors largely ignored up to now, but of potential influence on phytate-phosphorus bioavailability, include effect of food processing in releasing phosphorus, action of colonic bacteria that are able to release inorganic phosphorus, and capacity of the colon to absorb phosphorus. These issues may become increasingly important as new plant-based alternatives to meats, all containing phytate, are being rapidly introduced in the market.
Collapse
Affiliation(s)
- Mona S Calvo
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaime Uribarri
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Tanaka Y, Shimanaka Y, Caddeo A, Kubo T, Mao Y, Kubota T, Kubota N, Yamauchi T, Mancina RM, Baselli G, Luukkonen P, Pihlajamäki J, Yki-Järvinen H, Valenti L, Arai H, Romeo S, Kono N. LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut 2021; 70:180-193. [PMID: 32253259 PMCID: PMC7788230 DOI: 10.1136/gutjnl-2020-320646] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a common prelude to cirrhosis and hepatocellular carcinoma. The genetic rs641738 C>T variant in the lysophosphatidylinositol acyltransferase 1 (LPIAT1)/membrane bound O-acyltransferase domain-containing 7, which incorporates arachidonic acid into phosphatidylinositol (PI), is associated with the entire spectrum of NAFLD. In this study, we investigated the mechanism underlying this association in mice and cultured human hepatocytes. DESIGN We generated the hepatocyte-specific Lpiat1 knockout mice to investigate the function of Lpiat1 in vivo. We also depleted LPIAT1 in cultured human hepatic cells using CRISPR-Cas9 systems or siRNA. The effect of LPIAT1-depletion on liver fibrosis was examined in mice fed high fat diet and in liver spheroids. Lipid species were measured using liquid chromatography-electrospray ionisation mass spectrometry. Lipid metabolism was analysed using radiolabeled glycerol or fatty acids. RESULTS The hepatocyte-specific Lpiat1 knockout mice developed hepatic steatosis spontaneously, and hepatic fibrosis on high fat diet feeding. Depletion of LPIAT1 in cultured hepatic cells and in spheroids caused triglyceride accumulation and collagen deposition. The increase in hepatocyte fat content was due to a higher triglyceride synthesis fueled by a non-canonical pathway. Indeed, reduction in the PI acyl chain remodelling caused a high PI turnover, by stimulating at the same time PI synthesis and breakdown. The degradation of PI was mediated by a phospholipase C, which produces diacylglycerol, a precursor of triglyceride. CONCLUSION We found a novel pathway fueling triglyceride synthesis in hepatocytes, by a direct metabolic flow of PI into triglycerides. Our findings provide an insight into the pathogenesis and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Shimanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takuya Kubo
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanli Mao
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy,Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Panu Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland,Department of Internal Medicine, Yale University, New Haven, CT, USA, Yale University, New Haven, Connecticut, USA
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy,Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan,Present address: Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Clinical Nutrition Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Alorku K, Manoj M, Yuan A. A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: a review. RSC Adv 2020; 10:40923-40939. [PMID: 35519223 PMCID: PMC9057773 DOI: 10.1039/d0ra08529d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
The engineering of calcium-based phosphate materials at the nanoscale gains several unique properties compared to the bulky state. The effort to scale down, e.g., from bulky state to nanoscale in order to control the morphology and improve structural properties requires the use of varying reagents that can be detrimental to the environment. A typical example of these materials is hydroxyapatite (HAp), one of the well-known calcium phosphate materials, which has a close resemblance to human bone tissue. HAp has valuable applications in catalysis, drug delivery, bone and dental implant formation, and adsorption. Hydroxyapatite-based nanomaterials synthesized through conventional routes make use of reagents that are not environmental friendly and are very costly. Since the current research trends are geared towards producing/synthesizing nanomaterials through an eco-friendly approach, there is the need to consider the techniques and reagents involved in the synthesis of HAp. This review touches on the possible replacement of such synthetic chemical reagents, synthesis routes, and toxic capping agents with plant extracts for synthesizing HAp-based nanomaterials for multi-functional applications. The influence of biomolecules from plants on synthesized HAps and the attainable mechanism during these green approaches are discussed. Viable future modifications of the methods used to obtain extracts from plants are also studied.
Collapse
Affiliation(s)
- Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province PR China +86-511-85639001
| | - M Manoj
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province PR China +86-511-85639001
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province PR China +86-511-85639001
| |
Collapse
|
12
|
Quantitative analysis of inositol phosphate contents in oat products using an anion exchange chromatographic method. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Silva JGS, Rebellato AP, Caramês ETDS, Greiner R, Pallone JAL. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Res Int 2020; 130:108993. [PMID: 32156408 DOI: 10.1016/j.foodres.2020.108993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 01/25/2023]
Abstract
Consumption of plant-based beverages (PBB) is a growing trend; and have been used as viable substitutes for dairy based products. To date, no study has comparatively analyzed mineral composition and effect of in vitro digestion on the bioaccessibility of different PBB. The aim of this research was to investigate the content of essential minerals (calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn)) and to estimate the effect of in vitro digestion in plant-based beverages, and their antioxidant bioactive compounds (phenolic compounds and antioxidant capacity). Moreover, the presence of antinutritional factors, such as myo-inositol phosphates fractions, were evaluated. Samples of PBB (rice, cashew nut, almond, peanut, coconut, oat, soy, blended or not with another ingredients, fortified with minerals or naturally present) and milk for comparison were evaluated. TPC ranged from 0.2 mg GAEq/L for coconut to 12.4 mg GAEq/L for rice and, the antioxidant capacity (DPPH) ranged from 3.1 to 306.5 µmol TE/L for samples containing peanut and oat, respectively. Only a few samples presented myo-inositol phosphates fractions in their composition, mostly IP5 and IP6, especially cashew nut beverages. Mineral content showed a wide range for Ca, ranging from 10 to 1697.33 mg/L for rice and coconut, respectively. The Mg content ranged from 6.29 to 251.23-268.43 mg/L for rice and cashew nut beverages, respectively. Fe content ranged from 0.76 mg/L to 12.89 mg/L for the samples of rice. Zinc content ranged from 0.57 mg/L to 8.13 mg/L for samples of oat and soy, respectively. Significant variation was observed for Ca (8.2-306.6 mg/L) and Mg (1.9-107.4 mg/L) dialyzed between the beverages, with lower concentrations of Fe (1.0 mg/L) and Zn (0.5 mg/L) in dialyzed fractions. This study provides at least 975 analytically determined laboratory results, providing important information for characterization and comparison of different plant-based beverages.
Collapse
Affiliation(s)
| | - Ana Paula Rebellato
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | | |
Collapse
|
14
|
Abstract
The coupling of anion exchange high-pressure liquid chromatography (HPLC) with electrospray ionization mass spectrometry (ESI-MS) allows for the simultaneous detection of the six forms of inositol phosphate (InsP). Here we describe a rapid quantitative analysis of InsPs by HPLC-ESI-MS, which can be applied to a wide array of sample types. With this method, InsPs could be separated and detected within 20 min of sample injection. The detection limit was as low as 25 pmol (i.e., ca. 2 nmol/g sample) for each type of InsP, which is particularly important for analytes that are often present at low abundance in nature.
Collapse
|
15
|
Grases F, Costa-Bauza A. Key Aspects of Myo-Inositol Hexaphosphate (Phytate) and Pathological Calcifications. Molecules 2019; 24:molecules24244434. [PMID: 31817119 PMCID: PMC6943413 DOI: 10.3390/molecules24244434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Phytate (myo-inositol hexaphosphate, InsP6) is an important component of seeds, legumes, nuts, and whole cereals. Although this molecule was discovered in 1855, its biological effects as an antinutrient was first described in 1940. The antinutrient effect of phytate results because it can decrease the bioavailability of important minerals under certain circumstances. However, during the past 30 years, researchers have identified many important health benefits of phytate. Thus, 150 years have elapsed since the discovery of phytate to the first descriptions of its beneficial effects. This long delay may be due to the difficulty in determining phytate in biological media, and because phytate dephosphorylation generates many derivatives (InsPs) that also have important biological functions. This paper describes the role of InsP6 in blocking the development of pathological calcifications. Thus, in vitro studies have shown that InsP6 and its hydrolysates (InsPs), as well as pyrophosphate, bisphosphonates, and other polyphosphates, have high capacity to inhibit calcium salt crystallization. Oral or topical administration of phytate in vivo significantly decreases the development of pathological calcifications, although the details of the underlying mechanism are uncertain. Moreover, oral or topical administration of InsP6 also leads to increased urinary excretion of mixtures of different InsPs; in the absence of InsP6 administration, only InsP2 occurs at detectable levels in urine.
Collapse
|
16
|
Lee LY, Mitchell AE. Determination of d-myo-inositol phosphates in 'activated' raw almonds using anion-exchange chromatography coupled with tandem mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:117-123. [PMID: 29808577 DOI: 10.1002/jsfa.9151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Activated almonds are raw almonds that have been soaked in water for 12-24 h at room temperature, sometimes followed by a 24 h drying period at low temperature (50 ± 5 °C). This treatment is thought to enhance the nutrient bioavailability of almonds by degrading nutrient inhibitors, such as phytic acid or d-myo-inositol hexaphosphate (InsP6 ), through the release of phytase or passive diffusion of InsP6 into the soaking water. Over a wide pH range, InsP6 is a negatively charged compound that limits the absorption of essential nutrients by forming insoluble complexes with minerals such as iron and zinc. It is hypothesized that hydrating the seed during soaking triggers InsP6 degradation into lower myo-inositol phosphates with less binding capacity. RESULTS Anion-exchange chromatography coupled with tandem mass spectrometry was used to quantify myo-inositol mono-, di-, tris-, tetra-, penta-, and hexaphosphates (InsP1-6 ) in raw pasteurized activated almonds. At least 24 h of soaking at ambient temperature was required to reduce InsP6 content from 14.71 to 14.01 µmol g-1 . CONCLUSIONS The reduction in InsP6 is statistically significant (P < 0.05) after 24 h of activation, but only represents a 4.75% decrease from the unsoaked almonds. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianna Y Lee
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Alyson E Mitchell
- Department of Food Science and Technology, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Ito M, Fujii N, Wittwer C, Sasaki A, Tanaka M, Bittner T, Jessen HJ, Saiardi A, Takizawa S, Nagata E. Hydrophilic interaction liquid chromatography-tandem mass spectrometry for the quantitative analysis of mammalian-derived inositol poly/pyrophosphates. J Chromatogr A 2018; 1573:87-97. [PMID: 30220429 DOI: 10.1016/j.chroma.2018.08.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Although myo-inositol pyrophosphates such as diphosphoinositol pentakisphosphate (InsP7) are important in biology, little quantitative information is available regarding their presence in mammalian organisms owing to the technical difficulties associated with accurately detecting these materials in biological samples. We have developed an analytical method whereby InsP7 and its precursor inositol hexakisphosphate (InsP6) are determined directly and sensitively using tandem mass spectrometry coupled with hydrophilic interaction liquid chromatography (HILIC). InsP6 and InsP7 peak symmetry is influenced greatly by the buffer salt composition and pH of the mobile phase used in HILIC analysis. The use of 300 mM ammonium carbonate (pH 10.5) as an aqueous mobile phase resolves InsP6 and InsP7 on a polymer-based amino HILIC column with minimal peak tailing. Method validation shows that InsP6 and InsP7 can be quantitated from 20-500 pmol with minimal intra-day/inter-day variance in peak area and retention time. The concentration of InsP6 in C57BL/6J mouse brain (40.68 ± 3.84 pmol/mg wet weight) is successfully determined. HILIC‒MS/MS analysis using HEK293 culture cells confirms previous observations that InsP7 is induced by NaF treatment and ectopic expression of InsP6K2, a primary kinase for InsP7 synthesis. Furthermore, this analysis reveals the abundance of InsP6 (50.46 ± 18.57 pmol/106 cells) and scarcity of InsP7 in human blood cells. The results demonstrate that HILIC‒MS/MS analysis can quantitate endogenous InsP6 and InsP7 in mouse and human samples, and we expect that the method will contribute to further understanding of InsP7 functions in mammalian pathobiology.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ayumi Sasaki
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Tamara Bittner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan.
| |
Collapse
|
18
|
Grases F, Costa-Bauzá A, Berga F, Rodríguez A, Gomila RM, Martorell G, Martínez-Cignoni MR. Evaluation of inositol phosphates in urine after topical administration of myo-inositol hexaphosphate to female Wistar rats. Life Sci 2017; 192:33-37. [PMID: 29155299 DOI: 10.1016/j.lfs.2017.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
AIMS Previous studies demonstrated a remarkable increase of urinary InsP6 by topical administration. However, the methodology used for InsP6 analysis was not specific. The aim of this paper is to measure urinary inositol phosphates InsPs using more advanced methodologies and to compare the results with those obtained by the non-specific method. MATERIALS AND METHODS We fed 12 female rats with a diet without InsP6 for 16days. Then, we administered a topical InsP6 gel at high doses for 7days (50mgInsP6/day) or at low doses for 28days (20mgInsP6/day). We measured urine levels InsPs using a nonspecific method (based on the ability of InsPs to complex Al3+) and levels of InsP6 by a specific method (using polyacrylamide gel electrophoresis). Identification of different InsPs was performed by MS. KEY FINDINGS At baseline, after dietary deprivation of InsP6, rats only excreted InsP2 in their urine, and there was no detectable InsP6 or other InsPs. Rats given the high dose treatment for 7days had abundant urinary InsP6, but also had other InsPs in their urine; cessation of InsP6 administration led to decreased levels of urinary InsPs. Rats given the low dose treatment for 28days had increasing levels of urinary InsPs over time. The maximum urinary InsP6 was at 21days, after which InsPs excretion decreased. SIGNIFICANCE We conclude that the skin can absorb InsP6 from a topical gel, and that InsP6 is excreted in the urine, along with other InsPs (InsP5, InsP4, InsP3, and InsP2).
Collapse
Affiliation(s)
- F Grases
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain.
| | - A Costa-Bauzá
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - F Berga
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - A Rodríguez
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - R M Gomila
- Serveis Cientificotècnics, University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - G Martorell
- Serveis Cientificotècnics, University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - M R Martínez-Cignoni
- Grup de Metabolisme Energètic i Nutrició, Dept. Biologia Fonamental i Ciències de la Salut, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
19
|
Duong QH, Clark KD, Lapsley KG, Pegg RB. Determination of myo -inositol phosphates in tree nuts and grain fractions by HPLC–ESI–MS. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|