1
|
Ali S, Aman A, Hengphasatporn K, Oopkaew L, Todee B, Fujiki R, Harada R, Shigeta Y, Krusong K, Choowongkomon K, Chavasiri W, Wolschann P, Mahalapbutr P, Rungrotmongkol T. Evaluating solubility, stability, and inclusion complexation of oxyresveratrol with various β-cyclodextrin derivatives using advanced computational techniques and experimental validation. Comput Biol Chem 2024; 112:108111. [PMID: 38879954 DOI: 10.1016/j.compbiolchem.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Oxyresveratrol (OXY), a natural stilbenoid in mulberry fruits, is known for its diverse pharmacological properties. However, its clinical use is hindered by low water solubility and limited bioavailability. In the present study, the inclusion complexes of OXY with β-cyclodextrin (βCD) and its three analogs, dimethyl-β-cyclodextrin (DMβCD), hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD), were investigated using in silico and in vitro studies. Molecular docking revealed two binding orientations of OXY, namely, 4',6'-dihydroxyphenyl (A-form) and 5,7-benzenediol ring (B-form). Molecular Dynamics simulations suggested the formation of inclusion complexes with βCDs through two distinct orientations, with OXY/SBEβCD exhibiting maximum atom contacts and the lowest solvent-exposed area in the hydrophobic cavity. These results corresponded well with the highest binding affinity observed in OXY/SBEβCD when assessed using the MM/GBSA method. Beyond traditional simulation methods, Ligand-binding Parallel Cascade Selection Molecular Dynamics method was employed to investigate how the drug enters and accommodates within the hydrophobic cavity. The in silico results aligned with stability constants: SBEβCD (2060 M-1), HPβCD (1860 M-1), DMβCD (1700 M-1), and βCD (1420 M-1). All complexes exhibited a 1:1 binding mode (AL type), with SBEβCD enhancing OXY solubility (25-fold). SEM micrographs, DSC thermograms, FT-IR and 1H NMR spectra confirm the inclusion complex formation, revealing novel surface morphologies, distinctive thermal behaviors, and new peaks. Notably, the inhibitory impact on the proliferation of breast cancer cell lines, MCF-7, exhibited by inclusion complexes particularly OXY/DMβCD, OXY/HPβCD, and OXY/SBEβCD were markedly superior compared to that of OXY alone.
Collapse
Affiliation(s)
- Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Lipika Oopkaew
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyaporn Todee
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Hosseiny A, Talebpour Z, Garkani-Nejad Z, Golestanifar F. The Binding Mechanism Between Cyclodextrins and Anticancer Drug Noscapine: A Spectroscopic and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03869-5. [PMID: 39060827 DOI: 10.1007/s10895-024-03869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In this paper the binding of noscapine (NOS) as an anticancer drug with poor bioavailability and low solubility with beta and methyl-beta cyclodextrins (β-CD and M-β-CD) as the biocompatible drug carriers were discussed using ultraviolet-visible, fluorescence and nuclear magnetic resonance spectroscopy, as well as molecular docking. The absorption of NOS changed when it was bound to both cyclodextrins, resulting in a hyperchromic shift. It formed a 1:1 stoichiometry inclusion complex with both cyclodextrins according to the Benesi-Hildebrand equation. The binding affinity was larger in NOS-M-β-CD (5.9 (± 0.66) × 103 M- 1) than NOS-β-CD (3.7 (± 0.22) × 103 M- 1) complex. The fluorescence emission band of NOS at 408 nm was quenched when NOS was complexed with β-CD, and enhanced in the presence of M-β-CD, while the shoulder at 350 nm was enhanced selectively when NOS was complexed with M-β-CD. The fluorescence quenching of NOS with β-CD showed a negative deviation from the Stern-Volmer. The thermodynamic parameters have been estimated with the help of the Van't Hoff equation in different temperatures, and a dynamic mechanism was proposed for quenching. Also, both ΔH and ΔS have positive values thus the main interactions result in hydrophobic forces. Moreover, the negative value of ΔG indicates that the bonding process is spontaneous. 1H NMR chemical shift changes were observable for NOS and both CDs protons due to the chemical environment changes of some nuclei upon complexation. The molecular docking results revealed that the 1:1 inclusion complex possesses a good molecular shape complementarity score for their most probable structures, and indicated that the M-β-CD inclusion system gave the higher complexation efficiency. The binding energy values for β-CD and M-β-CD were determined to be -6.7 and - 9.5 kcal/mol, respectively. These findings suggest the same as the result of experimental tests that the NOS-M-β-CD complex is more stable than the NOS-β-CD complex.
Collapse
Affiliation(s)
- Arezu Hosseiny
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran.
- Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran.
| | - Zahra Garkani-Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fereshteh Golestanifar
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Navarro-Orcajada S, Vidal-Sánchez FJ, Conesa I, Matencio A, López-Nicolás JM. Improvement of the Physicochemical Limitations of Rhapontigenin, a Cytotoxic Analogue of Resveratrol against Colon Cancer. Biomolecules 2023; 13:1270. [PMID: 37627335 PMCID: PMC10452521 DOI: 10.3390/biom13081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
It has been argued that methoxylated stilbenes are better candidates for oral administration than hydroxylated stilbenes, including resveratrol, as they share many biological activities but have better bioavailability. By contrast, they have a disadvantage to consider, i.e., their lower hydrophilic character that leads to precipitation issues in the final product. In this work, we analysed and compared the growth inhibition of colorectal cancer cells of the methoxylated stilbene rhapontigenin and some analogues and overcame potential problems in the development of fortified products by designing inclusion complexes. Among several cyclodextrins, we found the one that best fit the molecule by physicochemical and bioinformatics assays. The stoichiometry and the encapsulation constants with natural and modified cyclodextrins were determined by fluorescence spectroscopy. The most promising complexes were analysed at different temperature and pH conditions, determining the thermodynamic parameters, to discover the optimal conditions for the preparation and storage of the products. The results showed that rhapontigenin solubility and stability were significantly improved, achieving a sevenfold increase in water solubility and maintaining more than 73% of the stilbene after three months. These findings could be of great interest for industries that aim to deliver novel bioactive compounds with higher solubility and lower degradation.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| |
Collapse
|
4
|
Ma RH, Wang W, Hou CP, Man YF, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Structural characterization and stability of glycated bovine serum albumin-kaempferol nanocomplexes. Food Chem 2023; 415:135778. [PMID: 36854244 DOI: 10.1016/j.foodchem.2023.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Kaempferol (Kae), a flavonoid is endowed with various functions. However, due to its poor water solubility and stability, its application in the food and pharmaceutical fields remains elusive. Emerging reports have emphasized the importance of bovine serum albumin (BSA), and glycosylated BSA (GBSA) prepared in the nature deep eutectic solvent system as drug delivery system carriers. In our study, ultraviolet and fluorescence spectra revealed the higher interactions of BSA and GBSA with Kae. Through analysis of Z-average diameter, zeta-potential, polydispersity index (PDI), encapsulation efficiency (EE), loading capacity (LC) of BSA-Kae nanocomplexes (NPs) and GBSA-Kae NPs, GBSA-Kae NPs showed a higher absolute value of zeta-potential and lower PDI, while its EE and LC were also higher. Structural characterization and stability analysis revealed that GBSA-Kae NPs had more stable properties. This study laid the theoretical foundation for improving the solubility and stability of Kae during its delivery and transport.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Wei Wang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Cai-Ping Hou
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Yi-Fei Man
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Thaweesest W, Buranasudja V, Phumsuay R, Muangnoi C, Vajragupta O, Sritularak B, Rashatasakhon P, Rojsitthisak P. Anti-Inflammatory Activity of Oxyresveratrol Tetraacetate, an Ester Prodrug of Oxyresveratrol, on Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123922. [PMID: 35745046 PMCID: PMC9228887 DOI: 10.3390/molecules27123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Oxyresveratrol (OXY) has been reported for its anti-inflammatory activity; however, the pharmaceutical applications of this compound are limited by its physicochemical properties and poor pharmacokinetic profiles. The use of an ester prodrug is a promising strategy to overcome these obstacles. In previous researches, several carboxylate esters of OXY were synthesized and oxyresveratrol tetraacetate (OXY-TAc) was reported to possess anti-melanogenic and anti-skin-aging properties. In this study, in addition to OXY-TAc, two novel ester prodrugs of OXY, oxyresveratrol tetrapropionate (OXY-TPr), and oxyresveratrol tetrabutyrate (OXY-TBu), were synthesized. Results from the Caco-2-permeation assay suggested that synthesized ester prodrugs can improve the membrane-permeation ability of OXY. The OXY-TAc exhibited the most significant profile, then this prodrug was chosen to observe anti-inflammatory activities with lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results showed that OXY-Tac significantly alleviated secretion of several pro-inflammatory mediators (nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), mitigated expression of enzyme-regulated inflammation (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)), and suppressed the MAPK cascades. Interestingly, the observed anti-inflammatory activities of OXY-TAc were more remarkable than those of its parent compound OXY. Taken together, we demonstrated that OXY-TAc improved physicochemical and pharmacokinetic profiles and enhanced the pharmacological effects of OXY. Hence, the results in the present study would strongly support the clinical utilities of OXY-TAc for the treatment of inflammation-related disorders.
Collapse
Affiliation(s)
- Wuttinont Thaweesest
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Pharmaceutical Chemistry and Natural Products Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| | - Rianthong Phumsuay
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Guadarrama-Flores B, Matencio A, Navarro-Orcajada S, Martínez-Lede I, Conesa I, Vidal-Sánchez FJ, García-Carmona F, López-Nicolás JM. Development if healthy milk and yogurt products for reducing metabolic diseases using cyclodextrin and omega-3 fatty acids from fish oil. Food Funct 2022; 13:5528-5535. [PMID: 35522849 DOI: 10.1039/d2fo00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The food industry is constantly attempting to develop better products that will have a positive effect on health. Feiraco® and Clesa®, expressed their intention to create novel products using UNICLA® milk as a matrix to develop functional foods. In this respect, β-cyclodextrin (β-CD) at 1% was able to reduce the cholesterol concentration in Feiraco-UNICLA® milk products by around 87-85%. Products were fortified with omega-3 from fish oil with α- and β-CD acting as carriers. It was possible to add around 50% of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) Recommended Dietary Allowances (RDA), with a high diet proportion of fibre and similar organoleptic properties to commercial omega-3 products. 80% of a sensory panel found our formulations satisfactory. The final product was stable, and the bioaccessibilty of the fatty acids added to the milk was around 74%. These results as a whole satisfy the aid of Feiraco® and Clesa® to develop improved products.
Collapse
Affiliation(s)
- Berenice Guadarrama-Flores
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125, Torino, Italy.
| | - Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| | | | - Irene Conesa
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| |
Collapse
|
7
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
8
|
Ling JKU, Chan YS, Nandong J. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1677-1691. [PMID: 35531405 PMCID: PMC9046499 DOI: 10.1007/s13197-021-05128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The therapeutic effects of antioxidant-loaded nanoemulsion can be often optimized by controlling the release rate in human body. Release kinetic models can be used to predict the release profile of antioxidant compounds and allow identification of key parameters that affect the release rate. It is known that one of the critical aspects in establishing a reliable release kinetic model is to understand the underlying release mechanisms. Presently, the underlying release mechanisms of antioxidants from nanoemulsion droplets are not yet fully understood. In this context, this review scrutinized the current formulation strategies to encapsulate antioxidant compounds and provide an outlook into the future of this research area by elucidating possible release mechanisms of antioxidant compounds from nanoemulsion system.
Collapse
Affiliation(s)
- Jordy Kim Ung Ling
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Jobrun Nandong
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| |
Collapse
|
9
|
Navarro-Orcajada S, Conesa I, Vidal-Sánchez FJ, Matencio A, Albaladejo-Maricó L, García-Carmona F, López-Nicolás JM. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit Rev Food Sci Nutr 2022; 63:7269-7287. [PMID: 35234546 DOI: 10.1080/10408398.2022.2045558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stilbenes are phenolic compounds naturally synthesized as secondary metabolites by the shikimate pathway in plants. Research on them has increased in recent years due to their therapeutic potential as antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective and anti-obesity agents. Amongst them, resveratrol has attracted the most attention, although there are other natural and synthesized stilbenes with enhanced properties. However, stilbenes have some physicochemical and pharmacokinetic problems that need to be overcome before considering their applications. Human clinical evidence of their bioactivity is still controversial due to this fact and hence, exhaustive basis science on stilbenes is needed before applied science. This review gathers the main physicochemical and biological properties of natural stilbenes, establishes structure-activity relationships among them, emphasizing the current problems that limit their applications and presenting some promising approaches to overcome these issues: the encapsulation in different agents and the structural modification to obtain novel stilbenes with better features. The bioactivity of stilbenes should move from promising to evident.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | - Lorena Albaladejo-Maricó
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
10
|
Navarro-Orcajada S, Conesa I, Matencio A, Rodríguez-Bonilla P, García-Carmona F, López-Nicolás JM. The use of cyclodextrins as solubility enhancers in the ORAC method may cause interference in the measurement of antioxidant activity. Talanta 2022; 243:123336. [DOI: 10.1016/j.talanta.2022.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
11
|
Velázquez-Contreras F, Zamora-Ledezma C, López-González I, Meseguer-Olmo L, Núñez-Delicado E, Gabaldón JA. Cyclodextrins in Polymer-Based Active Food Packaging: A Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers (Basel) 2021; 14:polym14010104. [PMID: 35012127 PMCID: PMC8747138 DOI: 10.3390/polym14010104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Using cyclodextrins (CDs) in packaging technologies helps volatile or bioactive molecules improve their solubility, to guarantee the homogeneous distribution of the complexed molecules, protecting them from volatilization, oxidation, and temperature fluctuations when they are associated with polymeric matrices. This technology is also suitable for the controlled release of active substances and allows the exploration of their association with biodegradable polymer targeting to reduce the negative environmental impacts of food packaging. Here, we present a fresh look at the current status of and future prospects regarding the different strategies used to associate cyclodextrins and their derivatives with polymeric matrices to fabricate sustainable and biodegradable active food packaging (AFP). Particular attention is paid to the materials and the fabrication technologies available to date. In addition, the use of cutting-edge strategies, including the trend of nanotechnologies in active food packaging, is emphasized. Furthermore, a critical view on the risks to human health and the associated updated legislation is provided. Some of the more representative patents and commercial products that currently use AFP are also listed. Finally, the current and future research challenges which must be addressed are discussed.
Collapse
Affiliation(s)
- Friné Velázquez-Contreras
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Escuela de Administración de Instituciones (ESDAI), Universidad Panamericana, Álvaro del Portillo 49, Ciudad Granja, Zapopan 45010, Mexico
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Iván López-González
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Correspondence: ; Tel.: +34-968-278-622
| |
Collapse
|
12
|
Xie Z, Chen X. Healthy benefits and edible delivery systems of resveratrol: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhenfeng Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol Adv 2021; 53:107844. [PMID: 34626788 DOI: 10.1016/j.biotechadv.2021.107844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Most drugs or the natural substances reputed to display some biological activity are hydrophobic molecules that demonstrate low bioavailability regardless of their mode of absorption. Resveratrol and its derivatives belong to the chemical group of stilbenes; while stilbenes are known to possess very interesting properties, these are limited by their poor aqueous solubility as well as low bioavailability in animals and humans. Among the substances capable of forming nanomolecular inclusion complexes which can be used for drug delivery, cyclodextrins show spectacular physicochemical and biomedical implications in stilbene chemistry for their possible application in nanomedicine. By virtue of their properties, cyclodextrins have also demonstrated their possible use in green chemistry for the synthesis of stilbene glucosylated derivatives with potential applications in dermatology and cosmetics. Compared to chemical synthesis and genetically modified microorganisms, plant cell or tissue systems provide excellent models for obtaining stilbenes in few g/L quantities, making feasible the production of these compounds at a large scale. However, the biosynthesis of stilbenes is only possible in the presence of the so-called elicitor compounds, the most commonly used of which are cyclodextrins. We also report here on the induction of resveratrol production by cyclodextrins or combinatory elicitation with methyljasmonate in plant cell systems as well as the mechanisms by which they are able to trigger a stilbene response. The present article therefore discusses the role of cyclodextrins in stilbene chemistry both at the physico-chemical level as well as the biomedical and biotechnological levels, emphasizing the notion of "easy alliance" between these compounds and stilbenes.
Collapse
|
14
|
A Brief Updated Review of Advances to Enhance Resveratrol's Bioavailability. Molecules 2021; 26:molecules26144367. [PMID: 34299642 PMCID: PMC8305180 DOI: 10.3390/molecules26144367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Resveratrol (RES) has a low bioavailability. This limitation was addressed in an earlier review and several recommendations were offered. A literature search was conducted in order to determine the extent of the research that was conducted in line with these recommendations, along with new developments in this field. Most of the identified studies were pre-clinical and confirmed the heightened activity of RES analogues compared to their parent compound. Although this has provided additional scientific kudos for these compounds and has strengthened their potential to be developed into phytopharmaceutical products, clinical trials designed to confirm this increased activity remain lacking and are warranted.
Collapse
|
15
|
Likhitwitayawuid K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules 2021; 26:4212. [PMID: 34299485 PMCID: PMC8307110 DOI: 10.3390/molecules26144212] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Oxyresveratrol has recently attracted much research attention due to its simple chemical structure and diverse therapeutic potentials. Previous reviews describe the chemistry and biological activities of this phytoalexin, but additional coverage and greater accessibility are still needed. The current review provides a more comprehensive summary, covering research from 1955 to the present year. Oxyresveratrol occurs in both gymnosperms and angiosperms. However, it has never been reported in plants in the subclass Sympetalae, and this point might be of both chemotaxonomic and biosynthetic importance. Oxyresveratrol can be easily obtained from plant materials by conventional methods, and several systems for both qualitative and quantitative analysis of oxyresveratrol contents in plant materials and plant products are available. Oxyresveratrol possesses diverse biological and pharmacological activities such as the inhibition of tyrosinase and melanogenesis, antioxidant and anti-inflammatory activities, and protective effects against neurological disorders and digestive ailments. However, the unfavorable pharmacokinetic properties of oxyresveratrol, including low water solubility and poor oral availability and stability, have posed challenges to its development as a useful therapeutic agent. Recently, several delivery systems have emerged, with promising outcomes that may improve chances for the clinical study of oxyresveratrol.
Collapse
Affiliation(s)
- Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Li H, Chang SL, Chang TR, You Y, Wang XD, Wang LW, Yuan XF, Tan MH, Wang PD, Xu PW, Gao WB, Zhao QS, Zhao B. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Liu T, Liu M, Liu H, Ren Y, Zhao Y, Yan H, Wang Q, Zhang N, Ding Z, Wang Z. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Food Funct 2021; 12:7126-7144. [PMID: 34180492 DOI: 10.1039/d1fo00481f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The co-encapsulation of multiple bioactive components in a carrier may produce synergistic effects and improve health benefits. In this study, the interactions of β-lactoglobulin (β-LG) with epigallocatechin-3-gallate (EGCG) and/or piceatannol (PIC)/oxyresveratrol (OXY) were investigated by multispectroscopic techniques, isothermal titration calorimetry, and molecular docking. The static quenching mechanism of β-LG by EGCG, PIC and OXY was confirmed by fluorescence spectroscopy and UV-vis absorption difference spectroscopy. The binding sites of these three polyphenols in β-LG were identified by site marking fluorescence experiments and molecular docking. The thermodynamic parameters of the β-LG + EGCG/PIC/OXY binary complex and β-LG + EGCG + PIC/OXY ternary complex were obtained from fluorescence data and used to analyze the main driving force for complex formation. The exothermic binding process was further confirmed by isothermal titration calorimetry. The α-helical content, particle size and morphology of free and ligand-bound β-LG were determined by circular dichroism spectroscopy, dynamic light scattering and transmission electron microscopy, respectively. The effect of EGCG, PIC and OXY on the conformation of β-LG was studied by Fourier transform infrared spectroscopy. In addition, the maximum synergistic antioxidant activity between EGCG and PIC/OXY was obtained by response surface analysis. The effects of β-LG in the binary and ternary systems on the antioxidant activity, stability, solubility and cytotoxicity of the polyphenols were also studied. Finally, the different cytotoxicities of the complexes and nanoparticles of the binary and ternary systems were compared. The results of this study are expected to provide a theoretical basis for the development of β-LG-based carriers co-encapsulating a variety of bioactive components.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lakshmi S, Varija Raghu S, Elumalai P, Sivan S. Alkoxy glycerol enhanced activity of Oxyresveratrol in Alzheimer's disease by rescuing Tau protein. Neurosci Lett 2021; 759:135981. [PMID: 34023407 DOI: 10.1016/j.neulet.2021.135981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease perpetually demands enormous research on the development of effective treatment strategies. The present study aims to define the role of Oxyresveratrol (OXY) alone and in combination with Alkoxy glycerols (AKG) to reduce Tau protein level and improve the climbing behaviour of Drosophila fly models expressed with human-Tau protein. Oxyresveratrol, a polyphenolic stilbene, possesses a wide range of biological activities like antioxidant, anti-inflammatory, and neuroprotective effects. Nevertheless, chemical instability and low solubility of OXY in aqueous solutions reduce its bioavailability and hinder it from exerting neuroprotective activities. An inclusion complex of OXY with β- cyclodextrin (CD) (OXY-CD complex) was employed in the study for increased dissolution rate and oral availability of OXY. Fish oils and their derivatives have a plethora of applications in in vivo biological activities. Herein, we also remark on the role of AKG in reducing Tau protein level in flies by enhancing OXY-CD activity. Dietary supplementation of OXY-CD together with AKG improved the learning and memory abilities during the climbing assay in Tau flies. The study highlights OXY-CD and AKG as neuroprotective agents and put forward a plausible approach towards the increased permeability of pharmacological agents across the blood-brain barrier (BBB) for the central nervous system elicited by AKG.
Collapse
Affiliation(s)
- Sreeja Lakshmi
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangaluru, Karnataka, India
| | - Preetham Elumalai
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, India.
| | - Sureshkumar Sivan
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, India.
| |
Collapse
|
19
|
Matencio A, Caldera F, Rubin Pedrazzo A, Khazaei Monfared Y, K Dhakar N, Trotta F. A physicochemical, thermodynamical, structural and computational evaluation of kynurenic acid/cyclodextrin complexes. Food Chem 2021; 356:129639. [PMID: 33819789 DOI: 10.1016/j.foodchem.2021.129639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In this work, the interaction between Kynurenic acid (KYNA) and several natural and modified cyclodextrins (CDs) is carried out. Among all the CD tested, HPβ-CD showed the strongest complexation constant (KF), with a value of 270.94 ± 29.80 M-1. Between natural (α- and β-) CDs, the complex of KYNA with β-CD was the most efficient. The inclusion complex of KYNA with CDs showed a strong influence of pH and temperature. The KF value decreased at high pH values, when the pKa was passed. Moreover, an increase of the temperature caused a decrease in the KF values. The thermodynamic parameters of the complexation (ΔH°, ΔS° and ΔG°) were studied with negative entropy, enthalpy and spontaneity of the process at 25 °C. Moreover, the inclusion complex was also characterized using FTIR and TGA. Finally, molecular docking calculations provided different interactions and their influence in the complexation constant.
Collapse
Affiliation(s)
- Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Fabrizio Caldera
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | | | | | - Nilesh K Dhakar
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
20
|
Matencio A, Guerrero-Rubio MA, Gandía-Herrero F, García-Carmona F, López-Nicolás JM. Nanoparticles of betalamic acid derivatives with cyclodextrins. Physicochemistry, production characterization and stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Matencio A, Navarro-Orcajada S, García-Carmona F, López-Nicolás JM. Applications of cyclodextrins in food science. A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Matencio A, Guerrero-Rubio MA, Caldera F, Cecone C, Trotta F, García-Carmona F, López-Nicolás JM. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int J Pharm 2020; 589:119862. [PMID: 32916214 DOI: 10.1016/j.ijpharm.2020.119862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In this work, the increase of the Caenorhabditis elegans (C. elegans) lifespan extension using hyper-branched cyclodextrin-based nanosponges (CD-NS) complexing oxyresveratrol (OXY), and the possible inhibition of C. elegans phosphodiesterase type 4 (PDE4) were evaluated. The titration displacement of fluorescein was used to calculate the apparent complexation constant (KF) between CD-NS and OXY. Moreover, PDE4 was expressed in E. coli, purified and refolded in presence of cyclodextrins (CDs) to study its possible inhibition as pharmacological target of OXY. The apparent activity was characterized and the inhibitory effect of OXY on PDE4 displayed a competitive in vitro inhibition corroborated in silico. A maximum increase of the in vivo life expectancy of about 9.6% of using OXY/CD-NS complexes in comparison with the control was obtained, in contrast to the 6.5% obtained with free OXY. No effect on lifespan or toxicity with CD-NS alone was found. These results as a whole represent new opportunities to use OXY and CD-NS in lifespan products.
Collapse
Affiliation(s)
- Adrián Matencio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fabrizio Caldera
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Claudio Cecone
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
23
|
Ouiyangkul P, Tantishaiyakul V, Hirun N. Exploring potential coformers for oxyresveratrol using principal component analysis. Int J Pharm 2020; 587:119630. [DOI: 10.1016/j.ijpharm.2020.119630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 01/27/2023]
|
24
|
Seidi F, Jin Y, Xiao H. Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydr Polym 2020; 242:116277. [PMID: 32564845 DOI: 10.1016/j.carbpol.2020.116277] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides with unique conical structure enabling host-guest inclusion complexes. However, virgin CDs sufferfrom low solubility, lack of functional groups and its inability to strong complexation with the guests. One of the most efficient ways to improve the properties of cyclodextrins is the synthesis of polycyclodextrins. Generally, there are two types of polycyclodextrins: 1) polymers containing CD units as parts of the main backbone; and 2) polymers with CD units as side chains. These polycyclodextrins are produced (i) from direct copolymerization of virgin cyclodextrins or cyclodextrins derivatives with various monomers including isocyanates, epoxides, carboxylic acids, anhydrides, acrylates, acrylamides and fluorinated aromatic compounds, or (ii) by post-functionalization of other polymers with CDs or CD derivatives.. By selecting the proper derivatives of CDs and controlling the polymerization, polycyclodextrins with linear, hyperbranched, and crosslinked structures have been synthesized. Polycyclodextrins have found significant applications in numerous areas, as adsorbents for removal of organic pollutants, carriers in gene/drug delivery, and for preparation of supramolecular based hydrogels. The focus of this review paper is placed on the synthesis, characterization, and applications of CDs so as to highlight challenges as well as the promising features of the future ahead of material developments based on CDs.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| |
Collapse
|
25
|
Liu M, Liu T, Shi Y, Zhao Y, Yan H, Sun B, Wang Q, Wang Z, Han J. Comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme: binding ability, activity and stability. Food Funct 2020; 10:8182-8194. [PMID: 31696185 DOI: 10.1039/c9fo01888c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polyphenols showing a variety of beneficial effects will interact with multiple proteases after administration. The interactions of oxyresveratrol and piceatannol with trypsin and lysozyme were investigated using fluorescence spectroscopy, UV-vis absorption spectroscopy, circular dichroism spectroscopy, differential scanning calorimetry and molecular docking. Fluorescence quenching results and UV-vis absorption difference spectra revealed that the quenching process was a static mode initiated by ground-state complex formation. The different binding ability of oxyresveratrol and piceatannol with trypsin and lysozyme was discussed based on their different molecular structures. Moreover, the major driving force for the binding process was elucidated as hydrogen bonding and van der Waals forces by the negative enthalpy and entropy changes. Synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectral analysis suggested that the binding of oxyresveratrol and piceatannol to trypsin and lysozyme induced some microenvironmental and conformational changes of the two enzymes. The thermal stability of the enzymes in the presence of polyphenols was studied based on the change in melting temperature by differential scanning calorimetry. The above experimental results were validated by the protein-ligand docking studies which showed the location of the two ligands in the enzymes and the surrounding amino acid residues. Furthermore, enzyme activity assays indicated that the enzymatic activity of trypsin and lysozyme was inhibited by oxyresveratrol and piceatannol. The effect of trypsin and lysozyme on the antioxidant activity and stability of oxyresveratrol and piceatannol was also investigated. In conclusion, the comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme showed that the positions of hydroxyl groups of the polyphenols had an important influence on their interaction with enzymes and their antioxidant activity and stability as well as the enzyme activities. The obtained results are expected to provide a theoretical basis for the application of polyphenols in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Min Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Matencio A, Dhakar NK, Bessone F, Musso G, Cavalli R, Dianzani C, García-Carmona F, López-Nicolás JM, Trotta F. Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydr Polym 2019; 231:115763. [PMID: 31888848 DOI: 10.1016/j.carbpol.2019.115763] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
The complexation of the bioactive compound oxyresveratrol (OXY) with a polymer called cyclodextrin-based nanosponge (CD-NS) and its application was studied.A new methodology is used to calculate, an apparent inclusion complex constant (KFapp) between a ligand and CD-NSs. Moreover, the KFapp of resveratrol was also evaluated and compared. The complex of OXY with the nanosponge β-CDI 1:4, was studied in vitro using DSC, TGA and FTIR techniques and its drug loading and release behavior were studied. An in vitro digestion showed higher protection of OXY complexed than free OXY. The bioactivity enhancing capacity of OXY was also studied against prostate (PC-3) and colon (HT-29 and HCT-116) cancer cell lines, where it showed stronger cell viability inhibition than the free drug. The findings as a whole represent a new opportunity for studying the complexation of drugs in CD-NSs and the use of oxyresveratrol as an ingredient in nutraceutical products.
Collapse
Affiliation(s)
- Adrián Matencio
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| | - Nilesh Kumar Dhakar
- Dip. Di Chemica IFM, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Federica Bessone
- Dip. di Scienza e Tecnologia del Farmaco, Università di Torino, via P. Giuria 9, 10125 Torino, Italy
| | - Giorgia Musso
- Dip. Di Chemica IFM, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Roberta Cavalli
- Dip. di Scienza e Tecnologia del Farmaco, Università di Torino, via P. Giuria 9, 10125 Torino, Italy
| | - Chiara Dianzani
- Dip. di Scienza e Tecnologia del Farmaco, Università di Torino, via P. Giuria 9, 10125 Torino, Italy
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología molecular-A, Facultad de Biología, Universidad de Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain.
| | - Francesco Trotta
- Dip. Di Chemica IFM, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
28
|
Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics 2019; 11:pharmaceutics11100545. [PMID: 31635183 PMCID: PMC6836080 DOI: 10.3390/pharmaceutics11100545] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Resveratrol and oxyresveratrol are natural polyphenolic stilbenes with several important pharmacological activities. However, low solubility and aqueous instability are the major limitations in their drug delivery applications. In the present work, we demonstrated the encapsulation of resveratrol and oxyresveratrol with nanosponge to improve solubility and stability. Several characterization techniques were used to confirm the encapsulation of both drug molecules within the nanosponges. The high encapsulation efficiency of resveratrol (77.73%) and oxyresveratrol (80.33%) was achieved within the nanosponges. Transmission electron microscopy suggested uniform spherical size particles of resveratrol and oxyresveratrol loaded nanosponges. Compared to free drugs, better protection against UV degradation was observed for resveratrol-loaded nanosponge (2-fold) and oxyresveratrol-loaded nanosponge (3-fold). Moreover, a higher solubilization of resveratrol- and oxyresveratrol-loaded nanosponges lead to a better antioxidant activity compared to drug molecules alone. Cytotoxicity studies against DU-145 prostate cancer cell lines further suggested improved activity of both resveratrol and oxyresveratrol-loaded nanosponges without any significant toxicity of blank nanosponges.
Collapse
|
29
|
A Way to Increase the Bioaccesibility and Photostability of Roflumilast, a COPD Treatment, by Cyclodextrin Monomers. Polymers (Basel) 2019; 11:polym11050801. [PMID: 31060253 PMCID: PMC6571910 DOI: 10.3390/polym11050801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Roflumilast is an orally available inhibitor of phosphodiesterase (PDE) type 4, which is widely used in chronic obstructive pulmonary diseases. However, it has low solubility and adverse effects include diarrhea and nausea. Since its solubilization may improve treatment and, dismissing any adverse effects, its interaction with cyclodextrins (CDs) was studied. The Higuchi-Connors method was used to determine the complexation constant with different CDs, pH values and temperatures. Molecular docking was used to predict interaction between the complexes. An in vitro digestion experiment was carried out to test roflumilast protection. Finally, the photostability of the complex was evaluated. The complex formed with β-CD had the highest K11 value (646 ± 34 M−1), although this value decreased with increasing temperature. Similarly, K11 decreased as the pH increased. In vitro digestion showed that CDs protect the drug during digestion and even improve its bioaccessibility. Finally, CDs reduced the drug’s extreme photosensitivity, originating a fluorescence signal, which is described for first time. The kinetic parameters of the reaction were obtained. This study not only completes the complexation study of roflumilast-CD, but also points to the need to protect roflumilast from light, suggesting that tablets containing the drug might be reformulated.
Collapse
|
30
|
A review on nuclear overhauser enhancement (NOE) and rotating-frame overhauser effect (ROE) NMR techniques in food science: Basic principles and applications. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Matencio A, Navarro-Orcajada S, García-Carmona F, López-Nicolás JM. Ellagic acid-borax fluorescence interaction: application for novel cyclodextrin-borax nanosensors for analyzing ellagic acid in food samples. Food Funct 2018; 9:3683-3687. [PMID: 29957817 DOI: 10.1039/c8fo00906f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The food industry needs cheap, fast and sensitive methods to increase the number of analyses that are routinely carried out; for this reason, new methods are constantly being sought. This paper describes a novel fluorescent nanosensor based on cyclodextrin (CD) to determine ellagic acid (EA). The encapsulation of EA in the presence of borax was studied. Firstly, the complexation of EA-borax was tested. The stoichiometry of the EA-borax complex showed a 1 : 2 complex, with KF1 = 2548 ± 127 M-1 and KF2 = 302 ± 15 M-1. Different CDs were used to obtain a 1 : 1 : 1 CD-EA-borax complex with γ-CD providing the best complexation constant (KF3 = 364 ± 18 M-1). Furthermore, when the accuracy and sensitivity of the nanosensor were tested using a crude blueberry extract, the CD/borax mixture provided an 18 times stronger signal than with the crude extract alone and 7 times stronger than that obtained using borax alone.
Collapse
Affiliation(s)
- Adrián Matencio
- Department of Biochemistry and Molecular Biology-A. Faculty of Biology. University of Murcia, Campus de Espinardo, 30071, Murcia, Spain.
| | | | | | | |
Collapse
|
32
|
Kaur J, Kaur G. Optimization of pH conditions and characterization of polyelectrolyte complexes between gellan gum and cationic guar gum. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jasleen Kaur
- Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala India
| |
Collapse
|
33
|
Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules 2017; 22:molecules22111801. [PMID: 29088059 PMCID: PMC6150350 DOI: 10.3390/molecules22111801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
In this study, the encapsulation mechanism of oxyresveratrol and β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied. As this research shows, oxyresveratrol and two cyclodextrins (CDs) were able to form inclusion complexes in a 1:1 stoichiometry. However, the interaction with HP-β-CD was more efficient, showing up as higher encapsulation constant (KF) (35,864.72 ± 3415.89 M−1). The KF values exhibited a strong dependence on temperature and pH, which decreased as they increased. From the thermodynamic parameters (ΔH0, ΔS0, and ΔG0) of the oxyresveratrol loaded β-CD (oxyresveratrol-β-CD) and HP-β-CD (oxyresveratrol-HP-β-CD), it could be seen that the complexation process was spontaneous and exothermic, and the main driving forces between oxyrsveratrol and CDs were hydrogen bonding and van der waals force. Besides, molecular docking combined with 1H-NMR were used to explain the most possible mode of interactions between oxyresveratrol and CDs.
Collapse
|
34
|
Salvador MA, Sousa CP, Morais S, Lima-Neto PD, Correia AN, Homem-de-Mello P. Evaluation of degradation mechanism of chlorhexidine by means of Density Functional Theory calculations. Comput Biol Chem 2017; 71:82-88. [PMID: 28987295 DOI: 10.1016/j.compbiolchem.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 11/28/2022]
Abstract
Chlorhexidine (CHD), a germicidal drug, has degradation products that can be hemotoxic and carcinogenic. However, there is no consensus in literature about the degradation pathway. In order to shed light on that mechanism, we have employed Density Functional Theory to study reactants, in different protonation states, products and intermediates involved in the different pathways. Based on free energy values comparison and frontier molecular orbital analysis, we have obtained the most stable structures in each protonation state. CHD in saturated form has HOMO localized in one p-chloroaniline, and, due to molecule's symmetry, HOMO-1 has contributions from the other side of the molecule, but mainly from the biguanide portion of the molecule, instead of from the p-chloroaniline. For the saturated form, we have studied two possible degradation pathways, starting from the monoprotonated structure, and three pathways starting from the neutral structure. We found out that the mechanisms proposed in literature, whose pathways lead to p-chloroaniline (PCA) formation in a smaller number of steps, are more likely than the mechanisms with more intermediate steps or pathways that do not predict PCA formation. Also, based on free energy results, we have found that the formation of another sub-product (PBG-AU) is favorable as well.
Collapse
Affiliation(s)
- Michele Aparecida Salvador
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bloco B, sala 1017, 09210-580, Santo André - SP, Brazil.
| | - Camila Pinheiro Sousa
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60440-900, Fortaleza - CE, Brazil
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Pedro de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60440-900, Fortaleza - CE, Brazil
| | - Adriana Nunes Correia
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60440-900, Fortaleza - CE, Brazil
| | - Paula Homem-de-Mello
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bloco B, sala 1017, 09210-580, Santo André - SP, Brazil.
| |
Collapse
|
35
|
Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H₂O₂ Detection. MATERIALS 2017; 10:ma10080868. [PMID: 28773229 PMCID: PMC5578234 DOI: 10.3390/ma10080868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H₂O₂. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H₂O₂. It was found that the CTS-CAT could produce a strong reduction peak current in response to H₂O₂ and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H₂O₂ concentration in the range of 1.0 × 10-7-6.0 × 10-3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.
Collapse
|