1
|
Marković J, Salević-Jelić A, Milinčić D, Gašić U, Pavlović V, Rabrenović B, Pešić M, Lević S, Mihajlović D, Nedović V. Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. Food Chem 2024; 464:141777. [PMID: 39471560 DOI: 10.1016/j.foodchem.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to encapsulate cold-pressed horseradish leaf juice within maltodextrin/alginate (MD/AL), maltodextrin/guar gum (MD/GG), and maltodextrin/gum Arabic (MD/GA) by spray-drying, to characterize the encapsulates, and to test their potential as mayonnaise oxidation-preventing ingredients. The encapsulates exhibited desirable physicochemical, morphological, structural, and thermal properties, highlighting MD/GA-containing encapsulates, especially regarding high encapsulation yield (78.50 %). Also, encapsulates contained a significant amount of phenolics, which were stable during freezer storage. The encapsulates successfully delayed the mayonnaise oxidation: 31.91-38.94 % more than the synthetic antioxidant ethylenediaminetetraacetic acid, especially highlighting MD/AL-containing encapsulates. Also, the encapsulates improved product quality with a higher pH and lower acidity after storage compared to the controls. Overall acceptability of encapsulates-containing mayonnaises and commercial mayonnaise did not differ significantly. This study contributes to sustainable development by providing new insights into the valorization of horseradish leaves, as a promising alternative to synthetic additives to prolong the oxidative stability and shelf-life of high-oil-containing foods.
Collapse
Affiliation(s)
- Jovana Marković
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Ana Salević-Jelić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Danijel Milinčić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Plant Physiology, 11060 Belgrade, Serbia.
| | - Vladimir Pavlović
- University of Belgrade, Faculty of Agriculture, Department of Mathematics and Physics, 11080 Belgrade, Serbia.
| | - Biljana Rabrenović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Mirjana Pešić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Steva Lević
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Dragana Mihajlović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Viktor Nedović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| |
Collapse
|
2
|
Pei X, Xiao Q, Feng Y, Chen L, Yang F, Wang Q, Li N, Wang A. Enzymatic properties of a non-classical aldoxime dehydratase capable of producing alkyl and arylalkyl nitriles. Appl Microbiol Biotechnol 2023; 107:7089-7104. [PMID: 37733049 DOI: 10.1007/s00253-023-12767-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
Nitriles are of significant interest in the flavor and fragrance industries with potential application in cosmetics due to their higher stability than analogous aldehydes. However, the traditional methods to prepare nitriles need toxic reagents and hash conditions. This work aimed to develop a chemoenzymatic strategy to synthesize nitriles from natural aldehydes with aldoxime as the intermediate. A non-classical aldoxime dehydratase (Oxd) was discovered from the fungus Aspergillus ibericus (OxdAsp) to catalyze the dehydration of aldoximes to corresponding nitriles under mild conditions. The amino acid sequence of OxdAsp exhibits an approximately 20% identity with bacterial Oxds. OxdAsp contains a heme prosthetic group bound with the axial H287 in the catalytic pocket. The structure models of OxdAsp with substrates suggest that its catalytic triad is Y138-R141-E192, which is different from the classically bacterial Oxds of His-Arg-Ser/Thr. The catalytic mechanism of OxdAsp was proposed based on the mutagenesis of key residues. The hydroxyl group of the substrate is fixed by E192 to increase its basicity. Y138 acts as a general acid-based catalyst, and its phenolic proton is polarized by the adjacent R141. The protonated Y138 would donate a proton to the hydroxyl group of the substrate and eliminate a water molecule from aldoxime to produce nitrile. The recombinant OxdAsp can efficiently dehydrate citronellal oxime and cinnamaldoxime to citronellyl nitrile and cinnamonitrile in aqueous media, which are applied as fragrance ingredients in the food and cosmetic fields. KEY POINTS: • A novel aldoxime dehydratase from the Aspergillus genus was first characterized as a heme-binding protein. • The catalytic mechanism was predicted based on the molecular interactions of the catalytic pocket with the substrate. • A chemoenzymatic strategy was developed to synthesize nitriles from natural aldehydes with aldoxime as the intermediate.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yumin Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengling Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuyan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nanxing Li
- Zhejiang Medicine Co. Ltd, Xinchang, 312500, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Šestić TL, Ajduković JJ, Bekić SS, Ćelić AS, Stojanović ST, Najman SJ, Marinović MA, Petri ET, Škorić DĐ, Savić MP. Novel D-modified heterocyclic androstane derivatives as potential anticancer agents: Synthesis, characterization, in vitro and in silico studies. J Steroid Biochem Mol Biol 2023; 233:106362. [PMID: 37451557 DOI: 10.1016/j.jsbmb.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.
Collapse
Affiliation(s)
- Tijana Lj Šestić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Sofija S Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Andjelka S Ćelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Sanja T Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Stevo J Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Maja A Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dušan Đ Škorić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Radulović NS, Mladenović MZ, Dekić MS, Boylan F. Synthesis of Small Libraries of Natural Products: Part II: Identification of a New Natural Product from the Essential Oil of Pleurospermum austriacum (L.) Hoffm. (Apiaceae). Molecules 2023; 28:4574. [PMID: 37375130 DOI: 10.3390/molecules28124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Herein, comprehensive data of NMR, MS, IR, and gas chromatography (RI) obtained by GC-MS on commonly used capillary columns of different polarity (non-polar DB-5MS and polar HP-Innowax) of a series of esters of all constitutional isomers of hexanoic acid with a homologous series of ω-phenylalkan-1-ols (phenylmethanol, 2-phenylethanol, 3-phenylpropan-1-ol, 4-phenylbutan-1-ol, and 5-phenylpentan-1-ol) and phenol, in total 48 chemical entities, were collected. The created synthetic library allowed the identification of a new constituent of the P. austriacum essential oil (3-phenylpropyl 2-methylpentanoate). The accumulated spectral and chromatographical data, as well as the established correlation between RI values and structures of regioisomeric hexanoates, provide (phyto)chemists with a tool that will make future identification of related natural compounds a straightforward task.
Collapse
Affiliation(s)
- Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Marko Z Mladenović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Milan S Dekić
- Department of Sciences and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
5
|
Jamiołkowska A, Skwaryło-Bednarz B, Kowalski R, Yildirim I, Patkowska E. Antifungal Potency of Amaranth Leaf Extract: An In Vitro Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1723. [PMID: 37111946 PMCID: PMC10143692 DOI: 10.3390/plants12081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Plant diseases are a serious problem for agricultural crops, the food industry and human health. Significant efforts have been made in recent years to find natural products that could reduce the growth of plant pathogens and improve food quality. At present, there is an increased interest in plants as a source of biological active compounds that can protect crops from diseases. Important sources of these phytochemicals are lesser-known pseudocereals such as amaranth. The objective of this study was to determine the antifungal activity of leaf extracts of four amaranth species (A. cruentus, A. hypochondriacus × hybridus, A. retroflexus and A. hybridus). The antifungal potency of amaranth extracts was analyzed against selected strains of fungi. The results suggested that the antimicrobial properties of the tested extracts varied depending on the amaranth species and the fungal strain. The studied extracts inhibited the growth of Fusarium equiseti, Rhizoctonia solani, Trichoderma harzianum and Alternaria alternata. A lower inhibitory effect of the extracts was recorded against F. solani, while no inhibitory effect was observed against F. oxysporum and Colletotrichum coccodes.
Collapse
Affiliation(s)
- Agnieszka Jamiołkowska
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland;
| | - Barbara Skwaryło-Bednarz
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland;
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ismet Yildirim
- Department of Plant Protection, Faculty of Agriculture and Natural Sciences, Düzce University, 81000 Düzce, Turkey;
| | - Elżbieta Patkowska
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland;
| |
Collapse
|
6
|
Antimicrobial and Antiviral Compounds of Phlomis viscosa Poiret. Biomedicines 2023; 11:biomedicines11020441. [PMID: 36830977 PMCID: PMC9953047 DOI: 10.3390/biomedicines11020441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Phlomis viscosa Poiret (an evergreen shrub) represents a valuable source of medicinal compounds. In this study, we discovered compounds with antimicrobial and antiviral properties. The aim of this study was to identify compounds of P. viscosa and estimate the antimicrobial and antiviral activity of its phytochemicals. The volatile compounds were identified using gas chromatography/mass spectrometry (GC/MS) analysis. For the identification of nonvolatile components of the extracts, high-performance liquid chromatography (HPLC), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) were applied. Quercetin 3-O-rutinoside and hesperidin caused a significant decrease in the bacterial concentration of Agrobacterium tumefaciens, Xylella fastidiosa and Pseudomonas syringae (p < 0.001). The growth of drug-resistant microorganisms (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens and Salmonella enteritidis) was inhibited by quercetin 3-O-rutinoside, quercetin 3-O-arabinoside and hesperidin. In addition, these compounds demonstrated antiquorum-sensing properties. Diosmin, hesperidin and quercetin 3-O-arabinoside significantly inhibited varicella zoster virus (VZV) (p < 0.001). Quercetin 3-O-rutinoside and quercetin 3-O-arabinoside were effective against herpes simplex virus 1 (HSV-1), including mutant strains.
Collapse
|
7
|
Singh N, Yadav SS. Ethnomedicinal uses of Indian spices used for cancer treatment: A treatise on structure-activity relationship and signaling pathways. Curr Res Food Sci 2022; 5:1845-1872. [PMID: 36276240 PMCID: PMC9579211 DOI: 10.1016/j.crfs.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/β-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
8
|
Peña M, Guzmán A, Martínez R, Mesas C, Prados J, Porres JM, Melguizo C. Preventive effects of Brassicaceae family for colon cancer prevention: A focus on in vitro studies. Biomed Pharmacother 2022; 151:113145. [PMID: 35623168 DOI: 10.1016/j.biopha.2022.113145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022] Open
Abstract
The emergence of adverse effects and resistance to colorectal cancer (CRC) current therapies calls for the development of new strategies aimed at both preventing and treating. In this context, functional extracts from Brassicaceae family contains abundant bioactive compounds directly related to a positive effect on human health including cancer. The main objective of this systematic review is to compile all recent studies that analyzed the in vitro antiproliferative activity of functional extracts or isolated molecules from the Brassicaceae family against CRC. A total of 711 articles published between January 2011 and May 2021 were identified. Of them, 68 met our inclusion criteria. Different standardized protocols using variable parts of plants of the Brassicaceae family resulted in diverse bioactive extracts and/or compounds. Most of them were related to isothiocyanates, which showed significant antitumor activity against CRC. These in vitro studies provide an excellent guide to direct research on the applications of plants of the Brassicaceae family to the prevention of this type of tumor. The extracts and molecules with demonstrated activity against CRC should be tested in vivo and in clinical trials to determine their usefulness in the prevention of this cancer to reduce its global incidence.
Collapse
Affiliation(s)
- Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Ana Guzmán
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain
| | - Rosario Martínez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain; Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain.
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
9
|
Stojanović NM, Mladenović MZ, Maslovarić A, Stojiljković NI, Randjelović PJ, Radulović NS. Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms - In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114788. [PMID: 34718102 DOI: 10.1016/j.jep.2021.114788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Besides psyche-related symptoms, patients with anxiety disorders can have a large number of somatic symptoms as well. Although the treatment of these disorders is mainly focused on resolving their mental component, one cannot neglect the need for the treatment of accompanying somatic symptoms. Melissa officinalis L. (lemon balm), in various formulations, has been extensively used as an ethnomedicinal remedy for the treatment of different psyche-related symptoms, and its use is considered relatively safe. AIM OF THE STUDY In the present study, the activity of M. officinalis (MO) essential oil was evaluated in several in vitro and in vivo models mimicking or involving anxiety-related somatic symptoms. MATERIALS AND METHODS To address the effect of MO essential oil on the gastrointestinal and heart-related symptoms accompanying anxiety disorders, in vitro models were utilized that follow the function of the isolated mouse ileum and atria tissues, respectively, after exposure to MO essential oil. Effects of MO essential oil on BALB/c mice motor activity was estimated using the open field, rota-rod, and horizontal wire tests. Additionally, the essential oil was assayed for its potential in inhibiting acetylcholinesterase activity. RESULTS The performance of mice treated with 25 mg/kg of the oil showed a statistically significant decrease in the motor impairment arising from acute anxiety (open field test), while there was a prolonged latency and a reduction of the frequency of falling from a rotating rod and/or a horizontal wire (signs of muscle weakness/spasms). Concentrations of the essential oil higher than 1 μg/mL were found to inhibit both spontaneous and induced ileum contractions. Moreover, the essential oil and citronellal were found to decrease isolated mouse atria contraction frequency, as well as contraction force. However, the oil was found to be a very weak acetylcholinesterase inhibitor. CONCLUSION The modulation of anxiety-related symptoms by the oil was found not to be mediated through the inhibition of the acetylcholinesterase, nonetheless, the mechanistic studies involving the ileum and cardiac tissues, revealed that the activity of MO and citronellal might be related to the modification of either voltage-gated Ca2+ channels or muscarinic receptors. Mice locomotion, balance, and muscle strength were not impacted by the essential oil; however, its main constituent, citronellal, was found to exert a certain degree of muscle function inhibition. All these results suggest that the activity of MO essential oil arises from synergistic and/or antagonistic interactions of its constituents, and is not completely dependent on the oil's main constituent.
Collapse
Affiliation(s)
| | - Marko Z Mladenović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Serbia.
| | | | | | | | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Serbia.
| |
Collapse
|
10
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
11
|
Alrifai O, Mats L, Liu R, Hao X, Marcone MF, Tsao R. Effect of combined light-emitting diodes on the accumulation of glucosinolates in Brassica microgreens. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractAs of recent, microgreen vegetable production in controlled environments are being investigated for their bioactive properties. Phytochemicals like glucosinolates (GLS) are highly sensitive to varying spectral qualities of light, especially in leafy greens of Brassica where the responses are highly species-dependent. The accumulation of bioactive GLS were studied under 8 different treatments of combined amber (590 nm), blue (455 nm), and red (655 nm) light-emitting diodes (rbaLED). A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS. Thirteen GLS were identified, among them were 8 aliphatic, 4 indolic and 1 aromatic GLS. Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B. juncea, progoitrin was highest in B. rapa and glucobrassicin in R. sativus. The individual and total GLS in the microgreens of the present study were largely different under rbaLED; B. rapa microgreens contained the highest profile of total GLS, followed by R. sativus and B. juncea. Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens, glucoalyssin uniquely increased in R. sativus and decreased in B. rapa and glucobrassicin uniquely decreased in both B. rapa and B. juncea. The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation. Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties.
Graphical Abstract
Collapse
|
12
|
Wu HY, Niu TX, Bi JR, Hou HM, Hao HS, Zhang GL. Exploration of the antimicrobial activity of benzyl isothiocyanate against Salmonella enterica serovar Typhimurium. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|
14
|
Bell L, Kitsopanou E, Oloyede OO, Lignou S. Important Odorants of Four Brassicaceae Species, and Discrepancies between Glucosinolate Profiles and Observed Hydrolysis Products. Foods 2021; 10:foods10051055. [PMID: 34064846 PMCID: PMC8150828 DOI: 10.3390/foods10051055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
It is widely accepted that the distinctive aroma and flavour traits of Brassicaceae crops are produced by glucosinolate (GSL) hydrolysis products (GHPs) with other non-GSL derived compounds also reported to contribute significantly to their aromas. This study investigated the flavour profile and glucosinolate content of four Brassicaceae species (salad rocket, horseradish, wasabi, and watercress). Solid-phase microextraction followed by gas chromatography-mass spectrometry and gas chromatography-olfactometry were used to determine the volatile compounds and odorants present in the four species. Liquid chromatography-mass spectrometry was used to determine the glucosinolate composition, respectively. A total of 113 compounds and 107 odour-active components were identified in the headspace of the four species. Of the compounds identified, 19 are newly reported for ‘salad’ rocket, 26 for watercress, 30 for wasabi, and 38 for horseradish, marking a significant step forward in understanding and characterising aroma generation in these species. There were several non-glucosinolate derived compounds contributing to the ‘pungent’ aroma profile of the species, indicating that the glucosinolate-derived compounds are not the only source of these sensations in Brassicaceae species. Several discrepancies between observed glucosinolates and hydrolysis products were observed, and we discuss the implications of this for future studies.
Collapse
Affiliation(s)
- Luke Bell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK;
| | - Eva Kitsopanou
- Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (E.K.); (O.O.O.)
| | - Omobolanle O. Oloyede
- Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (E.K.); (O.O.O.)
| | - Stella Lignou
- Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (E.K.); (O.O.O.)
- Correspondence: ; Tel.: +44-(0)118-378-8717
| |
Collapse
|
15
|
Agerbirk N, Hansen CC, Olsen CE, Kiefer C, Hauser TP, Christensen S, Jensen KR, Ørgaard M, Pattison DI, Lange CBA, Cipollini D, Koch MA. Glucosinolate profiles and phylogeny in Barbarea compared to other tribe Cardamineae (Brassicaceae) and Reseda (Resedaceae), based on a library of ion trap HPLC-MS/MS data of reference desulfoglucosinolates. PHYTOCHEMISTRY 2021; 185:112658. [PMID: 33744557 DOI: 10.1016/j.phytochem.2021.112658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
A library of ion trap MS2 spectra and HPLC retention times reported here allowed distinction in plants of at least 70 known glucosinolates (GSLs) and some additional proposed GSLs. We determined GSL profiles of selected members of the tribe Cardamineae (Brassicaceae) as well as Reseda (Resedaceae) used as outgroup in evolutionary studies. We included several accessions of each species and a range of organs, and paid attention to minor peaks and GSLs not detected. In this way, we obtained GSL profiles of Barbarea australis, Barbarea grayi, Planodes virginica selected for its apparent intermediacy between Barbarea and the remaining tribe and family, and Rorippa sylvestris and Nasturtium officinale, for which the presence of acyl derivatives of GSLs was previously untested. We also screened Armoracia rusticana, with a remarkably diverse GSL profile, the emerging model species Cardamine hirsuta, for which we discovered a GSL polymorphism, and Reseda luteola and Reseda odorata. The potential for aliphatic GSL biosynthesis in Barbarea vulgaris was of interest, and we subjected P-type and G-type B. vulgaris to several induction regimes in an attempt to induce aliphatic GSL. However, aliphatic GSLs were not detected in any of the B. vulgaris types. We characterized the investigated chemotypes phylogenetically, based on nuclear rDNA internal transcribed spacer (ITS) sequences, in order to understand their relation to the species B. vulgaris in general, and found them to be representative of the species as it occurs in Europe, as far as documented in available ITS-sequence repositories. In short, we provide GSL profiles of a wide variety of tribe Cardamineae plants and conclude aliphatic GSLs to be absent or below our limit of detection in two major evolutionary lines of B. vulgaris. Concerning analytical chemistry, we conclude that availability of authentic reference compounds or reference materials is critical for reliable GSL analysis and characterize two publicly available reference materials: seeds of P. virginica and N. officinale.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Stina Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
18
|
Tomsone L, Galoburda R, Kruma Z, Durrieu V, Cinkmanis I. Microencapsulation of Horseradish ( Armoracia rusticana L.) Juice Using Spray-Drying. Foods 2020; 9:foods9091332. [PMID: 32967355 PMCID: PMC7555022 DOI: 10.3390/foods9091332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023] Open
Abstract
Horseradish contains many bioactive compounds with antioxidant activity. The current study aimed to evaluate the effect of various wall materials and their ratios on the physical properties and bioactive-compound retention and stability in microencapsulated horseradish leaf and root juices. Horseradish juice was microencapsulated using maltodextrin, maltodextrin/gum Arabic, soy protein isolate, and starch with three different core-to-wall ratios. The total phenolic, total flavonoid, total flavan-3-ol, and total phenolic-acid contents, as well as antioxidant activity, were determined using spectrophotometric methods, whereas individual phenol profiles were determined by high-performance liquid chromatography (HPLC). Multivariate analysis of variance showed that plant material, wall material, and core-to-wall ratio had a significant effect on the bioactive-compound retention and antioxidant-activity preservation. Microcapsules produced from horseradish leaf juice had a significantly higher content of phenolic compounds and antioxidant activity compared to root-juice microcapsules. However, better retention was observed for microencapsulated horseradish root juice. Maltodextrin and maltodextrin/gum Arabic were the most effective wall materials for the retention of bioactive compounds, while they also had a smaller particle size and better solubility. The horseradish-juice microcapsules possess a high content of rutin. The highest stability of bioactive compounds after storage was found at a core-to-wall ratio of 20:80.
Collapse
Affiliation(s)
- Lolita Tomsone
- Department of Food Technology, Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (R.G.); (Z.K.)
- Correspondence: ; Tel.: +371-26474255
| | - Ruta Galoburda
- Department of Food Technology, Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (R.G.); (Z.K.)
| | - Zanda Kruma
- Department of Food Technology, Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (R.G.); (Z.K.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, F-31030 Toulouse, France;
| | - Ingmars Cinkmanis
- Department of Chemistry, Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia;
| |
Collapse
|
19
|
Ilahy R, Tlili I, Pék Z, Montefusco A, Siddiqui MW, Homa F, Hdider C, R'Him T, Lajos H, Lenucci MS. Pre- and Post-harvest Factors Affecting Glucosinolate Content in Broccoli. Front Nutr 2020; 7:147. [PMID: 33015121 PMCID: PMC7511755 DOI: 10.3389/fnut.2020.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022] Open
Abstract
Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Zoltán Pék
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Fozia Homa
- Department of Statistics, Mathematics, and Computer Application, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Thouraya R'Him
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Helyes Lajos
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
20
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
21
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
22
|
Popović M, Maravić A, Čikeš Čulić V, Đulović A, Burčul F, Blažević I. Biological Effects of Glucosinolate Degradation Products from Horseradish: A Horse that Wins the Race. Biomolecules 2020; 10:E343. [PMID: 32098279 PMCID: PMC7072351 DOI: 10.3390/biom10020343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022] Open
Abstract
Horseradish degradation products, mainly isothiocyanates (ITC) and nitriles, along with their precursors glucosinolates, were characterized by GC-MS and UHPLC-MS/MS, respectively. Volatiles from horseradish leaves and roots were isolated using microwave assisted-distillation (MAD), microwave hydrodiffusion and gravity (MHG) and hydrodistillation (HD). Allyl ITC was predominant in the leaves regardless of the isolation method while MAD, MHG, and HD of the roots resulted in different yields of allyl ITC, 2-phenylethyl ITC, and their nitriles. The antimicrobial potential of roots volatiles and their main compounds was assessed against sixteen emerging food spoilage and opportunistic pathogens. The MHG isolate was the most active, inhibiting bacteria at minimal inhibitory concentrations (MICs) from only 3.75 to 30 µg/mL, and fungi at MIC50 between <0.12 and 0.47 µg/mL. Cytotoxic activity of volatile isolates and their main compounds were tested against two human cancer cell lines using MTT assay after 72 h. The roots volatiles showed best cytotoxic activity (HD; IC50 = 2.62 μg/mL) against human lung A549 and human bladder T24 cancer cell lines (HD; IC50 = 0.57 μg/mL). Generally, 2-phenylethyl ITC, which was tested for its antimicrobial and cytotoxic activities along with two other major components allyl ITC and 3-phenylpropanenitrile, showed the best biological activities.
Collapse
Affiliation(s)
- Marijana Popović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska 2, 2100 Split, Croatia;
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| |
Collapse
|
23
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Kokoska L, Kloucek P, Leuner O, Novy P. Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr Med Chem 2019; 26:5501-5541. [PMID: 30182844 DOI: 10.2174/0929867325666180831144344] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
A number of papers reporting antimicrobial properties of extracts, essential oils, resins and various classes of compounds isolated from higher plants have been published in recent years; however, a comprehensive analysis of plant-derived antimicrobial agents currently applied in practice for the improvement of human health is still lacking. This review summarizes data on clinical efficacy, antimicrobial effects and the chemistry of commercially available antibacterial and antifungal agents of plant origin currently used in the prevention and treatment of gastrointestinal, oral, respiratory, skin, and urinary infections. As a result of an analysis of the literature, more than 40 plant-derived over-the-counter pharmaceuticals, dietary supplements, cosmetics, herbal medicines, and functional foods containing complex mixtures (e.g. Glycyrrhiza glabra extract, Melaleuca alternifolia essential oil, and Pistacia lentiscus resin), pure compounds (e.g. benzoic acid, berberine, eucalyptol, salicylic acid and thymol) as well as their derivatives and complexes (e.g. bismuth subsalicylate and zinc pyrithione) have been identified. The effectiveness of many of these products is illustrated by results of clinical trials and supported by data on there in vitro antimicrobial activity. A broad spectrum of various commercial products currently available on the market and their welldocumented clinical efficacy suggests that plants are prospective sources for the identification of new types of antimicrobial agents in future. Innovative approaches and methodologies for effective proof-of-concept research and the development of new types of plant-derived products effective against recently emerging problems related to human microbial diseases (e.g. antimicrobial resistance) are also proposed in this review.
Collapse
Affiliation(s)
- Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Pavel Kloucek
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Pavel Novy
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| |
Collapse
|
25
|
Lee TH, Khan Z, Kim SY, Lee KR. Thiohydantoin and Hydantoin Derivatives from the Roots of Armoracia rusticana and Their Neurotrophic and Anti-neuroinflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2019; 82:3020-3024. [PMID: 31625742 DOI: 10.1021/acs.jnatprod.9b00527] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two new thiohydantoins (1 and 3) and three new hydantoins (2, 4, and 5) along with three known compounds (6-8) were isolated from roots of horseradish. Physical data analysis including NMR (1H and 13C NMR, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for structure elucidation of the new compounds 1-5. Potential neuroprotective effects of all compounds (1-8) on nerve growth factor (NGF) induction in C6 glioma were also evaluated. Among these compounds, 1b and 2a exhibited potent NGF secretion stimulation activities (NGF secretion levels: 153.59 ± 5.44% and 141.99 ± 5.21%, respectively). Their anti-neuroinflammatory activities were also assessed based on their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide-stimulated murine microglia. Compound 7 marginally inhibited NO production with an IC50 value of 32.6 μM.
Collapse
Affiliation(s)
- Tae Hyun Lee
- Natural Products Laboratory, School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Zahra Khan
- Gachon Institute of Pharmaceutical Science , Gachon University , Incheon 21936 , Republic of Korea
- College of Pharmacy , Gachon University , #191, Hambakmoero , Yeonsu-gu, Incheon 21936 , Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science , Gachon University , Incheon 21936 , Republic of Korea
- College of Pharmacy , Gachon University , #191, Hambakmoero , Yeonsu-gu, Incheon 21936 , Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
26
|
Mickymaray S, Al Aboody MS. In Vitro Antioxidant and Bactericidal Efficacy of 15 Common Spices: Novel Therapeutics for Urinary Tract Infections? ACTA ACUST UNITED AC 2019; 55:medicina55060289. [PMID: 31248181 PMCID: PMC6630587 DOI: 10.3390/medicina55060289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/20/2022]
Abstract
Background and Objectives: Bacterial urinary tract infection (UTI) is the most common ailment affecting all age groups in males and females. The commercial antibiotics usage augments antibiotics resistance and creates higher recurrence rates of such communal infections. Hence, this study is aimed at investigating the antibacterial and antioxidant potentials of 15 common spices against 11 UTI-causing bacterial pathogens. Materials and Methods: The antioxidant potential of the methanolic extracts was analyzed as contents of total phenols and flavonoids; radical scavenging, total reducing power, the ferric reducing power assay. Urinary pathogens were subjected to spice extracts to investigate antibacterial assays. Results: Preliminary phytochemical study of spices was performed to find those containing alkaloids, flavonoids, phenolic compounds, and steroids that can be recognized for their noteworthy bactericidal effects. The outcome of the antioxidative potential from the four methods demonstrated the sequence of potent antioxidant activity: Acorus calamus >Alpinia galanga > Armoracia rusticana > Capparis spinosa > Aframomum melegueta. The total polyphenols and flavonoids in the studied species positively correlated with their antioxidant properties. The four most effective spices (A. calamus, A. galanga, A. rusticana, and C. spinosa) had a zone of inhibition of at least 22 mm. A. calamus, A. melegueta, and C. spinosa had the lowest minimum inhibitory concentration (MIC) value against Enterobacter aerogenes, Staphylococcus aureus and Proteus mirabilis. All 15 spices had the lowest minimum bactericidal concentration (MBC) value against most of the pathogenic bacteria. Conclusion: The four highly potent and unique spices noted for the in vitro control of UTI-causing pathogens could be pursued further in the development of complementary and alternative medicine against UTI-causing pathogens.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh region, Saudi Arabia.
| | - Mohammed Saleh Al Aboody
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh region, Saudi Arabia.
| |
Collapse
|
27
|
Alrifai O, Hao X, Marcone MF, Tsao R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6075-6090. [PMID: 31021630 DOI: 10.1021/acs.jafc.9b00819] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light-emitting diode (LED) lights have recently been applied in controlled environment agriculture toward growing vegetables of various assortments, including microgreens. Spectral qualities of LED light on photosynthesis in microgreens are currently being studied for their ease of spectral optimization and high photosynthetic efficiency. This review aims to summarize the most recent discoveries and advances in specific phytochemical biosyntheses modulated by LED and other conventional lighting, to identify research gaps, and to provide future perspectives in this emerging multidisciplinary field of research and development. Specific emphasis was made on the effect of light spectral qualities on the biosynthesis of phenolics, carotenoids, and glucosinolates, as these phytochemicals are known for their antioxidant, anti-inflammatory effects, and many health benefits. Future perspectives on enhancing biosynthesis of these bioactives using the rapidly progressing LED light technology are further discussed.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Xiuming Hao
- Harrow Research & Development Center , Agriculture and Agri-Food Canada , 2585 County Road 20 , Harrow , Ontario N0R 1G0 , Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
28
|
Yang Q, Wang L, Zhou L, Yang Z, Zhou Q, Huang X. The glucosinolate regulation in plant: A new view on lanthanum stimulating the growth of plant. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Agerbirk N, Matthes A, Erthmann PØ, Ugolini L, Cinti S, Lazaridi E, Nuzillard JM, Müller C, Bak S, Rollin P, Lazzeri L. Glucosinolate turnover in Brassicales species to an oxazolidin-2-one, formed via the 2-thione and without formation of thioamide. PHYTOCHEMISTRY 2018; 153:79-93. [PMID: 29886160 DOI: 10.1016/j.phytochem.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 05/21/2023]
Abstract
Glucosinolates are found in plants of the order Brassicales and hydrolyzed to different breakdown products, particularly after tissue damage. In Barbarea vulgaris R.Br. (Brassicaceae), the dominant glucosinolate in the investigated "G-type" is glucobarbarin, (S)-2-hydroxy-2-phenylethylglucosinolate. Formation of the nitrile from glucobarbarin was observed in vitro, while a previously suggested thioamide (synonym thionamide) was not confirmed. Resedine (5-phenyl-1,3-oxazolidin-2-one) was detected after glucobarbarin hydrolysis in crushed B. vulgaris leaves and siliques, but not in intact parts. The abundance increased for several hours after completion of hydrolysis. The corresponding 1,3-oxazolidine-2-thione (OAT), with the common name barbarin, was also formed, and appeared to be the precursor of resedine. Addition of each of two non-endogenous OATs, (S)-5-ethyl-5-methylOAT and (R)-5-vinylOAT (R-goitrin), to a leaf homogenate resulted in formation of the corresponding 1,3-oxazolidin-2-ones (OAOs), confirming the metabolic connection of OAT to OAO. Formation of OAOs was inhibited by prior brief heating of the homogenate, suggesting enzyme involvement. We suggest the conversion of OATs to OAOs to be catalyzed by an enzyme ("oxazolidinethionase") responsible for turnover of OAT formed in intact plants. Resedine had been reported as an alkaloid from another species - Reseda luteola L. (Resedaceae) - naturally containing the glucosinolate glucobarbarin. However, resedine was not detected in intact R. luteola plants, but formed after tissue damage. The formation of resedine in two families suggests a broad distribution of putative OATases in the Brassicales; potentially involved in glucosinolate turnover that needs myrosinase activity as the committed step. In agreement with the proposed function of OATase, several candidate genes for myrosinases in glucosinolate turnover in intact plants were discovered in the B. vulgaris genome. We also suggest that biotechnological conversion of OATs to OAOs might improve the nutritional value of Brassicales protein. HPLC-MS/MS methods for detection of these glucobarbarin products are described.
Collapse
Affiliation(s)
- Niels Agerbirk
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Annemarie Matthes
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Pernille Ø Erthmann
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Luisa Ugolini
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Susanna Cinti
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Eleni Lazaridi
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne and CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, SFR CAP'SANTE, F-51687 Reims, France
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Søren Bak
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Patrick Rollin
- Université d'Orléans and CNRS, ICOA, UMR 7311, BP 6759, F-45067 Orléans, France
| | - Luca Lazzeri
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|