1
|
Yu X, Li D, Yu Y, Li L, Jin M, Yan JK. Characterization of free and bound polymethoxyflavones in the dried peel of Citrus reticulata "Chachi" through fingerprint RDA ions and reversed-phase column retention by UPLC-Q-TOF-MS/MS. Food Chem 2025; 471:142831. [PMID: 39823908 DOI: 10.1016/j.foodchem.2025.142831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Polymethoxyflavones (PMFs) from citrus peel, including permethoxylated PMFs and hydroxylated PMFs (OH-PMFs), have attracted much attention due to their potential strong biological activities. However, characterization of PMFs through LC-MS analysis was challenged due to numerous substituent positions in flavone. In this study, twelve PMF standards were analyzed by UPLC-QTOF-MS/MS to present fingerprint retro-Diels-Alder (RDA) ions ([0,2B]+, 1,3 A and 1,3B(C) associated ions). Based on UPLC-QTOF-MS/MS characteristics of PMFs, 29 PMFs, screened through extracted ion chromatograms in UPLC-QTOF-MS analysis, were identified in free and bound extracts from dried peel of Citrus reticulata "Chachi" through fingerprint RDA ions and reversed-phase column retention in UPLC-QTOF-MS/MS experiment. It was found that permethoxylated PMFs and 5-OH PMFs existed mainly in free form; while di/trihydroxy PMFs existed mainly in bound form in dried peel of Citrus reticulata "Chachi". The present study is expected to provide new analytical strategy in characterizing PMFs in PMFs metabolites and citrus.
Collapse
Affiliation(s)
- Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Difan Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yahui Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Longqing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Mingyu Jin
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
2
|
Wang Y, Ma Z, Peng W, Yu Q, Liang W, Cao L, Wang Z. 3,5,6,7,8,3',4'- Heptamethoxyflavonoid inhibits TGF-β1-induced epithelial-mesenchymal transition by regulating oxidative stress and autophagy through MEK/ERK/PI3K/AKT/mTOR signaling pathway. Sci Rep 2025; 15:4567. [PMID: 39915543 PMCID: PMC11802913 DOI: 10.1038/s41598-025-88869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial pathological process in the pathogenesis of fibrosis. 3,5,6,7,8,3',4'-hepmethoxyflavone (HMF), the main active ingredient extracted from the Chinese herb Breynia fruticosa (L.) Hook. f., has been shown to have beneficial effects on regulating apoptosis and inhibiting collagen deposition. However, it remains unclear whether and how HMF alleviates transforming growth factor-β1 (TGF-β1)-induced EMT. The objective of this study was to investigate the impact of HMF on TGF-β1-induced EMT in human alveolar Type II epithelial cells (A549) and its underlying mechanism. In vitro culture of TGF-β1-induced EMT in A549 cells revealed that HMF reduced cell viability and migration, inhibited collagen deposition, decreased expression levels of mesenchymal cell markers and fibrosis markers α-SMA, MMP2, TIMP1, β-catenin, and Snail. Meanwhile, the expression level of E-cadherin increased as an epithelial cell marker. Additionally, we discussed the effects of HMF on oxidative stress and autophagy. Various experiments confirmed that HMF regulated the expression levels of Nrf2, keap-1, HO-1, ROS, MDA, SOD, GSH, and played a role in reducing oxidative stress. At the same time, HMF significantly activated autophagy by increasing expressions of Beclin-1 and LC3B as well as enhancing autophagosome content. The addition 3-MA, an autophagy inhibitor attenuated these beneficial effects. Furthermore, HMF significantly inhibited phosphorylation levels of MEK, ERK, PI3K, AKT, and mTOR through various pathways. In conclusion, HMF effectively inhibits TGF-β1-induced EMT in A549 cells by targeting the MEK/ERK/PI3K/AKT/mTOR signaling pathway. Moreover, it exhibits a close correlation with the suppression of oxidative stress and induction of autophagy.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhiheng Ma
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Weiwen Peng
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Qinglian Yu
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Wenjie Liang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Liu Cao
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhuqiang Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China.
| |
Collapse
|
3
|
Liu TW, Iskandar B, Chu MH, Wang YH, Huang TA, Hsu SJ, Hsieh YSY, Lee CK. Dynamic changes in the metabolome and microbiome during Citrus depressa Hayata liquid fermentation. Food Chem 2025; 463:141225. [PMID: 39293379 DOI: 10.1016/j.foodchem.2024.141225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Citri Reticulatae Pericarpium (CRP) is a common traditional Chinese herbal medicine, valued for its multi-bioactivity. However, its processing time, environment, and microorganisms all affect its quality and bioactivity. To address this, the study replaced solid-state fermentation with liquid fermentation using microorganisms and isolated Bacillus amyloliquefaciens, respectively. This aimed to discover a more stable processing method and examine metabolite-micobiota correlations. Non-targeted metabolomics identified 70 differential metabolites, focusing on amino acids, polymethoxyflavones (PMFs), and carbohydrates. Long-read sequencing showed a shift in dominant bacterial genera from Lactobacillus to Pediococcus, then to Clostridium. Spearman analysis revealed a positive correlation between specific Clostridium species and PMFs production. B. amyloliquefaciens fermentation notably increased PMFs content without reducing hesperidin levels, suggesting its potential as an alternative processing method. This study offers valuable insights into metabolome-microbiome interactions for future biotransformation research.
Collapse
Affiliation(s)
- Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan.
| | - Benni Iskandar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan.
| | - Man-Hsiu Chu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan.
| | - Yun-Han Wang
- Ph. D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ting-An Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan.
| | - Su-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE106 91, Sweden.
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan; Ph. D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11042, Taiwan.
| |
Collapse
|
4
|
Wang D, Li Z, Jiang Z, Li Y, Chen Q, Zhou Z. Polymethoxylated flavone variations and in vitro biological activities of locally cultivated Citrus varieties in China. Food Chem 2025; 463:141047. [PMID: 39236394 DOI: 10.1016/j.foodchem.2024.141047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Citrus peels are rich in polymethoxylated flavones (PMFs), which have beneficial health and pharmacological properties. In this study, the profiles, variations, and biological activities of PMFs in the peel extracts of 27 Citrus varieties (eight species) native to China were investigated. UPLC-QTOF-MS/MS analysis revealed that mandarin accumulated more diversity and higher detectable PMF contents. Wangcangzhoupigan (ZPG) possessed the highest antioxidant capacity. Gailiangcheng (GLC) and Bingtangcheng (BTC), sweet oranges showed excellent inhibitory effects against pancreatic lipase and α-glucosidase, respectively. Most citrus extracts effectively inhibited the production of ROS and pro-inflammatory cytokines, while increasing the accumulation of anti-inflammatory cytokines. In addition, Limeng (LM), Cupig-oushigan (GSG), and Yanxiwanlu (YXWL) showed anti-proliferative effects against DU145 and PC3 cancer cells. This study provides a comprehensive PMF profile and biological activities of various citrus species and will benefit future functional citrus breeding practices aimed at designing plants rich in total or specific PMFs for health benefits.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Zhenqing Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zixiao Jiang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yi Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China.
| |
Collapse
|
5
|
Mehmood MFU, Marvi, Abuelizz HA, Aziz N, Bano R, Wazir A, Ahmad I, Abbas K, Ishtiaq S, Amin A. Advance Glycation End Products Inhibition by Citrus paradisi Peel Extract; Characterization, LCMS-QTOF Analysis, and Biological Evaluation. Food Sci Nutr 2024; 12:10655-10665. [PMID: 39723034 PMCID: PMC11666926 DOI: 10.1002/fsn3.4602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Advance glycation end products (AGEs) are the main reason for diabetic complications. Persistent hyperglycemia and non-enzymatic glycation increase the rate of AGEs formation. Natural functional food-based approaches are mainly under investigation these days to discover new treatment options. We focused to investigate potential of medium polar fractions of Citrus paradesi. The peels fractions were analsyed for phytochemical profile, FTIR, HPLC-DAD, and LCMS-QTof, and biological investigation including antioxidant assays, α-glucosidase inhibition, and Anti AGEs inhibition was performed. LCMS-QTof confirmed the presence of flavonoids and polymethoxylated flavonoids including naringin, narirutin 4-O-glucoside, hesperidin, naringenin-7-O-rutinoside hexamethoxyflavone, 3,5,6,7,8,3',4' heptamethoxyflavone were major compounds. A significant antioxidant activity was recorded in case of chloroform fraction compared to ethyl acetate fraction. Similarly a substancial AGEs inhibition in oxidative mode (IC50 0.23 mg/mL) and non-oxidative mode (IC50 0.10 mg/mL) was observed in chloroform fraction, whereas ethyl acetate fraction was only active in oxidative mode (IC50 0.69 mg/mL). A moderate α-glucosidase inhibition (IC50 1.23 mg/mL) was noticed in total extract, while significant activity was recorded in chloroform fraction (IC50 0.78 mg/mL). It was concluded that medium polar fraction of C. paradesi possesses antidiabetic and anti-AGEs potential that can be due to presence of flavonoids and polymethoxylated flavonoids.
Collapse
Affiliation(s)
- Muhammad Fakhar Ul Mehmood
- Department of Pharmacology, Faculty of PharmacyUniversity of BalochistanQuettaPakistan
- NPRL, Department of Pharmacognosy, Faculty of PharmacyGomal UniversityDera Ismail KhanKhyber PakhtunkhwaPakistan
| | - Marvi
- Department of Pharmacology, Faculty of PharmacyUniversity of BalochistanQuettaPakistan
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Nighat Aziz
- Department of PharmacologyGomal Medical CollegeDera Ismail KhanKhyber PakhtunkhwaPakistan
| | - Raheela Bano
- Department of PathologyGomal Medical CollegeDera Ismail KhanKhyber PakhtunkhwaPakistan
| | - Asif Wazir
- Department of PharmacognosyBahauddin Zakariya UniversityMultanPakistan
| | - Imran Ahmad
- Department of Pharmaceutical ChemistryBahauddin Zakariya UniversityMultanPakistan
| | - Khizar Abbas
- Department of PathologyGomal Medical CollegeDera Ismail KhanKhyber PakhtunkhwaPakistan
| | - Saiqa Ishtiaq
- Centre for Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
| | - Adnan Amin
- NPRL, Department of Pharmacognosy, Faculty of PharmacyGomal UniversityDera Ismail KhanKhyber PakhtunkhwaPakistan
| |
Collapse
|
6
|
Chen P, Li C, Chen L, Li X, Zhu S. Citrus-derived flavanones as neuraminidase inhibitors: In vitro and in silico study. Eur J Med Chem 2024; 277:116758. [PMID: 39151273 DOI: 10.1016/j.ejmech.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Neuraminidase (NA) has been well-studied as a therapeutic target for Influenza. However, resistance to the influenza virus has been observed recently. Out of special interest in the utilization of dietary antivirals from citrus, in vitro inhibition activity against NA and in silico studies including molecular docking, molecular dynamic simulation, and a predictive ADMET study, were performed on five citrus-derived flavanones. Encouragingly, citrus-derived flavanones displayed comparable or even more potent in vitro inhibitory activity than oseltamivir carboxylate against NA. Orange peel extract exhibited higher activity than hesperidin. Among the tested compounds, neohesperidin, forming strong hydrogen-bonding interactions with key arginine residues, exhibited the most effective inhibitory activity against NAs from C. perfringens, consistent with the results of molecular dynamics simulations. Although the molecular docking results were inconsistent with the in vitro activity, the binding energy was identical against the wild-type and mutant, suggesting a lower likelihood of developing drug resistance. Moreover, predictive ADMET studies showed favorable pharmacokinetic properties for the tested compounds. Overall, citrus fruit peel emerges as a promising dietary supplement for prevention and treatment of influenza. These findings elucidate the impact of flavanones on NA activity, and the analysis of their binding modes provides valuable insights into the mechanism of NA inhibition.
Collapse
Affiliation(s)
- Ping Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Xinpeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| |
Collapse
|
7
|
Xiao P, Hao J, Kuang Y, Dai C, Rong X, Jiang L, Xie Z, Zhang L, Chen Q, Liu E. Targeting Neuraminidase 4 Attenuates Kidney Fibrosis in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406936. [PMID: 39136142 PMCID: PMC11497051 DOI: 10.1002/advs.202406936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Despite significant progress in therapy, there remains a lack of substantial evidence regarding the molecular factors that lead to renal fibrosis. Neuraminidase 4 (NEU4), an enzyme that removes sialic acids from glycoconjugates, has an unclear role in chronic progressive fibrosis. Here, this study finds that NEU4 expression is markedly upregulated in mouse fibrotic kidneys induced by folic acid or unilateral ureter obstruction, and this elevation is observed in patients with renal fibrosis. NEU4 knockdown specifically in the kidney attenuates the epithelial-to-mesenchymal transition, reduces the production of pro-fibrotic cytokines, and decreases cellular senescence in male mice. Conversely, NEU4 overexpression exacerbates the progression of renal fibrosis. Mechanistically, NEU4254-388aa interacts with Yes-associated protein (YAP) at WW2 domain (231-263aa), promoting its nucleus translocation and activation of target genes, thereby contributing to renal fibrosis. 3,5,6,7,8,3',4'-Heptamethoxyflavone, a natural compound, is identified as a novel NEU4 inhibitor, effectively protecting mice from renal fibrosis in a NEU4-dependent manner. Collectively, the findings suggest that NEU4 may represent a promising therapeutic target for kidney fibrosis.
Collapse
Affiliation(s)
- Ping‐Ting Xiao
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Jin‐Hua Hao
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Yu‐Jia Kuang
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Cai‐Xia Dai
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Xiao‐Ling Rong
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Li‐Long Jiang
- PolyU Academy for Interdisciplinary ResearchThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Zhi‐Shen Xie
- Academy of Chinese Medical SciencesHenan University of Chinese MedicineZhengzhou450000China
| | - Lei Zhang
- Hunan Key Laboratory of Kidney Disease and Blood PurificationDepartment of NephrologyThe Second Xiangya Hospital Central South UniversityChangsha410000China
| | - Qian‐Qian Chen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - E‐Hu Liu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
8
|
Chuang KC, Chiang YC, Chang YJ, Lee YC, Chiang PY. Evaluation of Antioxidant and Anti-Glycemic Characteristics of Aged Lemon Peel Induced by Three Thermal Browning Models: Hot-Air Drying, High Temperature and Humidity, and Steam-Drying Cycle. Foods 2024; 13:3053. [PMID: 39410088 PMCID: PMC11475740 DOI: 10.3390/foods13193053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study evaluated the antioxidant and anti-glycemic properties of black lemon Chenpi (BLC) (Citrus limon (L.) Burm. f. cv. Eureka), processed using three thermal browning models-hot-air drying (HAL), high temperature and humidity, and steam-drying cycle (SCL)-and compared them to fresh lemon peel and commercial Chenpi. The moisture-assisted aging technology (MAAT) is an environmentally friendly process for inducing browning reactions in the lemon peel, enhancing its functional properties. Our results demonstrated significant increases in sucrose, total flavonoid content, and antioxidant capacities (2,2-diphenylpicrylhydrazyl: 12.86 Trolox/g dry weight; ferric reducing antioxidant power: 14.92 mg Trolox/g dry weight) with the MAAT-HAL model. The MAAT-SCL model significantly improved the browning degree, fructose, total polyphenol content, narirutin, and 5-hydroxymethylfurfural synthesis (p < 0.05). Additionally, aged lemon peel exhibited potential α-glucosidase inhibitory activity (28.28%), suggesting its role in blood sugar regulation after meals. The multivariate analysis (principal component and heatmap analyses) indicated that BLC processed using the MAAT-SCL model exhibited similarities to commercial Chenpi, indicating its potential for functional food development. Our results indicate that MAAT-SCL can enhance the economic value of lemon by-products, offering a sustainable and functional alternative to traditional Chenpi.
Collapse
Affiliation(s)
| | | | | | | | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Liu Y, Wen H, Kong J, Hu Z, Hu Y, Zeng J, Chen X, Zhang H, Chen J, Xu J. Flavor characterization of Citri Reticulatae Pericarpium (Citrus reticulata 'Chachiensis') with different aging years via sensory and metabolomic approaches. Food Chem 2024; 443:138616. [PMID: 38306907 DOI: 10.1016/j.foodchem.2024.138616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Guangchenpi (GCP), which is the peel of Citrus reticulata 'Chachiensis', is widely used as an herbal medicine, tea and food ingredient in southeast Asia. Prolonging its aging process results in a more pleasant flavor and increases its profitability. Through the integration of sensory evaluation with flavoromic analysis approaches, we evaluated the correlation between the flavor attributes and the profiles of the volatiles and flavonoids of GCP with various aging years. Notably, d-limonene, γ-terpinene, dimethyl anthranilate and α-phellandrene were the characteristic aroma compounds of GCP. Besides, α-phellandrene and nonanal were decisive for consumers' perception of GCP aging time due to changes of their odor activity values (OAVs). The flavor attributes of GCP tea liquid enhanced with the extension of aging time, and limonene-1,2-diol was identified as an important flavor enhancer. Combined with machine learning models, key flavor-related metabolites could be developed as efficient biomarkers for aging years to prevent GCP adulteration.
Collapse
Affiliation(s)
- Yuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Hu
- Jiangmen Xinhui District Forestry Research Institute, Jiangmen 529100, China
| | - Jiwu Zeng
- Guangdong Fruit Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiangling Chen
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hongyan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Cao J, Zheng W, Chen B, Yan Z, Tang X, Li J, Zhang Z, Ang S, Li C, Wu R, Wu P, Chen WH. Chemical Composition of Essential Oil from Citrus reticulata Blanco cv. Chachiensis (Chachi) and Its Anti-Mosquito Activity against Pyrethroid-Resistant Aedes albopictus. INSECTS 2024; 15:345. [PMID: 38786901 PMCID: PMC11122156 DOI: 10.3390/insects15050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito activity of the essential oil (EO) of Citrus reticulata Blanco cv. Chachiensis (Chachi) (referred to as CRB) at immature, semi-mature, and mature stages. The chemical compositions of the CRB EO were analyzed using GC-MS. The main components were identified to be D-limonene and γ-terpinene. The contents of D-limonene at the immature, semi-mature, and mature stages were 62.35%, 76.72%, and 73.15%, respectively; the corresponding contents of γ-terpinene were 14.26%, 11.04%, and 11.27%, respectively. In addition, the corresponding contents of a characteristic component, methyl 2-aminobenzoate, were 4.95%, 1.93%, and 2.15%, respectively. CRB EO exhibited significant larvicidal activity against Aedes albopictus (Ae. albopictus, Diptera: Culicidae), with the 50% lethal doses being 65.32, 61.47, and 65.91 mg/L for immature, semi-mature, and mature CRB EO, respectively. CRB EO was able to inhibit acetylcholinesterase and three detoxification enzymes, significantly reduce the diversity of internal microbiota in mosquitoes, and decrease the relative abundance of core species within the microbiota. The present results may provide novel insights into the utilization of plant-derived essential oils in anti-mosquitoes.
Collapse
Affiliation(s)
- Jifan Cao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co., Ltd., Jiangmen 529100, China;
| | - Zhenping Yan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xiaowen Tang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiahao Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Song Ang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
11
|
Sabry BA, Badr AN, Mohammed DM, Desoukey MA, Farouk A. Validating the protective role of orange and tangerine peel extracts foramending food safety against microorganisms' contamination using molecular docking. Heliyon 2024; 10:e27737. [PMID: 38509881 PMCID: PMC10950677 DOI: 10.1016/j.heliyon.2024.e27737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/02/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Latest studies indicated that agro-food wastes are considered renewable sources of bioactive compounds. This investigation aimed to utilize natural extracts of citrus peels as antimicrobial and anti-aflatoxigenic agents for food safety. The bioactivity of two citrus peels was assessed by total phenolic, flavonoids, and antioxidant activity. Nanoemulsions were manufactured using high-speed homogenization. The mean particle size of the nanoemulsions ranged from 29.41 to 66.41 nm with a polydispersity index of 0.11-0.16. The zeta potential values ranged from -14.27 to -26.74 mV, indicating stability between 81.44% and 99.26%. The orange peel extract showed the highest contents of total phenolic and flavonoids compared to the other extracts and nanoemulsions (39.54 mg GAE/g and 79.54 mg CE/100 g, respectively), which agreed with its potential antioxidant activity performed by DPPH free radical-scavenging and ABTS assays. Chlorogenic, caffeic, ferulic, and catechin were the dominant phenolic acids in the extracts and nanoemulsions, while quercitrin, rutin, and hesperidin were the most abundant flavonoids. Limonene was the major volatile component in both oils; however, it was reduced dramatically from 92.52% to 76.62% in orange peel oil and from 91.79 to 79.12% in tangerine peel oil. Consistent with the differences in phenolics, flavonoids, and volatiles between orange and tangerine peel extracts, the antibacterial properties of orange extracts had more potential than tangerine ones. Gram-positive bacteria were more affected by all the examined extracts than Gram-negative ones. The antifungal activity of orange extract and nanoemulsion on seven fungal strains from Aspergillus spp had more potential than tangerine extracts. Additionally, using a simulated media, the orange peel extract and its nanoemulsion had a more anti-aflatoxigenic influence. Molecular docking confirmed the high inhibitory action of flavonoids, especially hesperidin, on the polyketide synthase (-9.3 kcal/mol) and cytochrome P450 monooxygenase (-10.1 kcal/mol) key enzymes of the aflatoxin biosynthetic mechanism.
Collapse
Affiliation(s)
- Bassem A. Sabry
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa A. Desoukey
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
12
|
Li T, Chen K, Wang X, Wang Y, Su Y, Guo Y. Mass Spectrometry Rearrangement Ions and Metabolic Pathway-Based Discovery of Indole Derivatives during the Aging Process in Citrus reticulata 'Chachi'. Foods 2023; 13:8. [PMID: 38201037 PMCID: PMC10778486 DOI: 10.3390/foods13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The rapid analysis and characterization of compounds using mass spectrometry (MS) may overlook trace compounds. Although targeted analysis methods can significantly improve detection sensitivity, it is hard to discover novel scaffold compounds in the trace. This study developed a strategy for discovering trace compounds in the aging process of traditional Chinese medicine based on MS fragmentation and known metabolic pathways. Specifically, we found that the characteristic component of C. reticulata 'Chachi', methyl N-methyl anthranilate (MMA), fragmented in electrospray ionization coupled with collision-induced dissociation (CID) to produce the rearrangement ion 3-hydroxyindole, which was proven to exist in trace amounts in C. reticulata 'Chachi' based on comparison with the reference substance using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Combining the known metabolic pathways of 3-hydroxyindole and the possible methylation reactions that may occur during aging, a total of 10 possible indole derivatives were untargeted predicted. These compounds were confirmed to originate from MMA using purchased or synthesized reference substances, all of which were detected in C. reticulata 'Chachi' through LC-MS/MS, achieving trace compound analysis from untargeted to targeted. These results may contribute to explaining the aging mechanism of C. reticulata 'Chachi', and the strategy of using the CID-induced special rearrangement ion-binding metabolic pathway has potential application value for discovering trace compounds.
Collapse
Affiliation(s)
- Tian Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| | - Ke Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| |
Collapse
|
13
|
Lee H, Liu X, An JP, Wang Y. Identification of Polymethoxyflavones (PMFs) from Orange Peel and Their Inhibitory Effects on the Formation of Trimethylamine (TMA) and Trimethylamine-N-oxide (TMAO) Using cntA/B and cutC/D Enzymes and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16114-16124. [PMID: 37851928 DOI: 10.1021/acs.jafc.3c04462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This study investigates the inhibitory effects of polymethoxyflavones (PMFs) on enzymes involved in the production of trimethylamine (TMA) and trimethylamine-N-oxide (TMAO). PMFs were isolated from Valencia orange peel and identified using column separation and NMR techniques. The findings reveal that nobiletin and 3,6,7,8,2',5'-hexamethoxyflavone significantly suppress cntA/B and cutC/D, respectively. Furthermore, 3,6,7,8,2',5'-hexamethoxyflavone decreases the level of TMAO formation by suppressing the FMO3 mRNA level. This study elucidates that specific structural features of PMFs can contribute to their interactions with enzymes. Our study represents the first demonstration of the ability of PMFs to mitigate the risk of cardiovascular disease (CVD) by inhibiting enzymes responsible for TMA production, which are generated by gut microbiomes. Furthermore, we introduce a novel model system utilizing TMA-induced HepG2 cells to assess and compare the inhibitory effects of PMFs on TMAO production. These findings could pave the way for the development of novel therapeutic approaches to manage CVD.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Xin Liu
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Jin-Pyo An
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| |
Collapse
|
14
|
Fang ZF, Fu Y, Peng Y, Song SR, Wang ZN, Yang Y, Nie YC, Han HL, Teng YB, Xiao WM, Chen JP, Zhou BJ, Ou GL, Xie JX, Liu XY, Zhang JJ, Zhong NS. Citrus peel extract protects against diesel exhaust particle-induced chronic obstructive pulmonary disease-like lung lesions and oxidative stress. Food Funct 2023; 14:9841-9856. [PMID: 37850547 DOI: 10.1039/d3fo02010j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.
Collapse
Affiliation(s)
- Zhang-Fu Fang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China
- Guangzhou Laboratory, Guangzhou 510320, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yu Fu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Sheng-Ren Song
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yi-Chu Nie
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Hai-Long Han
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China.
| | - Yan-Bo Teng
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China.
| | - Wei-Min Xiao
- Shenzhen Academy of Metrology & Quality Inspection, Shenzhen 518055, China
| | - Jia-Ping Chen
- Shenzhen Academy of Metrology & Quality Inspection, Shenzhen 518055, China
| | | | - Guo-Liang Ou
- Jiangmen Palace International Food, Inc., Jiangmen 529000, China
| | - Jia-Xing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xiao-Yu Liu
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518061, China.
| | - Junfeng Jim Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, USA
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China.
| | - Nan-Shan Zhong
- Guangzhou Laboratory, Guangzhou 510320, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Yang J, Kim JS, Kwon YS, Seong ES, Kim MJ. Antioxidant and Antiproliferative Activities of Eclipta prostrata (L.) L. Extract and Isolated Compounds. Molecules 2023; 28:7354. [PMID: 37959773 PMCID: PMC10650814 DOI: 10.3390/molecules28217354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The primary objective of this study was to elucidate the chemical composition, antioxidant properties, and antiproliferative activities of Eclipta prostrata extracts. Two flavonoids, 3'-O-methylorobol and apigenin 7-sulfate, were isolated from the ethyl acetate (EtOAc) extract of E. prostrata. The total phenolic and flavonoid contents of the E. prostrata extracts, as well as their overall antioxidant activities as measured using the 2,2-diphenyl-1-picrylhydrazyl and reducing power assays, were investigated. The E. prostrata EtOAc extract exhibited significantly greater antioxidant activities in both assays and higher phenol and flavonoid contents than the other extracts. The potential antiproliferative properties of the E. prostrata extracts and isolated compounds were investigated in vitro against the AGS, A549, and HT-29 cancer cell lines and the normal human HEK-293 cell line using the MTT assay. Annexin V-FITC/PI staining analysis and quantitative real-time PCR were used to assess AGS cell apoptosis. At a concentration of 100 µg/mL, the EtOAc extract of E. prostrata reduced AGS cell viability and proliferation by inducing apoptosis through the alteration of gene expression in the apoptotic cascade. These results highlight E. prostrata as a promising source of anticancer compounds.
Collapse
Affiliation(s)
- Jinfeng Yang
- Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou 542899, China;
| | - Joo Seok Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Soo Seong
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myong Jo Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
16
|
He Y, Sun Z, Bai J, Zhang Y, Qian Y, Zhao X, Chen S. Citrus peel polyphenols alleviate intestinal inflammation in mice with dextran sulfate sodium-induced acute colitis. Heliyon 2023; 9:e18137. [PMID: 37539135 PMCID: PMC10393610 DOI: 10.1016/j.heliyon.2023.e18137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Citrus peel polyphenols have possess the distinct anti-inflammatory activities. However, its underlying mechanism on ulcerative colitis have not been elucidated. The aim of this research was to investigate the anti-inflammatory effect and action mechanisms of citrus peel polyphenols. Total citrus peel polyphenols were concentrated using macroporous resins and separated into water-soluble citrus polyphenols and ester-soluble citrus peel polyphenols. These extracts were then gavaged to acute colitis mice induced by dextran sulfate sodium for 14 days using a dose of 300 mg/kg▪bw. High performance liquid chromatography results showed that the extracts contained flavanones, flavonoids, and phenolic acids. Compared to the dextran sulfate sodium group, total citrus peel polyphenols, water-soluble citrus polyphenols, and ester-soluble citrus peel polyphenols significantly ameliorated the severity of colitis symptoms. Additionally, citrus peel polyphenols reduced the activity of myeloperoxidase, lowered secretion of tumor necrosis factor-α and interleukin-6, and increased interleukin-10. Meanwhile, total citrus peel polyphenols, water-soluble citrus polyphenols, and ester-soluble citrus peel polyphenols effectively blocked the activation of the nuclear factor-kappa B. These results demonstrated that citrus peel polyphenols alleviated ulcerative colitis in mice by damping pro-inflammatory cytokine secretion and suppressing the nuclear factor-kappa B pathway activation.
Collapse
Affiliation(s)
- Yajing He
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Zhigao Sun
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| | - JunYing Bai
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Yu Zhang
- School of Food Science, Southwest University, Chongqing, China
| | - Yu Qian
- School of Food ScienChongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- School of Food ScienChongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Shanshan Chen
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Wang Q, Qiu Z, Chen Y, Song Y, Zhou A, Cao Y, Xiao J, Xiao H, Song M. Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:10332-10360. [PMID: 37326362 DOI: 10.1080/10408398.2023.2222834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The extensive health-promoting effects of Citri Reticulatae Pericarpium (CRP) have attracted researchers' interest. The difference in storage time, varieties and origin of CRP are closely related to the content of bioactive compounds they contain. The consitituent transformation mediated by environmental microorganisms (bacteria and fungi) and the production of new bioactive components during the storage process may be the main reason for 'the older, the better' of CRP. In addition, the gap in price between different varieties can be as large as 8 times, while the difference due to age can even reach 20 times, making the 'marketing young-CRP as old-CRP and counterfeiting origin' flood the entire market, seriously harming consumers' interests. However, so far, the research on CRP is relatively decentralized. In particular, a summary of the microbial transformation and authenticity identification of CRP has not been reported. Therefore, this review systematically summarized the recent advances on the main bioactive compounds, the major biological activities, the microbial transformation process, the structure, and content changes of the active substances during the transformation process, and authenticity identification of CRP. Furthermore, challenges and perspectives concerning the future research on CRP were proposed.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Afifi SM, Gök R, Eikenberg I, Krygier D, Rottmann E, Stübler AS, Aganovic K, Hillebrand S, Esatbeyoglu T. Comparative flavonoid profile of orange ( Citrus sinensis) flavedo and albedo extracted by conventional and emerging techniques using UPLC-IMS-MS, chemometrics and antioxidant effects. Front Nutr 2023; 10:1158473. [PMID: 37346911 PMCID: PMC10279959 DOI: 10.3389/fnut.2023.1158473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process. Methods This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs). Results A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction. Conclusion Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dennis Krygier
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| | | | | | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
19
|
Sun Y, Xia X, Yuan G, Zhang T, Deng B, Feng X, Wang Q. Stachydrine, a Bioactive Equilibrist for Synephrine, Identified from Four Citrus Chinese Herbs. Molecules 2023; 28:molecules28093813. [PMID: 37175222 PMCID: PMC10180305 DOI: 10.3390/molecules28093813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Four Chinese herbs from the Citrus genus, namely Aurantii Fructus Immaturus (Zhishi), Aurantii Fructus (Zhiqiao), Citri Reticulatae Pericarpium Viride (Qingpi) and Citri Reticulatae Pericarpium (Chenpi), are widely used for treating various cardiovascular and gastrointestinal diseases. Many ingredients have already been identified from these herbs, and their various bioactivities provide some interpretations for the pharmacological functions of these herbs. However, the complex functions of these herbs imply undisclosed cholinergic activity. To discover some ingredients with cholinergic activity and further clarify possible reasons for the complex pharmacological functions presented by these herbs, depending on the extended structure-activity relationships of cholinergic and anti-cholinergic agents, a simple method was established here for quickly discovering possible choline analogs using a specific TLC method, and then stachydrine and choline were first identified from these Citrus herb decoctions based on their NMR and HRMS data. After this, two TLC scanning (TLCS) methods were first established for the quantitative analyses of stachydrine and choline, and the contents of the two ingredients and synephrine in 39 samples were determined using the valid TLCS and HPLC methods, respectively. The results showed that the contents of stachydrine (3.04‱) were 2.4 times greater than those of synephrine (1.25‱) in Zhiqiao and about one-third to two-thirds of those of Zhishi, Qingpi and Chenpi. Simultaneously, the contents of stachydrine, choline and synephrine in these herbs present similar decreasing trends with the delay of harvest time; e.g., those of stachydrine decrease from 5.16‱ (Zhishi) to 3.04‱ (Zhike) and from 1.98‱ (Qingpi) to 1.68‱ (Chenpi). Differently, the contents of synephrine decrease the fastest, while those of stachydrine decrease the slowest. Based on these results, compared with the pharmacological activities and pharmacokinetics reported for stachydrine and synephrine, it is indicated that stachydrine can be considered as a bioactive equilibrist for synephrine, especially in the cardio-cerebrovascular protection from these citrus herbs. Additionally, the results confirmed that stachydrine plays an important role in the pharmacological functions of these citrus herbs, especially in dual-directionally regulating the uterus, and in various beneficial effects on the cardio-cerebrovascular system, kidneys and liver.
Collapse
Affiliation(s)
- Yifei Sun
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tongke Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Beibei Deng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinyu Feng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qixuan Wang
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
20
|
Fontana G, Bruno M, Sottile F, Badalamenti N. The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from Citrus Genus. Antioxidants (Basel) 2022; 12:antiox12010023. [PMID: 36670885 PMCID: PMC9855034 DOI: 10.3390/antiox12010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydroxyl and methoxy groups in their structural unities. Some of these compounds are the aglycone part in a glycoside structure in which the glycosidic linkage can involve the -OH at various positions. These compounds are particular to Citrus genus plants, especially in fruits, and they are present mainly in the peel. A considerable number of PMFs and HPMFs have shown promising biological activities and they are considered to be important nutraceuticals, responsible for some of the known beneficial effects on health associated with a regular consumption of Citrus fruits. Among their several actions on human health, it is notable that the relevant contribution in controlling the intracellular redox imbalance is associated with the inflammation processes. In this work, we aim to describe the status concerning the chemical identification and the anti-inflammatory activity of both PMFs and HPMFs. In particular, all of the chemical entities unambiguously identified by isolation and complete NMR analysis, and for which a biochemical evaluation on the pure compound was performed, are included in this paper.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Francesco Sottile
- Dipartimento di Architettura, Università Degli Studi di Palermo, Centro di Conservazione della Biodiversità di Interesse Agrario, Viale delle Scienze Ed. 14, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
21
|
Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata ‘chachi’ peel at different collection periods using gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Xian L, Sahu SK, Huang L, Fan Y, Lin J, Su J, Bai M, Chen Y, Wang S, Ye P, Wang F, Luo Q, Bai H, Lin X, Yuan C, Geng X, Liu H, Wu H. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis 'Tomentosa'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111489. [PMID: 36216298 DOI: 10.1016/j.plantsci.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Lin Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianhao Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haiyi Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Caihong Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodie Geng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Tao Y, Yu Q, Huang Y, Liu R, Zhang X, Wu T, Pan S, Xu X. Identification of Crucial Polymethoxyflavones Tangeretin and 3,5,6,7,8,3',4'-Heptamethoxyflavone and Evaluation of Their Contribution to Anticancer Effects of Pericarpium Citri Reticulatae 'Chachi' during Storage. Antioxidants (Basel) 2022; 11:1922. [PMID: 36290646 PMCID: PMC9598651 DOI: 10.3390/antiox11101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Pericarpium Citri Reticulatae 'Chachi' (PCR-C), rich in polymethoxyflavones (PMFs), has potential anticancer bioactivity and its quality will be improved during storage. However, the main factors influencing the PCR-C quality during its storage remain unclear. In this study, multivariate analysis was performed to investigate free and bound PMFs of PCR-C during storage. The anticancer effects of purified PCR-C flavonoid extracts (PCR-CF) and the important PMFs were evaluated using A549 cells. The results showed that PCR-C samples exhibited remarkable differences in free PMFs during storage, which fell into three clusters: Cluster 1 included fresh (fresh peel) and PCR-C01 (year 1); Cluster 2 consisted of PCR-C03 (year 3) and PCR-C05 (year 5); and PCR-C10 (year 10) was Cluster 3. 3,5,6,7,8,3',4'-heptamethoxyflavone, tangeretin, and isosinensetin were identified as the most important PMFs distinguishing the various types of PCR-C according to its storage periods. Moreover, PCR-CF inhibited A549 cell proliferation and induced cell cycle arrest at G2/M phase, cell apoptosis, and ROS accumulation, and all anticancer indices had an upward tendency during storage. Additionally, tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone exhibited anticancer effects on A549 cells, whereas isosinensetin displayed no anticancer effect, indicating that tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone jointly contributed to anticancer activity of PCR-C during storage. PCR-CF and the most important PMFs killed cancer cells (A549 cells) but had no cytotoxicity to normal lung fibroblast cells (MRC-5 cells). Overall, the high quality of long-term stored PCR-C might be due to the anticancer effects of tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone.
Collapse
Affiliation(s)
- Yexing Tao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiting Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiwen Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Chen Q, Gu Y, Tan C, Sundararajan B, Li Z, Wang D, Zhou Z. Comparative effects of five polymethoxyflavones purified from Citrus tangerina on inflammation and cancer. Front Nutr 2022; 9:963662. [PMID: 36159482 PMCID: PMC9493082 DOI: 10.3389/fnut.2022.963662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Although the Citrus tangerina cultivar “Dahongpao” (CTD) has been established as a rich source of polymethoxyflavones (PMFs) with anti-inflammatory and anti-cancer properties, their individual effects on cellular signaling remain to be elucidated. In this study, five major PMFs from the peel of CTD were isolated, including sinensetin, tetramethyl-O-scutellarin (5,6,7,4′-tetramethoxyflavone), nobiletin (5,6,7,8,3′, 4′-hexamethoxyflavone), tangeretin (5,6,7,8,4′-pentamethoxyflavone), and 5-demethylnobiletin (5-OH-6,7,8,3′,4′-pentamethoxyflavone). These PMFs were found to significantly (p < 0.05) inhibit the production of NO and biomarkers of chronic inflammation (TNF-α and IL-6). Additionally, they effectively suppressed mRNA biomarkers of acute inflammation (Cox-2 and iNOS), and to varying degrees promoted the activation of anti-inflammatory cytokines (IL-4, IL-13, TNF-β, and IL-10). Among the five PMFs, tangeretin was found to have a considerable anti-proliferative effect on tumor cell lines (PC-3 and DU145) and synergistically enhanced the cytotoxicity of mitoxantrone, partially via activation of the PTEN/AKT pathway. The findings of this study provide valuable insights into the activity of different PMF monomers and advance the understanding of the roles of PMFs in promoting apoptotic and anti-cancer effects.
Collapse
Affiliation(s)
- Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yue Gu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chun Tan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Balasubramani Sundararajan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhenqing Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- *Correspondence: Dan Wang
| | - Zhiqin Zhou
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
- Zhiqin Zhou
| |
Collapse
|
25
|
Gao L, Zhang H, Yuan CH, Zeng LH, Xiang Z, Song JF, Wang HG, Jiang JP. Citrus aurantium ‘Changshan-huyou’—An ethnopharmacological and phytochemical review. Front Pharmacol 2022; 13:983470. [PMID: 36133822 PMCID: PMC9483622 DOI: 10.3389/fphar.2022.983470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Citrus fruits are composed of oil cells layer, white membrane layer, pulp and seeds. The cultivar Citrus aurantium ‘Changshan-huyou’ (CACH) is a hybridization of Citrus grandis Osbeck and C. sinensis Osbeck. It is a rutaceae plant, and mainly grows in Changshan, Zhejiang, China. With the exploration of its high traditional values, it has been paid more and more attention by the scientific community in recent years. At present, one hundred and two chemical constituents have been identified from the pulp and peel of CACH, including volatile oils, terpenoids, phenols, limonins, sugars, etc., As the representative active component of CACH, phenols have been widely investigated. Studies have shown that CACH shows a variety of significant pharmacological activities, such as anti-inflammatory, antioxidant, hepatoprotective activity, respiratory system protection and intestinal regulation activity. This review mainly introduces the chemical constituents and pharmacological activities of CACH, and discusses its future research and development directions. It will provide theoretical basis for further research of its pharmacodynamic substances, functional mechanism and rational utilization.
Collapse
Affiliation(s)
- Liang Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chun-Hui Yuan
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Zheng Xiang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jian-Feng Song
- Quzhou Institute for Food and Drug Control, Quzhou, China
| | - Hua-Gang Wang
- Zhejiang Jing Yuetang Pharmaceutical Co. LTD, Shaoxing, China
| | - Jian-Ping Jiang
- School of Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Jian-Ping Jiang,
| |
Collapse
|
26
|
Yang W, Liu M, Chen B, Ning J, Wang K, Cai Y, Yang D, Zheng G. Comparative analysis of chemical constituents in Citri Exocarpium Rubrum, Citri Reticulatae Endocarpium Alba, and Citri Fructus Retinervus. Food Sci Nutr 2022; 10:3009-3023. [PMID: 36171768 PMCID: PMC9469855 DOI: 10.1002/fsn3.2897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Citri Exocarpium Rubrum (CER), Citri Reticulatae Endocarpium Alba (CREA), and Citri Fructus Retinervus (CFR) are used as medicine and food, which derive from three different parts of the pericarp of Citrus reticulata Blanco through natural drying. To systematically investigate similarities and differences in phytochemicals about the three herbs, a series of analytic approaches were applied for the qualitative and quantitative analysis of chemical constituents in them. The results indicated a total of 48 volatile compounds were determined representing 99.92% of the total relative content of CER extracts, including 24 alkenes, 11 alcohols, 6 aldehydes, 2 ketones, and 2 phenols, while volatile compounds were not extracted from CREA and CFR. CER was abundant in volatile components that mainly existed in the oil gland. And a total of 32, 35, and 28 nonvolatile compounds were identified from CER, CREA, and CFR extracts, respectively. The total content of flavonoids and phenolic, and hesperidin in CFR was the highest, followed by CREA and CER. Conversely, CER was a rich source of polymethoxyflavones (PMFs), and the total polymethoxyflavone content (TPMFC), the content of nobiletin, 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), tangeretin, and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone (5-HPMF) in CREA and CFR were extremely low. Besides, CER and CREA had a higher concentration of synephrine than CFR. The phytochemicals of CER, CREA, and CFR were significantly different, which might provide chemical evidence for the comparative pharmacological activities' research and rational application of them.
Collapse
Affiliation(s)
- Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Mengshi Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., LtdJiangmenChina
| | - Jinrong Ning
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Kanghui Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Depo Yang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
27
|
Liang PL, Liang QW, He PW, Chen XL, Xu Y, Tu HS, Zhang L, Qiu XH, Zhang J, Huang ZH, Xu W. Three polymethoxyflavones from the peel of Citrus reticulata “Chachi” inhibits oxidized low-density lipoprotein-induced macrophage-derived foam cell formation. Front Cardiovasc Med 2022; 9:924551. [PMID: 35966555 PMCID: PMC9366847 DOI: 10.3389/fcvm.2022.924551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022] Open
Abstract
Foam cell formation is the hallmark of the development and progression of atherosclerosis. The aim of this study was to investigate the regulatory effects of three polymethoxyflavones (PMFs), namely, tangeretin (TAN), 5,6,7,3′,4′,5′-hexamethoxyflavone (HxMF), and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HpMF) on macrophage-derived foam cell formation and to further explore the molecular mechanisms. The RAW264.7 macrophage-derived foam cell model was successfully induced by oxidized low-density lipoprotein (ox-LDL) (80 μg/ml). It showed that TAN, HxMF, and HpMF alleviated ox-LDL-induced NO release while also inhibiting the expression of IL-1β, IL-6, and TNF-α in RAW264.7 cells. Uptake of excess ox-LDL was inhibited by TAN, HxMF, and HpMF, resulting in the reduction of its foam cell formation. Moreover, TAN, HxMF, and HpMF promoted HDL-mediated cholesterol efflux. Western blot experiment showed that TAN, HxMF, and HpMF inhibited the expression of scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36), while upregulating peroxisome proliferator-activated receptor γ (PPARγ), liver X receptor α (LXRα), phospholipid ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SRB1) expression. Together, our findings suggested that PMFs inhibited foam cell formation might inhibit lipid uptake via downregulating SRA1/CD36 expression and promote cholesterol efflux from foam cells via upregulating PPARγ/LXRα/ABCG1/SRB1 expression. This antiatherosclerotic activity is expected to provide new insights into the development of healthcare uses for PMFs.
Collapse
Affiliation(s)
- Pu-Lin Liang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian-Wen Liang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Wen He
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Lian Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya Xu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Sheng Tu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiao-Hui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Hai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhi-Hai Huang,
| | - Wen Xu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Wen Xu,
| |
Collapse
|
28
|
Shorbagi M, Fayek NM, Shao P, Farag MA. Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Zheng G, Wang K, Chen B, Liu M, Yang W, Ning J, Cai Y, Wei M. The enhanced solubility and anti-lipase activity of citrus peel polymethoxyflavonoids extracts with liposomal encapsulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Yang M, Jiang Z, Wen M, Wu Z, Zha M, Xu W, Zhang L. Chemical Variation of Chenpi (Citrus Peels) and Corresponding Correlated Bioactive Compounds by LC-MS Metabolomics and Multibioassay Analysis. Front Nutr 2022; 9:825381. [PMID: 35284442 PMCID: PMC8905505 DOI: 10.3389/fnut.2022.825381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The peel of Citrus reticulata “Chachi” (CP) possesses various health-promoting benefits and is not only one of the most famous Chinese herbal medicine, but also an ingredient in fermented foods. In the present study, the effects of storage years (1-, 3-, 4-, 5-, 6-, and 11-years) on the chemical profiling and potential bioactive compounds of CP were compared by metabolomics and in vitro bioactivity analysis. With the increase of storage time, the content of hesperidin significantly decreased, but nobiletin, 3,5,6,7,8,3′,4′-heptamethoxyflavone, and tangeretin were increased. Meanwhile, the antioxidant activity of CP was enhanced. Phenolic acids, flavonol glycosides, fatty acids, and alkyl glycosides were marker compounds that were responsible for distinguishing the storage time of CP. Correlation analysis suggested that some polyphenols including quercetin-glucoside, quinic acid, trihydroxydimethoxyflavone, and rutin were potential antioxidant compounds in CP. The dichloromethane and n-butanol fractions showed the better antioxidant capacity and inhibitory effects on glucose-hydrolysis enzymes. They mainly contained ferulic acid, nobiletin, 3,5,6,7,8,3′,4′-heptamethoxyflavone, kaempferol, and hesperidin.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Zhenfeng Wu
| | - Minyu Zha
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
- *Correspondence: Liang Zhang
| |
Collapse
|
31
|
Wang X, Chang Q, Lan L, Guo Y, Sun G, Li Q. Reliability evaluation of traditional Chinese medicine fingerprints combined with qualitative and quantitative analysis and antioxidant activity to comprehensively evaluate the quality of Citri Reticulatae Pericarpium. NEW J CHEM 2022. [DOI: 10.1039/d2nj03752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comprehensive evaluation of Citri Reticulatae Pericapium quality by HPLC, UV and antioxidant activity.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, P. R. China
| | - Qian Chang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, P. R. China
| | - Lili Lan
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, P. R. China
| | - Yong Guo
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, P. R. China
| | - Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, P. R. China
| | - Qian Li
- China Communication Technology (Jiang Men) Corporation, Guangdong, China
| |
Collapse
|
32
|
Chao Y, Tan EY, Ma S, Chen B, Liu M, Wang K, Yang W, Wei M, Zheng G. Dynamic variation of the phytochemical and volatile compounds in the pericarp of Citrus reticulata ''Chachi'' (Rutaceae) during 2 years of storage. J Food Sci 2021; 87:153-164. [PMID: 34953087 DOI: 10.1111/1750-3841.16013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The pericarp of Citrus reticulata "Chachi" (CRCP) is used as nutritional food and traditional medicine in China, usually harvested at three periods, namely, immature (CRCP-G1), semi-mature (CRCP-G2), and fully mature (CRCP-G3). Traditionally, if the CRCP is stored for a longer period, then the quality will be better. In this study, the dynamic variation of phytochemical and volatile compounds was profiled in the same batches of CRCP during 2 years of storage. Results illustrated that most of the phytochemical compounds showed a decreasing trend during storage, that is, total flavonoids, total phenolic acids, hesperidin, 3,5,6,7,8,3',4'-heptamethoxyflavone, 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone, synephrine, and limonin. The ferulic acid increased significantly, whereas no significant changes were observed in the total polymethoxyflavones, nobiletin, and tangeretin after 2 years of storage. In addition, we found that the extraction yield of volatile oil decreased significantly in CRCP-G1 during storage, and the herb odors were enhanced with the increase of phenols and esters. No significant difference in the extraction yield of volatile oil of CRCP-G2 and CRCP-G3 was found after 2 years of storage, but the citrus-like notes were increased with the promoted generation of alkenes. In particular, the multivariate statistical analysis indicated that 7 volatiles showed a higher level after 1 year of storage, whereas 11 volatiles decreased and 4 volatiles increased after 2 years of storage, respectively. This study could show the early aging mechanism of CRCP harvested at different periods and provide a scientific guidance in the storage of CRCP. PRACTICAL APPLICATION: This study indicated a comprehensive method for rapid analysis of phytochemical and volatile compounds in pericarp of Citrus reticulata ''Chachi'' (Rutaceae) (CRCP) harvested at different periods during 2 years of storage. The results obtained from this study would be valuable for revealing the early aging mechanism and sustainable storage of CRCP.
Collapse
Affiliation(s)
- Yingxin Chao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.,Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, People's Republic of China
| | - E-Yu Tan
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, People's Republic of China
| | - Shaofeng Ma
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, People's Republic of China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Jiangmen, People's Republic of China
| | - Mengshi Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kanghui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wanling Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Minyan Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
33
|
Dorado C, Bowman KD, Cameron RG, Manthey JA, Bai J, Ferguson KL. Steam Explosion (STEX) of Citrus × Poncirus Hybrids with Exceptional Tolerance to Candidatus Liberibacter Asiaticus (CLas) as Useful Sources of Volatiles and Other Commercial Products. BIOLOGY 2021; 10:1285. [PMID: 34943201 PMCID: PMC8698310 DOI: 10.3390/biology10121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/26/2023]
Abstract
Florida citrus production has declined 75% due to Huanglongbing (HLB), a disease caused by the pathogenic bacterium Candidatus Liberibacter asiaticus (CLas). Methods to combat CLas are costly and only partially effective. The cross-compatible species Poncirus trifoliata and some of its hybrids are known to be highly tolerant to CLas, and thus can potentially serve as an alternative feedstock for many citrus products. To further investigate the commercial potential of citrus hybrids, three citrus hybrids, US-802, US-897, and US-942, were studied for their potential as feedstocks for citrus co-products using steam explosion (STEX) followed by water extraction. Up to 93% of sugars were recovered. US-897 and US-942 have similar volatile profiles to that of the commercial citrus fruit types and as much as 85% of these volatiles could be recovered. Approximately 80% of the pectic hydrocolloids present in all three hybrids could be obtained in water washes of STEX material. Of the phenolics identified, the flavanone glycosides, i.e., naringin, neohesperidin, and poncirin were the most abundant quantitatively in these hybrids. The ability to extract a large percentage of these compounds, along with their inherent values, make US-802, US-897, and US-942 potentially viable feedstock sources for citrus co-products in the current HLB-blighted environment.
Collapse
Affiliation(s)
- Christina Dorado
- U.S. Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL 34945, USA; (K.D.B.); (R.G.C.); (J.A.M.); (J.B.); (K.L.F.)
| | | | | | | | | | | |
Collapse
|
34
|
Sun Z, Zhao M, Zuo L, Zhou S, Fan F, Jia Q, Xue L, Li H, Kang J, Zhang X. Rapid qualitative profiling and quantitative analysis of Juglandis Mandshuricae Cortex and seven flavonoids by ultra-high performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry. J Sep Sci 2021; 45:518-528. [PMID: 34784088 DOI: 10.1002/jssc.202100658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Juglandis Mandshuricae Cortex is the bark of Juglans mandshurica Maxim., which has been used as a folk medicine plant in China and India. In this study, an ultra-high performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry method was developed to clarify and quantify the chemical profiling of Juglandis Mandshuricae Cortex rapidly. A total of 113 compounds were characterized. Among them, seven flavonoids were simultaneously quantified in 15 min, including myricetin, myricetrin, taxifolin, kaempferol, quercetin, quercitrin, and naringenin. The method was validated for accuracy, precision, and the limits of detection and quantification. All calibration curves showed a good linear relationship (r > 0.9990) within test ranges. The intra- and inter-day relative standard deviations were less than 2.16%. Accuracy validation showed that the recovery was between 95.6% and 101.3% with relative standard deviation values below 2.85%. The validated method was successfully applied to determine the contents of seven flavones in Juglandis Mandshuricae Cortex from seven sources and the contents of these places were calculated respectively. This method provides a theoretical basis for further developing the medicinal value of Juglandis Mandshuricae Cortex.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Mengfan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Shengnan Zhou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Feng Fan
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Hanbing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
35
|
Kaanin-Boudraa G, Brahmi F, Wrona M, Nerín C, Moudache M, Mouhoubi K, Madani K, Boulekbache-Makhlouf L. Response surface methodology and UPLC-QTOF-MSE analysis of phenolic compounds from grapefruit (Citrus✕ paradisi) by-products as novel ingredients for new antioxidant packaging. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Bian X, Xie X, Cai J, Zhao Y, Miao W, Chen X, Xiao Y, Li N, Wu JL. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chem 2021; 373:131399. [PMID: 34717083 DOI: 10.1016/j.foodchem.2021.131399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Citri reticulatae pericarpium (CRP) shows multiple bioactivities, including antioxidant, anti-tumor, and anti-inflammation. The folk proverb "CRP, the older, the better" means storing for longer time would improve its quality, which attributed to the influence of bioactive compounds. The aim of this work was to study which compounds are the factors that long storage would influence the quality of CRP. 161 compounds, including 65 flavonoids, 51 phenolic acids, 27 fatty acids, and 18 amino acids were identified through derivatization and non-derivatization liquid chromatography mass spectrometry approaches. Their dynamic changes indicated phenolic acids, which were reported to have various activities, were the main increased components. Furthermore, the representative phenolic acids were quantified and correlation analysis between their contents and antioxidant activity implicated they were the possible indicators that long storage would improve CRP quality. The results would provide basis for quality control of CRP during storage.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xinyi Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Jialing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Yiran Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xiaolin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
37
|
Alam F, Mohammadin K, Shafique Z, Amjad ST, Asad MHHB. Citrus flavonoids as potential therapeutic agents: A review. Phytother Res 2021; 36:1417-1441. [PMID: 34626134 DOI: 10.1002/ptr.7261] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022]
Abstract
The plants Rutaceae family are known to have contributed a lot toward food and medicine. The most important metabolites of the family are flavonoids. A systematic review was conducted to collect chemical and pharmacological information of flavonoids isolated from family Rutaceae till 2018. A plethora of flavonoids have been isolated and studied systematically for various bioactivities, including anticancer, antibacterial, antiviral, analgesic, antioxidant, antidiabetic, antiinflammatory, in bronchitis, ulcers, and so on. The important groups of flavonoids isolated are naringin, poncirin, rhoifolin, marmesin, hesperidin, tangeretin, nobiletin, glychalcone, glyflavanone, lemairone, acacetin 3,6-di-C-glucoside, vicenin-2, lucenin-2 4'-methyl ether, narirutin 4'-O-glucoside, apigenin 8-C-neohesperidoside, phloretin 3',5'-di-C-glucoside, rutin, rhamnetin, dihydrokaempferol, dihydrokaempferol 3-O-rhamnoside (engeletin) and kaempferol, excavaside A and B, myricetin 3-O-β-D-rutinoside, myricetin 3,3'-di-α-l-rhamnopyranoside, myricetin 3'-α-l-rhamnopyranoside, and others. The flavonoids isolated from the citrus family need to be considered from a nutraceutical, therapeutic, and pharmaceutical point of view for future medicine.
Collapse
Affiliation(s)
- Fiaz Alam
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Kinza Mohammadin
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zainab Shafique
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Sayyeda Tayyeba Amjad
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | |
Collapse
|
38
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
40
|
Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem 2021; 365:130585. [PMID: 34325351 DOI: 10.1016/j.foodchem.2021.130585] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Citrus is one of the main fruits processed worldwide, producing a lot of industrial by-products. As the main part of citrus "residue", citrus peels have a wide application prospect. They could not only be directly used to produce various food products, but also be used as promising biofuels to produce ethanol and methane. Additionally, functional components (flavonoids, limonoids, alkaloids, essential oils and pectin) extracted from citrus peels have been related to the improvement of human health against active oxygen, inflammatory, cancer and metabolic disorders. Therefore, it is clear that the citrus peels have great potential to be developed into useful functional foods, medicines and biofuels. This review systematically summarizes the recent advances in current uses, processing, bioactive components and biological properties of citrus peels. A better understanding of citrus peels may provide reference for making full use of it.
Collapse
Affiliation(s)
- Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
41
|
Valorization of Citrus Co-Products: Recovery of Bioactive Compounds and Application in Meat and Meat Products. PLANTS 2021; 10:plants10061069. [PMID: 34073552 PMCID: PMC8228688 DOI: 10.3390/plants10061069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
Citrus fruits (orange, lemon, mandarin, and grapefruit) are one of the most extensively cultivated crops. Actually, fresh consumption far exceeds the demand and, subsequently, a great volume of the production is destined for the citrus-processing industries, which produce a huge quantity of co-products. These co-products, without proper treatment and disposal, might cause severe environmental problems. The co-products obtained from the citrus industry may be considered a very important source of high-added-value bioactive compounds that could be used in the pharmaceutical, cosmetic, and dietetic industries, and mainly in the food industry. Due to consumer demands, the food industry is exploring a new and economical source of bioactive compounds to develop novel foods with healthy properties. Thus, the aim of this review is to describe the possible benefits of citrus co-products as a source of bioactive compounds and their applications in the development of healthier meat and meat products.
Collapse
|
42
|
Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int J Mol Sci 2021; 22:ijms22094945. [PMID: 34066601 PMCID: PMC8125642 DOI: 10.3390/ijms22094945] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Natural pigments, including carotenoids, flavonoids and anthocyanidins, determine the attractive color of fruits. These natural pigments are essential secondary metabolites, which play multiple roles in the whole life cycle of plants and are characterized by powerful antioxidant activity. After decades of research and development, multiple benefits of these natural pigments to human health have been explored and recognized and have shown bright application prospects in food, medicine, cosmetics and other industries. In this paper, the research progress of natural fruit pigments in recent years was reviewed, including the structural characteristics and classification, distribution in fruits and analysis methods, biosynthetic process, antioxidant capacity and mechanism, bioaccessibility and bioavailability, and health benefits. Overall, this paper summarizes the recent advances in antioxidant activity and other biological functions of natural fruit pigments, which aims to provide guidance for future research.
Collapse
|
43
|
Mei Z, Zhang R, Zhao Z, Zheng G, Xu X, Yang D. Extraction process and method validation for bioactive compounds from Citrus reticulata cv. Chachiensis: Application of response surface methodology and HPLC–DAD. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2020.00789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractCitrus reticulata cv. Chachiensis, a traditional Chinese herb, has extensive medicinal and edible effects. 3′,4′,5,6,7,8-Hexamethoxyflavone (HM) and 5,6,7,8,4′-pentamethoxyflavone (PM) are main bioactive compounds in Chachiensis, which have been reported to possess various biological properties. In this study, supercritical CO2 extraction (SCE) and high-speed countercurrent chromatography (HSCCC) were utilized to prepare HM and PM from Chachiensis. The contents of target compounds were determined by a high-performance liquid chromatography method with diode-array detection (HPLC-DAD), which was validated using the following parameters: linearity, sensitivity, repeatability, stability, precision and accuracy. The SCE conditions were optimized using response surface methodology with central composite design. Obtained optimum conditions were temperature of 37.9 °C, pressure of 26.3 MPa, and modifier volume of 81.0 mL. Under above conditions, the recoveries of target compounds were 92.52 ± 0.83 and 96.36 ± 0.43%, respectively. The most appropriate solvent system for HSCCC was selected as n-hexane/ethyl acetate/methanol/water (1:0.8:1:1.2, v/v). The HSCCC fractions were detected by HPLC-DAD, liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). The results indicated that this method was successfully applied to obtain HM and PM with high purities and high recoveries from Chachiensis.
Collapse
Affiliation(s)
- Zhenying Mei
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongfei Zhang
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhimin Zhao
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| | - Guodong Zheng
- 3School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinjun Xu
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| | - Depo Yang
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
44
|
|
45
|
Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy. Food Chem 2020; 338:128115. [PMID: 33092006 DOI: 10.1016/j.foodchem.2020.128115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/19/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023]
Abstract
Citrus flavonoids consist of diverse analogs and possess various health-promoting effects dramatically depending on their chemical structures. Since different flavonoids usually co-exist in real samples, it's necessary to develop rapid and efficient methods for simultaneous determination of multiple flavonoids. Thin layer chromatography combined with surface enhanced Raman spectroscopy (TLC-SERS) was established to simultaneously separate and detect 14 citrus flavonoids for the first time. These target compounds could be characterized and discriminated when paired with SERS at 6-500 times greater the sensitivity than TLC alone. TLC-SERS exhibited high recovery rates (91.5-121.7%) with relative standard deviation lower than 20.8%. Moreover, the established TLC-SERS method was successfully used to simultaneously detect multiple flavonoids in real samples, which exhibited comparable accuracy to high performance liquid chromatography with shorter analytical time (10 vs 45 min). All the results demonstrated that this could be a promising method for simultaneous, rapid, sensitive and accurate detection of flavonoids.
Collapse
|
46
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
47
|
Aboul Naser A, Younis E, El-Feky A, Elbatanony M, Hamed M. Management of Citrus sinensis peels for protection and treatment against gastric ulcer induced by ethanol in rats. Biomarkers 2020; 25:349-359. [PMID: 32319821 DOI: 10.1080/1354750x.2020.1759693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Stomach ulcer is one of the most prevalent disorders worldwide. The study was aimed to isolate and characterize the major polymethoxylated flavonoids in Citrus sinensis peels petroleum ether extract and investigate its protective and curative effect on gastric ulcer.Material and methods: Some spectral analyses were used for identification of the isolated compounds from the petroleum ether extract of Citrus sinensis peels. One oral dose (0.5 ml/100 g b.wt.) of absolute ethanol was orally given to rats after starvation for 24 h to induce gastric ulcer. To explore the protective and curative role of the plant extract, it was orally (250 mg/kg b.wt.) given for 1 week either before or post-ulcer induction. A reference drug, ranitidine (100 mg/kg b.wt.), was also evaluated. Stomach acidity, gastric volume, lesion counts, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), succinate dehydrogenase (SDH), lactate dehydrogenase (LDH), acid phosphatase (AP), interlukin-10 (IL-10) and prostaglandin E2 (PGE2) were estimated. Stomach histopathological features were monitored.Results: Nine polymethoxy flavonoids were identified from the extract. Treatment with C. sinensis peels extract recorded amelioration in all parameters.Conclusion: Citrus sinensis petroleum ether peels extract had protective and curative effects against gastric ulcer. Therefore, the extract recorded anti-secretory, anti-ulcerative, anti-inflammatory, and antioxidant effects. Its healing action exceeded its protective role due to its richness in polymethoxylated flavonoids.
Collapse
Affiliation(s)
- Asmaa Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Eman Younis
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Amal El-Feky
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Marwa Elbatanony
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Manal Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
48
|
Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 2020; 132:109114. [PMID: 32331689 DOI: 10.1016/j.foodres.2020.109114] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Citrus peel (CP) forms around 40-50% of the total fruit mass but is generally thought to be a waste. However, it is a substantial source of naturally occurring health enhancing compounds, particularly phenolic compounds and carotenoids. Phenolic compounds in CP mainly comprise phenolic acids (primarily caffeic, p-coumaric, ferulic and sinapic acid), flavanones (generally naringin and hesperidin) and polymethoxylated flavones (notably nobiletin and tangeretin). It has also been noted that CP's contain more amounts of these compounds than corresponding edible parts of the fruits. Phenolic compounds present in CP act as antioxidants (by either donation of protons or electrons) and protect cells against free radical damage as well as help in reducing the risk of many chronic diseases. Owing to the more abundance of polyphenols in CP's, their antioxidant activity is also higher than other edible fruit parts. Therefore, peels from citrus fruits can be used as sources of functional compounds and preservatives for the development of newer food products, that are not only safe but also have health-promoting activities. The present review provides in-depth knowledge about the phenolic composition, antioxidant potential and health benefits of CP.
Collapse
|
49
|
Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur J Med Chem 2020; 187:111965. [DOI: 10.1016/j.ejmech.2019.111965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
50
|
Jiang ZM, wang LJ, Liu WJ, Wang HY, Xiao PT, Zhou P, Bi ZM, Liu EH. Development and validation of a supercritical fluid chromatography method for fast analysis of six flavonoids in Citri Reticulatae Pericarpium. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1133:121845. [DOI: 10.1016/j.jchromb.2019.121845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
|