1
|
Marinaccio L, Gentile G, Llorent-Martínez EJ, Zengin G, Masci D, Flamminii F, Stefanucci A, Mollica A. Valorization of grape pomace extracts against cranberry, elderberry, rose hip berry, goji berry and raisin extracts: Phytochemical profile and in vitro biological activity. Food Chem 2025; 463:141323. [PMID: 39305664 DOI: 10.1016/j.foodchem.2024.141323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
The circular economy is gaining attention around the world as a sustainable approach to tackling environmental problems, promoting more responsible management of resources. The aim of this work is the valorization of grape pomace as a waste product of agrifood chain. We prepared decoction (DC), ultrasound-assisted and microwave-assisted extracts (UAE and MAE respectively) of grape pomace, determining their phytochemical profile (using HPLC-ESI-Q-TOF-MS), antioxidant activity and enzyme inhibitory effects. Then, the results were compared with those of raisins and several edible berries already present in the market. Grape pomace extracts presented the highest total phenolic content (62-68 mg gallic acid equivalents/g; mg GAE/g), whereas the concentrations in the other berries were 4-43 mg GAE/g. These results were in agreement with the higher antioxidant activity and tyrosinase inhibition observed in grape pomace compared with the other berries, except for the metal chelating activity. The main compounds in grape pomace extracts were flavonoids (particularly quercetin glycosides), followed by organic acids (citric, isocitric and gallic acids). These results open new perspectives in the development of food supplements and nutraceuticals based on grape pomace extracts.
Collapse
Affiliation(s)
- Lorenza Marinaccio
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gentile
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
| | - Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University of Chieti-Pescara, 65100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Adriano Mollica
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Wang X, Su Z, Li X, Chen J, Li G, Shan Y, Pan Z, Fu F. Targeted/untargeted metabolomics and antioxidant properties distinguish Citrus reticulata 'Chachi' from Citrus reticulata Blanco. Food Chem 2025; 462:140806. [PMID: 39241684 DOI: 10.1016/j.foodchem.2024.140806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.
Collapse
Affiliation(s)
- Xue Wang
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhipeng Su
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Xiang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiaxu Chen
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Gaoyang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhaoping Pan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Fuhua Fu
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| |
Collapse
|
3
|
Liu Z, Solano-Aguilar G, Lakshman S, Urban JF, Zhang M, Chen P, Yu LL, Sun J. Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention. Food Chem 2024; 461:140836. [PMID: 39154458 DOI: 10.1016/j.foodchem.2024.140836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
4
|
Silva A, Martins R, Silva V, Fernandes F, Carvalho R, Aires A, Igrejas G, Falco V, Valentão P, Poeta P. Red Grape By-Products from the Demarcated Douro Region: Chemical Analysis, Antioxidant Potential and Antimicrobial Activity against Food-Borne Pathogens. Molecules 2024; 29:4708. [PMID: 39407636 PMCID: PMC11478187 DOI: 10.3390/molecules29194708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Wine production is one of the most important agricultural activities. The winemaking process generates a considerable volume of different residues characterized as by-products, such as pomace, seeds, stems, and skins. By-products are rich in polyphenols with antioxidant and antibacterial properties and may act as bacteriostatic or bactericidal agents against food-borne pathogens, improving food safety by enhancing antibiotic efficacy and reducing bacterial resistance. The aim of this study was to evaluate the phenolic composition and antioxidant activity of grape components (skins, seeds, and stems) from three red grape varieties (Periquita, Gamay, and Donzelinho Tinto) and determine their antibacterial activity against antibiotic-resistant bacteria, including Escherichia coli in food-producing animals and Listeria monocytogenes from food products and food-related environments. Ten phenolic compounds were quantified in these red grape varieties, with specific compounds found in different parts of the grape, including phenolic acids and flavonoids. Flavonoids are abundant in seeds and stems, malvidin-3-O-glucoside being the main anthocyanin in skins. The ethanolic extract from the seeds showed in vitro concentration-dependent activity against reactive species like •NO and O2•-. Gamay extract was the most effective, followed by Donzelinho Tinto and Periquita. Extracts showed varying antibacterial activity against Gram-positive and Gram-negative bacteria, with stronger effects on Gram-positive bacteria. L. monocytogenes was more susceptible, while E. coli was limited to three strains. Seeds exhibited the strongest antibacterial activity, followed by stems. The results of our study provide evidence of the potential of grape by-products, particularly seeds, as sources of bioactive compounds with antioxidant and antibacterial properties, offering promising avenues for enhancing food safety and combating antibiotic resistance in food production and related environments.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raquel Martins
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fátima Fernandes
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
| | - Rosa Carvalho
- Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Virgílio Falco
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Patrícia Valentão
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Zhang R, Zhou J, Zhang X, Hou H, Liu X, Yang C, Shen S, Luo J. Insights into Tissue-Specific Specialized Metabolism in Wampee ( Clausena lansium (Lour.) Skeels) Varieties. Foods 2024; 13:3092. [PMID: 39410126 PMCID: PMC11475070 DOI: 10.3390/foods13193092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wampee (Clausena lansium (Lour.) Skeels) has natural bioactive components with diverse health benefits, but its detailed metabolism and tissue distribution are not fully understood. Here, widely targeted metabolomics analysis methods were employed to analyze the wampee fruit (peel, pulp, and seed) of 17 different varieties. A total of 1286 metabolites were annotated, including lipids, flavonoids, polyphenols, carbazole alkaloids, coumarins, and organic acids, among others. The quantitative analysis and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) analysis indicated remarkable variations in metabolite categories and content in the peel, pulp, and seed of wampee fruit. Additionally, the difference analysis found that the metabolic components of peel contributed dominantly to the differences among varieties, and 7 potential biomarkers were identified. In this study, a comprehensive metabolome landscape of wampee fruit was established, which provided important information for the isolation and identification of functional components, food industry application, and nutritional improvement breeding.
Collapse
Affiliation(s)
- Ran Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Junjie Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Xiaoxuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Huanteng Hou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
6
|
Scroccarello A, Della Pelle F, Di Giulio T, Mazzotta E, Mancini A, Mascini M, Oliva E, Malitesta C, Compagnone D. Bimetallic nanocolloidal plasmonic array for polyphenol characterization and calibration-free antioxidant capacity evaluation. Mikrochim Acta 2024; 191:623. [PMID: 39322852 DOI: 10.1007/s00604-024-06709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
A bimetallic plasmonic nanoparticles-based approach for the untargeted evaluation of phenolic compounds (PC)-pattern and antioxidant capacity (AoC) is proposed. The rationale relies on the PC's ability to drive the formation of bimetallic silver/gold nanocolloidal 'probes' with different conformations. Ag/Au bimetallic nanostructures, according to the PCs' amount and class, return characteristic plasmonic and colorimetric tags. Plasmonic indexes are proposed to assess the dominant PC classes, while the colorimetric response, analyzed simply by a smartphone, is employed to obtain an AoC score, without calibration. The methods were tested with PCs belonging to different chemical classes, and challenged to classify different food samples. The proposed approach allows PC-dominant class identification and AoC-evaluation consistent with HPLC-MS/MS and conventional photometric assays.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy.
| | - Tiziano Di Giulio
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Elisabetta Mazzotta
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Alessandra Mancini
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Marcello Mascini
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Eleonora Oliva
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Cosimino Malitesta
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Dario Compagnone
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy.
| |
Collapse
|
7
|
Gao YY, Zhou YH, Liu XP, Di B, He JY, Wang YT, Guo PT, Zhang J, Wang CK, Jin L. Ganoderma lucidum polysaccharide promotes broiler health by regulating lipid metabolism, antioxidants, and intestinal microflora. Int J Biol Macromol 2024; 280:135918. [PMID: 39322164 DOI: 10.1016/j.ijbiomac.2024.135918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Ganoderma lucidum polysaccharides (GLP) are the primary bioactive macromolecular compounds of Ganoderma lucidum, possessing antioxidant and immunomodulatory effects. Hot water extract of Juncao-substrate Ganoderma Lucidum residue (HWE-JGLR) is abundant in GLP. There are few research reports on the application of HWE-JGLR in animal husbandry. Therefore, this study aims to investigate the effects of HWE-JGLR supplementation on growth performance, serum biochemistry, the antioxidant function of serum and liver, and the intestinal microbiota of yellow-feathered broilers. The control group was fed a corn-soybean meal basal diet, while the HJ I, II, and III groups received diets supplemented with 0.25 %, 0.5 %, and 1 % of HWE-JGLR, respectively. Results showed that HWE-JGLR increased the serum HDL-C content and decreased the TG content in broilers. Moreover, HWE-JGLR enhanced the antioxidant function by the Keap1-Nrf2/ARE signaling pathway and the antioxidative enzyme in broilers. In addition, the cecum of the metagenomic analysis of 16S rRNA showed that the relative abundance of no-rank Ruminococcacea was increased in the HJ I group. Our findings indicate that HWE-JGLR has strong potential for development as a green feed additive based on its functions of lipid-lowering, antioxidation, and the modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying-Huan Zhou
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Ping Liu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Di
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia-Yi He
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Ting Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Zhou M, Sun Y, Mao Q, Luo L, Pan H, Zhang Q, Yu C. Comparative metabolomics profiling reveals the unique bioactive compounds and astringent taste formation of rosehips. Food Chem 2024; 452:139584. [PMID: 38735110 DOI: 10.1016/j.foodchem.2024.139584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.
Collapse
Affiliation(s)
- Meichun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yanlin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
El Jemli M, Ezzat SM, Kharbach M, Mostafa ES, Radwan RA, El Jemli Y, El-Guourrami O, Ahid S, Cherrah Y, Zayed A, Alaoui K. Bioassay-guided isolation of anti-inflammatory and antinociceptive metabolites among three Moroccan Juniperus leaves extract supported with in vitro enzyme inhibitory assays. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118285. [PMID: 38703873 DOI: 10.1016/j.jep.2024.118285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbs of the genus Juniperus (family Cupressaceae) have been commonly used in ancestral folk medicine known as "Al'Araar" for treatment of rheumatism, diabetes, inflammation, pain, and fever. Bioassay-guided isolation of bioactives from medicinal plants is recognized as a potential approach for the discovery of novel drug candidates. In particular, non-addictive painkillers are of special interest among herbal phytochemicals. AIM OF THE STUDY The current study aimed to assess the safety of J. thurifera, J. phoenicea, and J. oxycedrus aqueous extracts in oral treatments; validating the traditionally reported anti-inflammatory and analgesic effects. Further phytochemical investigations, especially for the most bioactive species, may lead to isolation of bioactive metabolites responsible for such bioactivities supported with in vitro enzyme inhibition assays. MATERIALS AND METHODS Firstly, the acute toxicity study was investigated following the OECD Guidelines. Then, the antinociceptive, and anti-inflammatory bioactivities were evaluated based on chemical and mechanical trauma assays and investigated their underlying mechanisms. The most active J. thurifera n-butanol fraction was subjected to chromatographic studies for isolating the major anti-inflammatory metabolites. Moreover, several enzymatic inhibition assays (e.g., 5-lipoxygenase, protease, elastase, collagenase, and tyrosinase) were assessed for the crude extracts and isolated compounds. RESULTS The results showed that acute oral administration of the extracts (300-500 mg/kg, p. o.) inhibited both mechanically and chemically triggered inflammatory edema in mice (up to 70% in case of J. thurifera) with a dose-dependent antinociceptive (tail flick) and anti-inflammatory pain (formalin assay) activities. This effect was partially mediated by naloxone inhibition of the opioid receptor (2 mg/kg, i. p.). In addition, 3-methoxy gallic acid (1), quercetin (2), kaempferol (3), and ellagic acid (4) were successfully identified being involved most likely in J. thurifera extract bioactivities. Nevertheless, quercetin was found to be the most potent against 5-LOX, tyrosinase, and protease with IC50 of 1.52 ± 0.01, 192.90 ± 6.20, and 399 ± 9.05 μM, respectively. CONCLUSION J. thurifera extract with its major metabolites are prospective drug candidates for inflammatory pain supported with inhibition of inflammatory enzymes. Interestingly, antagonism of opioid and non-opioid receptors is potentially involved.
Collapse
Affiliation(s)
- Meryem El Jemli
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12451, Egypt.
| | - Mourad Kharbach
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Circular Economy/Sustainable Solutions, LAB University of Applied Sciences, Mukkulankatu 19, 15101 Lahti, Finland
| | - Eman Sherien Mostafa
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12451, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Regional Ring Road, East Cairo, New Administrative Capital, Egypt
| | | | - Otman El-Guourrami
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Samir Ahid
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Yahia Cherrah
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, El Guish Street, Medical Campus, 31527, Tanta, Egypt
| | - Katim Alaoui
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
10
|
Ju YW, Pyo SH, Park SW, Moon CR, Lee S, Benashvili M, Park JE, Nho CW, Son YJ. Treatment of water extract of green tea during kale cultivation using a home vertical farming appliance conveyed catechins into kale and elevated glucosinolate contents. Curr Res Food Sci 2024; 9:100852. [PMID: 39319111 PMCID: PMC11421350 DOI: 10.1016/j.crfs.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
The growing interest in healthy diets has driven the demand for food ingredients with enhanced health benefits. In this study, we aimed to explore a method to enhance the bioactivity of kale using a home vertical farming appliance. Specifically, we investigated the effects of treating kale with a green tea water extract (GTE; 0.1-0.5 g/L in nutrient solution) for two weeks before harvest during five weeks of kale cultivation. GTE treatment did not negatively affect the key quality attributes, such as yield, semblance, or sensory properties. However, it led to the accumulation of bioactive compounds, epicatechin (EC) and epigallocatechin gallate (EGCG), which are typically absent in kale. In the control group, no catechins were detected, whereas in the GTE-treated group, the concentration of EC and EGCG were as high as 252.11 and 173.26 μg/g, respectively. These findings indicate the successful incorporation of catechins, known for their unique health-promoting properties, into kale. Additionally, GTE treatment enhanced the biosynthesis of glucosinolates, which are key secondary metabolites of kale. The total glucosinolate content increased from 9.56 μmol/g in the control group to 16.81 μmol/g in the GTE-treated group (treated with 0.5 g/L GTE). These findings showed that GTE treatment not only enriched kale with catechins, the primary bioactive compounds in green tea but also increased the levels of glucosinolates. This study, conducted using a home vertical farming appliance, suggests that bioactivity-enhanced kale can be grown domestically, providing consumers with a nutrient-fortified food source.
Collapse
Affiliation(s)
- Young-Woong Ju
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Su-Hyeon Pyo
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - So-Won Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chae-Ryun Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seul Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mzia Benashvili
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jai-Eok Park
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
11
|
Zengin G, Cetiz MV, Abul N, Gulcin I, Caprioli G, Piatti D, Ricciutelli M, Koyuncu I, Yuksekdag O, Bahşi M, Güler O, Aumeeruddy MZ, Mahomoodally MF. Establishing a link between the chemical composition and biological activities of Gladiolus italicus Mill. from the Turkish flora utilizing in vitro, in silico and network pharmacological methodologies. Toxicol Mech Methods 2024:1-21. [PMID: 39246014 DOI: 10.1080/15376516.2024.2397387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES Five solvent extracts (n-hexane, ethyl acetate, ethanol, ethanol/water (70%), and water) of Gladiolus italicus Mill. from Turkey were evaluated for chemical and biological properties. METHODS Antioxidant activities, inhibitory properties against key enzymes involved in the etiology of chronic diseases were tested, as well as cytotoxic effects on different cell lines. Chemical characterization was also carried out to determine the most abundant compounds of each extract. RESULTS The highest total phenolic content (TPC) was observed in the water extract while highest TFC in ethanol/water extract. The most abundant compounds in the extracts were hyperoside (69041.06 mg kg-1), isoquercitrin (46239.49 mg kg-1), delphindin-3,5-diglucoside (42043.81 mg kg-1), myricetin (21486.61 mg kg-1), and kaempferol-3-glucoside (21199.76 mg kg-1). Molecular dynamic (MD) simulations confirmed the structural stability and dynamic conformational integrity of these complexes over a period of 100 ns. In network pharmacology, A total of 657 unique target genes were screened: 52 associated with programmed cell death-1 (PD-1), 85 with vascular endothelial growth factor receptor-2 (VEGFR2), and 130 with fibroblast growth factor receptor-2 (FGFR2), identifying crucial gene interactions for these proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, revealing significant interactions and pathways such as the advanced glycation end products (AGE) and their receptors (RAGE) signaling pathway in diabetic complications and T- helper 17 (Th17) cell differentiation, among others. This elucidation of complex networks involving key genes like AKT Serine/Threonine Kinase 1 (AKT1), MYC proto-oncogene (MYC), tumor protein 53 (TP53), Interleukin 6 (IL6), and tumor necrosis factor (TNF) provides a promising foundation for the development of targeted therapies in the treatment of non-communicable diseases. CONCLUSION These results show that G. italicus could be a natural source of potent antioxidants and enzyme inhibitors which need to be further explored for the development of biopharmaceuticals.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Mehmet Veysi Cetiz
- Department of Bioinformatics, Biozentrum der Universität Würzburg, Würzburg, Germany
| | - Nurgul Abul
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Massimo Ricciutelli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Muammer Bahşi
- Faculty of Education, Department of Primary Education, Firat University, Elazig, Turkey
| | - Osman Güler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | | | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| |
Collapse
|
12
|
Ciardullo G, Orlando C, Russo N, Marchese E, Galano A, Marino T, Prejanò M. On the dual role of (+)-catechin as primary antioxidant and inhibitor of viral proteases. Comput Biol Med 2024; 180:108953. [PMID: 39089115 DOI: 10.1016/j.compbiomed.2024.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Natural antioxidants have become the subject of many investigations due to the role that they play in the reduction of oxidative stress. Their main scavenging mechanisms concern the direct inactivation of free radicals and the coordination of metal ions involved in Fenton-like reactions. Recently, increasing attention has been paid to non-covalent inhibition of enzymes involved in different diseases by the antioxidants. Here, a computational investigation on the primary antioxidant power of (+)-catechin against the •OOH radical has been performed in both lipid-like and aqueous environments, taking into account the relevant species present in the simulated acid-base equilibria at the physiological pH. Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET), and Radical Adduct Formation (RAF) mechanisms were studied, and relative rate constants were estimated. The potential inhibitory activity of the (+)-catechin towards the most important proteases from SARS-CoV-2, 3C-like (Mpro) and papain-like (PLpro) proteases was also investigated by MD simulations to provide deeper atomistic insights on the binding sites. Based on the antioxidant and antiviral properties also unravelled by comparison with other molecules having similar chemical scaffold, our results propose that (+)-CTc satisfies can explicate a dual action as antioxidant and antiviral in particular versus Mpro from SARS-CoV-2.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Carla Orlando
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Emanuela Marchese
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, 09310, Mexico
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy.
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| |
Collapse
|
13
|
Salee N, Naruenartwongsakul S, Chaiyana W, Yawootti A, Suthapakti K, Simapaisarn P, Chaisan W, Utama-Ang N. Enhancing catechins, antioxidant and sirtuin 1 enzyme stimulation activities in green tea extract through pulse electric field-assisted water extraction: Optimization by response surface methodology approach. Heliyon 2024; 10:e36479. [PMID: 39253176 PMCID: PMC11382074 DOI: 10.1016/j.heliyon.2024.e36479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Green tea is an economic resource in Thailand because it is derived from smallholder agriculture and has expanded into food production. The purpose of this study is to optimize the parameters of pulsed electric field (PEF) assisted green tea extraction to produce a natural health product. A central composite design was involved to determine the effect of independent variables, including the intensity of electric field (I; 3-5 kV/cm), number of pulses (Np; 1000 to 3000 pulses) and green tea-to-water ratio (GT/W; 0.05-0.15 g/mL) on catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), total phenolic compound, antioxidant and sirtuin 1 enzyme stimulating activities. The results indicated that the Np had the most significant impact (p < 0.05) on the content of catechin and its derivatives and sirtuin 1 enzyme stimulating activity. The observations revealed that the I had a greater impact on antioxidant activities compared to the Np. The optimal conditions for PEF using the response surface method were determined to be I of 5 kV/cm, Np of 3000 pulses, GT/W of 0.14 g/mL and specific energy of 27 kJ/kg. Under the optimized conditions, the content of C, EC, ECG, EGC and EGCG were 7.34 ± 0.33, 11.26 ± 0.25, 3.75 ± 0.13, 7.53 ± 0.77 and 37.78 ± 0.58 mg/g extract, respectively. Furthermore, it was observed that green tea extract exhibited the ability to modulate the deacetylation activity of the sirtuin 1 enzyme, with a value of 22.63 ± 0.17 FIR. The results emphasized that the PEF led to achieving better responses compared to without pre-treatment using the PEF. Therefore, innovative technologies as PEF can be utilized for green tea extraction to produce natural ingredients, which can contribute to improved accessibility to healthcare. Additionally, the implementation of innovation techniques, such as PEF, in the extraction industry can enhance productivity growth and economic development.
Collapse
Affiliation(s)
- Nuttinee Salee
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering Development Technology, Faculty of Agro-Industry, Chiang Mai University, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
| | - Kanyarat Suthapakti
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Piyawan Simapaisarn
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Worrapob Chaisan
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| |
Collapse
|
14
|
Chu C, Lv Y, Yao X, Ye H, Li C, Peng X, Gao Z, Mao K. Revealing quality chemicals of Tetrastigma hemsleyanum roots in different geographical origins using untargeted metabolomics and random-forest based spectrum-effect analysis. Food Chem 2024; 449:139207. [PMID: 38579655 DOI: 10.1016/j.foodchem.2024.139207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Tetrastigma hemsleyanum root is a popular functional food in China, and the price varies based on the origin of the product. The link between the origin, metabolic profile, and bioactivity of T. hemsleyanum must be investigated. This study compares the metabolic profiles of 254 samples collected from eight different areas with 49 potential key chemical markers using plant metabolomics. The metabolic pathways of the five critical flavonoid metabolites were annotated and enriched using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Moreover, a random forest model aiding the spectrum-effect relationship analysis was developed for the first time indicating catechin and darendoside B as potential quality markers of antioxidant activity. The findings of this study provide a comprehensive understanding of the chemical composition and bioactive compounds of T. hemsleyanum as well as valuable information on the evaluation of the quality of various samples and products in the market.
Collapse
Affiliation(s)
- Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yangbin Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xingda Yao
- College of Computer science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hongwei Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenyue Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xin Peng
- Ningbo Research Institute of Traditional Chinese Medicine, Ningbo 315100, PR China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co.LTD, Hangzhou 311321, PR China
| | - Keji Mao
- College of Computer science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
15
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
16
|
Al Jaafreh AM. Investigation of the phytochemical profiling and antioxidant, anti-diabetic, anti-inflammatory, and MDA-MB-231 cell line antiproliferative potentials of extracts from Ephedra alata Decne. Sci Rep 2024; 14:18240. [PMID: 39107351 PMCID: PMC11303798 DOI: 10.1038/s41598-024-65561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Ephedra is one of the many medicinal herbs that have been used as folk/traditional medicine in Jordan and other countries to cure various illnesses. Plants of this genus are well known for their antioxidant and antibacterial properties. In this study, three different solvents were used to obtain Ephedra extracts. When evaluated, the Ephedra alata Decne ethanolic extract reportedly had the greatest levels of total phenolic compounds (TPC) and total flavonoid compounds (TFC). The aqueous extracts displayed the highest antioxidant activity in the DPPH and ABTS assays, demonstrating their considerable capacity to neutralize free radicals. However, when evaluated using the FRAP method, the acetone extracts showed the strongest antioxidant activity, indicating their high reducing power. LC-MS/MS, a potent method of analysis that combines the liquid chromatographic separation properties with mass spectrometry detection and identification capabilities, was used in this study to detect and measure phytochemical content of a total of 24 phenolic compounds and 16 terpene compounds present in the extracts of Ephedra alata Decne. Various concentrations of these chemicals were found in these extracts. The extracts' inhibitory effects on albumin denaturation and alpha-amylase activity were also assessed; the findings demonstrated the potentials of these extracts as anti-inflammatory and anti-diabetic medicines, with the acetone extract having the lowest IC50 values in the concomitant tests (306.45 µg/ml and 851.23 µg/ml, respectively). Furthermore, the lowest IC50 value (of 364.59 ± 0.45 µg/ml) for the 80% ethanol extract demonstrated that it has the strongest antiproliferative impact regarding the MDA-MB-231 breast cancer cell line. This finding indicates that this particular extract can be potentially used to treat cancer.
Collapse
|
17
|
Yang Y, Ye Z, Qin Y, Pathirana S, Araujo LD, Culley NJ, Kilmartin PA. Effects of post-fermentation addition of green tea extract for sulfur dioxide replacement on Sauvignon Blanc wine phenolic composition, antioxidant capacity, colour, and mouthfeel attributes. Food Chem 2024; 447:138976. [PMID: 38492300 DOI: 10.1016/j.foodchem.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
This study examines the feasibility of replacing SO2 in a New Zealand Sauvignon Blanc wine with a green tea extract. The treatments included the control with no preservatives (C), the addition of green tea extract at 0.1 and 0.2 g/L (T1 and T2), and an SO2 treatment at 50 mg/L (T3). Five monomeric phenolic compounds were detected in the green tea extract used for the experiment, and their concentrations ranged in the order (-)-epigallocatechin gallate > (-)-epigallocatechin > (-)-epicatechin > (-)-epicatechin gallate > gallic acid. At the studied addition rates, these green tea-derived phenolic compounds contributed to ∼70% of the antioxidant capacity (ABTS), ∼71% of the total phenolic index (TPI), and ∼ 84% of tannin concentration (MCPT) of the extract dissolved in a model wine solution. Among wine treatments, T1 and T2 significantly increased the wine's colour absorbance at 420 nm, MCPT, gallic acid and total monomeric phenolic content. TPI and ABTS were significantly higher in wines with preservatives (i.e., T2 > T1 ≅ T3 > C, p < 0.05). These variations were observed both two weeks after the treatments and again after five months of wine aging. Additionally, an accelerated browning test and a quantitative sensory analysis of wine colour and mouthfeel attributes were performed after 5 months of wine aging. When exposed to excessive oxygen and high temperature (50 °C), T1 and T2 exhibited ∼29% and 24% higher browning capacity than the control, whereas T3 reduced the wine's browning capacity by ∼20%. Nonetheless, the results from sensory analysis did not show significant variations between the treatments. Thus, using green tea extract to replace SO2 at wine bottling appears to be a viable option, without inducing a negative impact on the perceptible colour and mouthfeel attributes of Sauvignon Blanc wine.
Collapse
Affiliation(s)
- Yi Yang
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.
| | - Zhijing Ye
- School of Viticulture and Wine Science, The Eastern Institute of Technology, 501 Gloucester Street, Napier 4112, New Zealand
| | - Yunxuan Qin
- School of Viticulture and Wine Science, The Eastern Institute of Technology, 501 Gloucester Street, Napier 4112, New Zealand
| | - Sreeni Pathirana
- Food Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Leandro Dias Araujo
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Neill J Culley
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|
18
|
Lima AKO, Souza LMDS, Reis GF, Junior AGT, Araújo VHS, dos Santos LC, da Silva VRP, Chorilli M, Braga HDC, Tada DB, Ribeiro JADA, Rodrigues CM, Nakazato G, Muehlmann LA, Garcia MP. Synthesis of Silver Nanoparticles Using Extracts from Different Parts of the Paullinia cupana Kunth Plant: Characterization and In Vitro Antimicrobial Activity. Pharmaceuticals (Basel) 2024; 17:869. [PMID: 39065720 PMCID: PMC11279972 DOI: 10.3390/ph17070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) can be developed using safe and environmentally friendly routes, can replace potentially toxic chemical methods, and can increase the scale of production. This study aimed to synthesize AgNPs from aqueous extracts of guarana (Paullinia cupana) leaves and flowers, collected in different seasons of the year, as a source of active biomolecules capable of reducing silver ions (Ag+) and promoting the stabilization of colloidal silver (Ag0). The plant aqueous extracts were characterized regarding their metabolic composition by liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS), phenolic compound content, and antioxidant potential against free radicals. The synthesized AgNPs were characterized by UV/Vis spectrophotometry, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and scanning electron microscopy coupled to energy-dispersive X-ray spectrometry (EDX). The results demonstrated that the chemical characterization indicated the presence of secondary metabolites of many classes of compounds in the studied aqueous extracts studied, but alkaloids and flavonoids were predominant, which are widely recognized for their antioxidant capabilities. It was possible to notice subtle changes in the properties of the nanostructures depending on parameters such as seasonality and the part of the plant used, with the AgNPs showing surface plasmon resonance bands between 410 and 420 nm using the leaf extract and between 440 and 460 nm when prepared using the flower extract. Overall, the average hydrodynamic diameters of the AgNPs were similar among the samples (61.98 to 101.6 nm). Polydispersity index remained in the range of 0.2 to 0.4, indicating that colloidal stability did not change with storage time. Zeta potential was above -30 mV after one month of analysis, which is adequate for biological applications. TEM images showed AgNPs with diameters between 40.72 to 48.85 nm and particles of different morphologies. EDX indicated silver content by weight between 24.06 and 28.81%. The synthesized AgNPs exhibited antimicrobial efficacy against various pathogenic microorganisms of clinical and environmental interest, with MIC values between 2.12 and 21.25 µg/mL, which is close to those described for MBC values. Therefore, our results revealed the potential use of a native species of plant from Brazilian biodiversity combined with nanotechnology to produce antimicrobial agents.
Collapse
Affiliation(s)
- Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil; (A.K.O.L.); (M.P.G.)
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Lucas Marcelino dos Santos Souza
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (L.M.d.S.S.); (G.N.)
| | - Guilherme Fonseca Reis
- Postgraduate Studies in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Palotina 85950-000, PR, Brazil;
| | - Alberto Gomes Tavares Junior
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Lucas Carvalho dos Santos
- Laboratory for the Isolation and Transformation of Organic Molecules, Institute of Chemistry, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil;
| | - Vitória Regina Pereira da Silva
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil; (H.d.C.B.); (D.B.T.)
| | - Dayane Batista Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil; (H.d.C.B.); (D.B.T.)
| | - José Antônio de Aquino Ribeiro
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Clenilson Martins Rodrigues
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Gerson Nakazato
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (L.M.d.S.S.); (G.N.)
| | | | - Mônica Pereira Garcia
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil; (A.K.O.L.); (M.P.G.)
| |
Collapse
|
19
|
Mac Sweeney E, Chiocchio I, Mandrone M, Sanna C, Bilo F, Maccarinelli G, Popescu VS, Pucci M, Morandini S, Memo M, Uberti DL, Borgese L, Trincia S, Poli F, Mastinu A, Abate G. Exploring the Anti-Inflammatory and Antioxidant Potential, Metabolite Composition and Inorganic Profile of Cistus monspeliensis L. Aerial Parts and Roots. Antioxidants (Basel) 2024; 13:753. [PMID: 39061822 PMCID: PMC11273841 DOI: 10.3390/antiox13070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
This work focuses on Cistus monspeliensis L. aerial parts (AP) and roots (R) extracts, investigating the anti-inflammatory and antioxidant potential of the two organs in comparison. At dosages between 1.56 and 6.25 µg/mL, both extracts showed a protective effect against LPS inflammatory stimulus on a macrophage cell line (RAW 264.7). Interestingly, only R was able to significantly reduce both IL-1β and IL-6 mRNA gene expression in the presence of LPS. Moreover, the treatment of a neuroblastoma cell line (SH-SY5Y) with AP and R at 6.25 µg/mL increased the cell survival rate by nearly 20% after H2O2 insult. However, only R promoted mitochondria survival, exhibited a significantly higher production of ATP and a higher activity of the enzyme catalase than the control. Both AP and R had similar primary metabolites; in particular, they both contained 1-O-methyl-epi-inositol. Labdane and methoxylated flavonoids were the most characteristic compounds of AP, while R contained mainly catechins, gallic acid, and pyrogallol derivatives. Considering the importance of elemental composition in plants, the inorganic profile of AP and R was also investigated and compared. No potentially toxic elements, such as Pb, were detected in any sample.
Collapse
Affiliation(s)
- Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Fabjola Bilo
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (F.B.); (L.B.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Vlad Sebastian Popescu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Stefania Morandini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Daniela Letizia Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (F.B.); (L.B.)
| | - Simona Trincia
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| |
Collapse
|
20
|
Mankoo RK, Kaur J, Chahal GK. Characterization of rice straw lignin phenolics and evaluation of their role in pollen tube growth in Cucurbita pepo L. Nat Prod Res 2024; 38:1844-1849. [PMID: 37322891 DOI: 10.1080/14786419.2023.2225126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Rice straw lignin was extracted via alkaline hydrolysis and structurally characterized using FT-IR and 1H NMR spectra. Ethyl acetate extract of acid solubilized lignin was found to contain p-coumaric acid, ferulic acid and caffeic acid as major phenolic acids which were isolated and characterized using spectral data. Amides of isolated phenolic acids were synthesized by their reaction with propyl and butyl amines using microwave irradiation and analysed using spectral studies. Phenolic acids and amides were evaluated for their effect on pollen germination and tube growth in pumpkin. Pollen tube length was significantly increased with N-butyl-3-(3, 4-dihydroxyphenyl) acrylamide and N-butyl-3-(4-hydroxyphenyl) acrylamide at 5 ppm concentration than the control. These results could be utilised in increasing pollen tube length of Cucurbita pepo while making interspecific cross between C. moschata and C. pepo in order to transfer hull-less character of C. pepo to virus resistant C. moschata genotypes.
Collapse
Affiliation(s)
| | - Jasleen Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
21
|
Alvarenga L, Reis DCMV, Kemp JA, Teixeira KTR, Fouque D, Mafra D. Using the concept of food as medicine to mitigate inflammation in patients undergoing peritoneal dialysis. Ther Apher Dial 2024; 28:341-353. [PMID: 38163858 DOI: 10.1111/1744-9987.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The most common kidney replacement therapy (KRT) worldwide is hemodialysis (HD), and only 5%-10% of patients are prescribed peritoneal dialysis (PD) as KRT. Despite PD being a different method, these patients also present particular complications, such as oxidative stress, gut dysbiosis, premature aging, and mitochondrial dysfunction, leading to an inflammation process and high cardiovascular mortality risk. Although recent studies have reported nutritional strategies in patients undergoing HD with attempts to mitigate these complications, more information must be needed for PD patients. Therefore, this review provides a comprehensive analysis of recent studies of nutritional intervention to mitigate inflammation in PD patients.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Drielly C M V Reis
- Division of Nephrology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julie Ann Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, Lyon, France
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Cipollone MA, Fontana A, Fillería SG, Tironi VA. Characterization, Bioaccesibility and Antioxidant Activities of Phenolic Compounds Recovered from Yellow pea (Pisum sativum) Flour and Protein Isolate. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:401-409. [PMID: 38602652 DOI: 10.1007/s11130-024-01172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
This study focused on studying the bioaccesible phenolic compounds (PCs) from yellow pea flour (F) and protein isolate (I). Total phenolic contents (TPC), PCs composition and antioxidant activities were analysed in ethanol 60% extracts obtained by applying ultrasound assisted extraction (UAE, 15 min/40% amplitude). The preparation of I under alkaline conditions and the elimination of some soluble components at lower pH produced a change of PCs profile and antioxidant activity. After simulated gastrointestinal digestion (SGID) of both ingredients to obtain the digests FD and ID, notable changes in the PCs concentration and profiles could be demonstrated. FD presented a higher ORAC activity than ID (IC50 = 0.022 and 0.039 mg GAE/g dm, respectively), but lower ABTS•+ activity (IC50 = 0.8 and 0.3 mg GAE/g dm, respectively). After treatment with cholestyramine of extracts from FD and ID in order to eliminate bile salts and obtain the bioaccesible fractions FDb and IDb, ROS scavenging in H2O2-induced Caco2-TC7 cells was evaluated, registering a greater activity for ID respect to FD (IC50 = 0.042 and 0.017 mg GAE/mL, respectively). These activities could be attributed to the major bioaccesible PCs: OH-tyrosol, polydatin, trans-resveratrol, rutin, (-)-epicatechin and (-)-gallocatechin gallate for FD; syringic (the most concentrated) and ellagic acids, trans-resveratrol, and (-)-gallocatechin gallate for ID, but probably other compounds such as peptides or amino acids can also contribute.
Collapse
Affiliation(s)
- María Agustina Cipollone
- Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM) (CONICET, FCA, UNCUYO), Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina
| | - Susan García Fillería
- Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina
| | - Valeria A Tironi
- Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina.
| |
Collapse
|
23
|
Yamaguchi T, Ishikawa H, Fukuda M, Sugita Y, Furuie M, Nagano R, Suzawa T, Yamamoto K, Wakamatsu K. Catechins prevent monoclonal antibody fragmentation during production via fed-batch culture of Chinese hamster ovary cells. Biotechnol Prog 2024; 40:e3447. [PMID: 38415979 DOI: 10.1002/btpr.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the industrial production of therapeutic monoclonal antibodies (mAbs). To meet the increasing market demands, high productivity, and quality are required in cell culture. One of the critical attributes of mAbs, from a safety perspective, is mAb fragmentation. However, methods for preventing mAbs fragmentation in CHO cell culture are limited. In this study, we observed that the antibody fragment content increased with increasing titers in fed-batch cultures for all three cell lines expressing recombinant antibodies. Adding copper sulfate to the culture medium further increased the fragment content, suggesting the involvement of reactive oxygen species (ROS) in the fragmentation process. Though antioxidants may be helpful to scavenge ROS, several antioxidants are reported to decrease the productivity of CHO cells. Among the antioxidants examined, we observed that the addition of catechin or (-)-epigallocatechin gallate to the culture medium prevented fragmentation content by about 20% and increased viable cell density and titer by 30% and 10%, respectively. Thus, the addition of catechins or compounds of equivalent function would be beneficial for manufacturing therapeutic mAbs with a balance between high titers and good quality.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Hiroko Ishikawa
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Mie Fukuda
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Yumi Sugita
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Misaki Furuie
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Ryuma Nagano
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | | | - Koichi Yamamoto
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Kaori Wakamatsu
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
| |
Collapse
|
24
|
Zhang Y, Li X, Liu R, Huang X, Yang Y, Yuan J, Zhang Y, Sun J, Bai W. Protective effect of bioactive components from Rubi fructus against oxidative damage in human ovarian granulosa cells induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4425-4437. [PMID: 38349056 DOI: 10.1002/jsfa.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Diminished ovarian reserve has a serious impact on female reproduction with an increasing incidence every year. An important cause of this is oxidative stress. Rubi fructus, a traditional medicinal and edible plant, has shown therapeutic effects against gynecological diseases. Vanillic acid, isoquercitrin, kaempferol-3-O-rutinoside, kaempferol-3-O-sophoroside, oleanolic acid, tormentic acid, tiliroside, and ellagic acid are the major bioactive components in R. fructus. However, studies involved in the effectiveness and mechanism of these components in oxidative stress-induced ovarian dysfunction are scarce. RESULTS In this study, the protective mechanisms of the bioactive components were evaluated in human ovarian granulosa cells. Isoquercitrin was significantly superior to other bioactive components in relieving damage in human ovarian granulosa cells induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride, considering enhanced cell viability, reduced reactive oxygen species accumulation, and improved mitochondrial membrane potential level. Isoquercitrin protected human ovarian granulosa cells from oxidative stress by regulating the enzyme activity of glutathione peroxidase, inhibiting cell apoptosis, improving the expression of genes related to oxidative stress, and ameliorating heme oxygenase 1 protein expression. CONCLUSION Isoquercitrin, a bioactive component in R. fructus, has a significant protective effect on oxidative damage induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride in human ovarian granulosa cells, providing evidence for its potential application in protecting ovarian function. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Yiting Yang
- Infinitus (China) Company Ltd., Guangzhou, China
| | | | - Ying Zhang
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Sut S, Dall'Acqua S, Sinan KI, Zengin G, Uba AI, Etienne OK, Jugreet S, Mahomoodally MF. Bioactive agents from Parkia biglobosa (Jacq.) R.Br. ex G. Don bark extracts for health promotion and nutraceutical uses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2820-2831. [PMID: 38009330 DOI: 10.1002/jsfa.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Parkia biglobosa stem bark extracts were prepared using methanol, methanol 80%, water and ethyl acetate to investigate their phytochemical contents, as well as antioxidant and enzyme inhibitory properties. RESULTS Liquid chromatography (LC) quadrupole time-of-flight mass spectrometry (MS) and LC-MSn revealed the presence of flavonoids, hydroxycinnamic acid derivatives and gallotannins. Particularly, the water extract contained rutin (480 μg per 100 mg) and 3-caffeoylquinic acid (1109 μg per 100 mg) in higher amounts, whereas the 80% methanol extract contains methoxyluteolin-7-O-rutinoside and catechin derivatives as major compounds. Total phenolic and flavonoid contents of the extracts were yielded in the range of 32.26-119.88 mg gallic acid equivalents g-1 and 0.60-2.39 mg rutin equivalents g-1 , respectively. Total antioxidant capacity was also displayed in the range of 0.53-6.34 mmol Trolox equivalents (TE) g-1 . Both the methanolic extracts showed higher total antioxidant capacity that could be related to the total phenolic contents. Radical scavenging capacity in DPPH (2,2-diphenyl-2-picryl-hydrazyl) (37.21-508.30 mg TE g-1 ) and ABTS [2,2-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid)] (60.95-1068.06 mg TE g-1 ) assays, reducing power in cupric ion reducing antioxidant capacity (54.23-1002.78 mg TE g-1 ) and ferric ion reducing antioxidant power (33.18-558.68 mg TE g-1 ) assays, as well as metal chelating activity (2.45-11.28 mg EDTA equivalents g-1 ), were exhibited by all extracts. All extracts were found to inhibit acetylcholinesterase [0.23-2.47 mg galanthamine equivalents (GALAE) g-1 ], tyrosinase [27.20-83.33 mg kojic acid equivalents g-1 ], amylase [mmol acarbose equivalents (ACAE) g-1 ]. On the other hand, all extracts, except the water extract, inhibited butyrylcholinesterase (5.38-6.56 mg GALAE g-1 ), whereas only the water and ethyl acetate extract showed glucosidase inhibitory potential (1.96 and 1.82 mmol ACAE g-1 ). In general, the water extract was found to be a weaker enzyme inhibitor suggesting that water is not the preferrable extraction solvent to obtain active products. CONCLUSION The present study demonstrated that the stem bark extracts of P. biglobosa contains good amount of phytochemical and extracts present significant antioxidant, as well as reasonable enzyme inhibitory effects. Hence, these findings suggest that further studies can be performed on more specific biological targets and models of bioactivity to determine their safe usage as a nutraceutical or for the preparation functional foods. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdullah Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkiye
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
26
|
García-Villegas A, Fernández-Ochoa Á, Alañón ME, Rojas-García A, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Bioactive Compounds and Potential Health Benefits through Cosmetic Applications of Cherry Stem Extract. Int J Mol Sci 2024; 25:3723. [PMID: 38612532 PMCID: PMC11011441 DOI: 10.3390/ijms25073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
27
|
Zhao J, Qian D, Zhang L, Wang X, Zhang J. Improved antioxidative and antibacterial activity of epigallocatechin gallate derivative complexed by zinc cations and chitosan. RSC Adv 2024; 14:10410-10415. [PMID: 38567321 PMCID: PMC10985466 DOI: 10.1039/d4ra00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Epigallocatechin gallate (EGCG) has attracted increasing attention thanks to its multi-bioactivities, and people are keen on improving the antioxidative and antibacterial performance of EGCG. Based on the favorable biofunctionality of Zn2+ and chitosan (CS), an EGCG derivative with a novel formula, i.e., EGCG-Zn-CS, is presented in this study. The structure of EGCG-Zn-CS was characterized by FT-IR, UV-vis, TGA, XPS, and SEM-EDS. The radical elimination results indicate that 0.1 mg mL-1 of EGCG-Zn-CS demonstrates DPPH radical and hydroxyl radical scavenging activities of 94.8% and 92.3%, while 0.1 mg mL-1 of EGCG exhibits only 78.5% and 75.6%, respectively, which means improved antioxidative activity of EGCG-Zn-CS was obtained. Inhibitory experiments against Staphylococcus aureus and Escherichia coli reveal that the minimal inhibitory concentrations (MICs) of EGCG-Zn-CS were 15.625 μg mL-1 and 187.5 μg mL-1, whereas the minimal bactericide concentrations (MBCs) were 46.875 μg mL-1 and 750 μg mL-1, respectively, which indicate that EGCG-Zn-CS exerts much higher antibacterial activity than EGCG. It can be concluded that the complexing of zinc cations and CS could amazingly improve both the antioxidative and antibacterial activity of EGCG, and it is expected that an exploration of EGCG-Zn-CS may inspire the development of simultaneous effective antioxidant and antibacterial agents.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Material Science and Chemical Engineering, Ningbo University 315211 Ningbo Zhejiang Province China
| | - Dou Qian
- School of Material Science and Chemical Engineering, Ningbo University 315211 Ningbo Zhejiang Province China
| | - Luyang Zhang
- School of Material Science and Chemical Engineering, Ningbo University 315211 Ningbo Zhejiang Province China
| | - Xiao Wang
- Health Science Center, Ningbo University Ningbo Zhejiang 315211 China
| | - Jianfeng Zhang
- School of Material Science and Chemical Engineering, Ningbo University 315211 Ningbo Zhejiang Province China
- Ningbo Fondxy New Materials Limited Corporation 315210 Ningbo Zhejiang Province China
| |
Collapse
|
28
|
Nooshkam M, Varidi M. Antioxidant and antibrowning properties of Maillard reaction products in food and biological systems. VITAMINS AND HORMONES 2024; 125:367-399. [PMID: 38997170 DOI: 10.1016/bs.vh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Oxidative damage refers to the harm caused to biological systems by reactive oxygen species such as free radicals. This damage can contribute to a range of diseases and aging processes in organisms. Moreover, oxidative deterioration of lipids is a serious problem because it reduces the shelf life of food products, degrades their nutritional value, and produces reaction products that could be toxic. Antioxidants are effective compounds for preventing lipid oxidation, and synthetic antioxidants are frequently added to foods due to their high effectiveness and low cost. However, the safety of these antioxidants is a subject that is being discussed in the public more and more. Synthetic antioxidants have been found to have potential negative effects on health due to their ability to accumulate in tissues and disrupt natural antioxidant systems. During thermal processing and storage, foods containing reducing sugars and amino compounds frequently produce Maillard reaction products (MRPs). Through the chelation of metal ions, scavenging of reactive oxygen species, destruction of hydrogen peroxide, and suppression of radical chain reaction, MRPs exhibit excellent antioxidant properties in a variety of food products and biological systems. Also, the capacity of MRPs to chelate metals makes them as a potential inhibitor of the enzymatic browning in fruits and vegetables. In this book chapter, the methods used for the evaluation of antioxidant activity of MRPs are provided. Moreover, the antioxidant and antibrowning activities of MRPs in food and biological systems is discussed. MRPs can generally be isolated and used as commercial preparations of natural antioxidants.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
29
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
30
|
Bekdeşer B, Apak R. Colorimetric Sensing of Antioxidant Capacity via Auric Acid Reduction Coupled to ABTS Oxidation. ACS OMEGA 2024; 9:11738-11746. [PMID: 38497014 PMCID: PMC10938435 DOI: 10.1021/acsomega.3c09134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In this study, a simple and sensitive colorimetric assay has been developed for total antioxidant capacity measurement. The assay is based on the absorption measurement of the bluish-green oxidized product (ABTS·+) formed as a result of the oxidation reaction of the chromogenic reagent ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) with gold(III). However, in the presence of antioxidants, the ABTS oxidation process is effectively suppressed due to the reduction of gold(III) ions to the zerovalent state forming gold nanoparticles (AuNPs). Relatively lighter colors and a significant decrease in absorbance are observed depending on the total antioxidant capacity. Taking advantage of this situation, qualitative and quantitative total antioxidant capacity (TAC) measurements, with the naked eye and UV-vis spectroscopy, respectively, could be successfully performed. The assay is named "auric reducing antioxidant capacity" (AuRAC) because the gold(III) ion-reducing ability of antioxidants is measured. The AuRAC assay was applied to dietary polyphenols, vitamin C, thiol-type antioxidants, and their synthetic mixtures. Trolox equivalent antioxidant capacity (TEAC) values obtained with the AuRAC assay were found to be compatible with those of the reference CUPRAC (cupric reducing antioxidant capacity) assay. The AuRAC assay was validated through linearity, additivity, precision, and recovery, demonstrating that the assay is reliable and robust. Compared to the simple TAC assays in the literature based on AuNP formation with subsequent surface plasmon resonance (SPR) absorbance measurement, this indirect assay has a smoother linear range starting from lower antioxidant concentrations. This method displays much higher molar absorption coefficients for antioxidant compounds than other conventional single electron transfer (SET) assays because 3-e- reduction of trivalent gold (i.e., Au(III) → Au(0)) produces three chromophore cation radicals (ABTS·+) of the assay reagent. The sensor has been successfully applied to complex matrices, such as tea infusions and pharmaceutical samples. The AuRAC assay stands out with its high molar absorptivity connected to enhanced sensitivity as well as its potential to convert into a paper-based colorimetric sensor.
Collapse
Affiliation(s)
- Burcu Bekdeşer
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
- Turkish
Academy of Sciences (TUBA), Çankaya, 06690 Ankara, Turkey
| |
Collapse
|
31
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
32
|
Yong H, Wang Z, Huang J, Liu J. Preparation, characterization and application of antioxidant packaging films based on chitosan-epicatechin gallate conjugates with different substitution degrees. Int J Biol Macromol 2024; 260:129568. [PMID: 38246436 DOI: 10.1016/j.ijbiomac.2024.129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
In this study, chitosan (CS) was conjugated with epicatechin gallate (ECG) to prepare CS-ECG conjugates with different substitution degrees (5.18 %, 6.36 % and 7.74 %). Then, antioxidant packaging films were fabricated by blending CS and CS-ECG conjugates. The impact of CS-ECG conjugates' substitution degree on the functionality of CS/CS-ECG films was determined. CS-ECG conjugates showed UV absorption at 275 nm, proton signal at 6.85 ppm and infrared absorption at 1533 cm-1, assigning to the conjugated ECG. As compared with CS, CS-ECG conjugates exhibited less crystalline state but higher antioxidant activity. The structural characterization of CS/CS-ECG films showed CS and CS-ECG conjugates formed hydrogen bonds. CS/CS-ECG films displayed 26.35 %-29.23 % water solubility, 85.61°-86.96° water contact angle, 3.11-3.41 × 10-11 g m-1 s-1 Pa-1 water vapor permeability, 0.29-0.34 cm3 mm m-2 day-1 atm-1 oxygen permeability, 31.54-36.20 MPa tensile strength, 50.12 %-56.40 % elongation at break, as well as potent antioxidant activity and oil oxidation inhibitory ability. Notably, the film containing CS-ECG conjugate with 7.74 % substitution degree had the strongest barrier ability, mechanical property, antioxidant activity and oil oxidation inhibitory ability. Results suggested the substitution degree of CS-ECG conjugates was positively correlated with the barrier, mechanical and antioxidant properties of CS/CS-ECG films.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zeyu Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
33
|
Aydemir E, Odabaş Köse E, Yavuz M, Kilit AC, Korkut A, Özkaya Gül S, Sarikurkcu C, Celep ME, Göktürk RS. Phenolic Compound Profiles, Cytotoxic, Antioxidant, Antimicrobial Potentials and Molecular Docking Studies of Astragalus gymnolobus Methanolic Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:658. [PMID: 38475504 DOI: 10.3390/plants13050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Since Astragalus is a genus with many important medicinal plant species, the present work aimed to investigate the phytochemical composition and some biological activities of Astragalus gymnolobus. The methanolic fractions of four organs (stems, flowers, leaves, root and whole plant) were quantified and identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS) analysis. Hesperidin, hyperoside, p-hydroxybenzoic acid, protocatechuic acid and p-coumaric acid were identified as main compounds among the extracts. Among all cells, leaf methanol (Lm) extract had the highest cytotoxic effect on HeLa cells (IC50 = 0.069 μg/mL). Hesperidin, the most abundant compound in A. gymnolobus extract, was found to show a strong negative correlation with the cytotoxic effect observed in HeLa cells according to Pearson correlation test results and to have the best binding affinity to targeted proteins by docking studies. The antimicrobial activity results indicated that the most susceptible bacterium against all extracts was identified as Streptococcus pyogenes with 9-11 mm inhibition zone and 8192 mg/mL MIC value. As a result of the research, it was suggested that A. gymnolobus could be considered as a promising source that contributes to the fight against cancer.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Elif Odabaş Köse
- Medical Laboratory Program, Vocational School of Health Services, Akdeniz University, Antalya TR-07058, Turkey
| | - Mustafa Yavuz
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - A Cansu Kilit
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Alaaddin Korkut
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Serap Özkaya Gül
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar TR-03100, Turkey
| | - Mehmet Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Atasehir, Istanbul TR-34755, Turkey
| | - R Süleyman Göktürk
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| |
Collapse
|
34
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
35
|
Antonino C, Difonzo G, Faccia M, Caponio F. Effect of edible coatings and films enriched with plant extracts and essential oils on the preservation of animal-derived foods. J Food Sci 2024; 89:748-772. [PMID: 38161278 DOI: 10.1111/1750-3841.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Edible coatings and films for food preservation are becoming more popular thanks to their environmentally friendly properties and active ingredient-carrying ability. Their application can be effective in contrasting quality decay by limiting oxidation and deterioration of foods. Many reviews analyze the different compounds with which films and coatings can be created, their characteristics, and the effect when applied to food. However, the possibility of adding plant extracts and essential oils in edible coatings and films to preserve processed animal-derived products has been not exhaustively explored. The aim of this review is to summarize how edible coatings and films enriched with plant extracts (EXs) and essential oils (EOs) influence the physico-chemical and sensory features as well as the shelf-life of cheese, and processed meat and fish. Different studies showed that various EXs and EOs limited both oxidation and microbial growth after processing and during food preservation. Moreover, encapsulation has been found to be a valid technology to improve the solubility and stability of EOs and EXs, limiting strong flavor, controlling the release of bioactive compounds, and maintaining their stability during storage. Overall, the incorporation of EXs and EOs in edible coating and film to preserve processed foods can offer benefits for improving the shelf-life, limiting food losses, and creating a food sustainable chain.
Collapse
Affiliation(s)
- Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
36
|
Bittar VP, Silva Borges AL, Justino AB, Carrillo MSP, Mateus Duarte RF, Silva NBS, Gonçalves DS, Prado DG, Araújo IAC, Martins MM, Gomes Martins CH, Botelho FV, Silva NM, de Oliveira A, Espíndola FS. Bioactive compounds from the leaves of Maytenus ilicifolia Mart. ex Reissek: Inhibition of LDL oxidation, glycation, lipid peroxidation, target enzymes, and microbial growth. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117315. [PMID: 37852339 DOI: 10.1016/j.jep.2023.117315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 μg/mL and 7.95 μg/mL) compared to acarbose (0.144 μg/mL). Most organic fractions exhibited ∼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.
Collapse
Affiliation(s)
- Vinicius Prado Bittar
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Ana Luiza Silva Borges
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Allisson Benatti Justino
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Maria Sol Peña Carrillo
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Rener Francisco Mateus Duarte
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Daniela Silva Gonçalves
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Diego Godina Prado
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Iasmin Aparecida Cunha Araújo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, 38400-902, Brazil
| | - Mário Machado Martins
- Laboratory of Nanobiotechnology "Dr. Luiz Ricardo Goulart Filho", Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Françoise Vasconcelos Botelho
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, 38400-902, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Foued Salmen Espíndola
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
37
|
Waswa EN, Ding SX, Wambua FM, Mkala EM, Mutinda ES, Odago WO, Amenu SG, Muthui SW, Linda EL, Katumo DM, Waema CM, Yang JX, Hu GW. The genus Actinidia Lindl. (Actinidiaceae): A comprehensive review on its ethnobotany, phytochemistry, and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117222. [PMID: 37793579 DOI: 10.1016/j.jep.2023.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Actinidia Lindl. belongs to the family Actinidiaceae. Plants of this genus are popularly known as kiwifruits and are traditionally used to treat a wide range of ailments associated with digestive disorders, rheumatism, kidney problems, cardiovascular system, cancers, dyspepsia, hemorrhoids, and diabetes among others. AIM This review discusses the ethnobotanical uses, phytochemical profile, and known pharmacological properties of Actinidia plants, to understand their connotations and provide the scientific basis for future studies. MATERIALS AND METHODS The data were obtained by surveying journal articles, books, and dissertations using various search engines such as Google Scholar, PubMed, Science Direct, Springer Link, and Web of Science. The online databases; World Flora Online, Plants of the World Online, International Plant Names Index, and Global Biodiversity Information Facility were used to confirm the distribution and validate scientific names of Actinidia plants. The isolated metabolites from these species were illustrated using ChemBio Draw ultra-version 14.0 software. RESULTS Ten (10) species of Actinidia genus have been reported as significant sources of traditional medicines utilized to remedy diverse illnesses. Our findings revealed that a total of 873 secondary metabolites belonging to different classes such as terpenoids, phenolic compounds, alcohols, ketones, organic acids, esters, hydrocarbons, and steroids have been isolated from different species of Actinidia. These compounds were mainly related to the exhibited antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antiproliferative, anti-angiogenic, anticinoceptive, anti-tumor, and anticancer activities. CONCLUSION This study assessed the information related to the ethnobotanical uses, phytochemical compounds, and pharmacological properties of Actinidia species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Actinidia plants have great potential for applications in folklore medicines and pharmaceuticals due to their wide ethnomedicinal uses and biological activities. Traditional uses of several Actinidia species are supported by scientific evidences, qualifying them as possible modern remedies for various ailments. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of most Actinidia species. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xiong Ding
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Muema Wambua
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sara Getachew Amenu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Samuel Wamburu Muthui
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elive Limunga Linda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei University, Wuhan, 430011, China
| | | | | | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
38
|
Hu YK, Kim SJ, Jang CS, Lim SD. Antioxidant Activity Analysis of Native Actinidia arguta Cultivars. Int J Mol Sci 2024; 25:1505. [PMID: 38338784 PMCID: PMC10855169 DOI: 10.3390/ijms25031505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Kiwiberry (Actinidia arguta) is a perennial fruit tree belonging to the family Actinidiaceae. Kiwiberries are known to have an extremely high concentration of sugars, phenolics, flavonoids, and vitamin C, and possess delicious taste and health-promoting properties. Numerous studies have focused on kiwiberry fruits, demonstrating that they possess a higher phytochemical content and greater antioxidant activities than other berry fruits. The purpose of this study was to compare the phytochemical content and antioxidant potential of leaf, stem, root, and fruit extracts from twelve kiwiberry cultivars grown in Wonju, Korea, characterized by a Dwa climate (Köppen climate classification). In most kiwiberry cultivars, the total phenolic (TPC) and total flavonoid (TFC) phytochemical content was significantly higher in leaf and stem tissues, while the roots exhibited higher antioxidant activity. In fruit tissues, the TPC and TFC were higher in unripe and ripe kiwiberry fruits, respectively, and antioxidant activity was generally higher in unripe than ripe fruit across most of the cultivars. Based on our results, among the 12 kiwiberry cultivars, cv. Daebo and cv. Saehan have a significantly higher phytochemical content and antioxidant activity in all of the tissue types, thus having potential as a functional food and natural antioxidant.
Collapse
Affiliation(s)
- Yu Kyong Hu
- Molecular Plant Physiology Laboratory, Department of Applied Plant Sciences, Graduate School, Sangji University, Wonju 26339, Republic of Korea;
| | - Soo Jae Kim
- Wonju-si Agricultural Technology Center, Heungdae-gil 7, Heungup-myeon, Wonju 26339, Republic of Korea;
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung Don Lim
- Molecular Plant Physiology Laboratory, Department of Applied Plant Sciences, Graduate School, Sangji University, Wonju 26339, Republic of Korea;
| |
Collapse
|
39
|
Settakorn K, Hantrakool S, Petiwathayakorn T, Hutachok N, Tantiworawit A, Charoenkwan P, Chalortham N, Chompupoung A, Paradee N, Koonyosying P, Srichairatanakool S. A randomized placebo-controlled clinical trial of oral green tea epigallocatechin 3-gallate on erythropoiesis and oxidative stress in transfusion-dependent β-thalassemia patients. Front Mol Biosci 2024; 10:1248742. [PMID: 38328786 PMCID: PMC10848917 DOI: 10.3389/fmolb.2023.1248742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
β-Thalassemia patients suffer from ineffective erythropoiesis and increased red blood cell (RBC) hemolysis. Blood transfusion, erythropoietic enhancement, and antioxidant supplementation can ameliorate chronic anemia. Green tea extract (GTE) is comprised of catechin derivatives, of which epigallocatechin-3-gallate (EGCG) is the most abundant, presenting free-radical scavenging, iron-chelating, and erythropoiesis-protective effects. The present study aimed to evaluate the effects of GTE tablets on the primary outcome of erythropoiesis and oxidative stress parameters in transfusion-dependent β-thalassemia (TDT) patients. Twenty-seven TDT patients were randomly divided into placebo and GTE tablet (50 and 100 mg EGCG equivalent) groups and assigned to consume the product once daily for 60 days. Blood was collected for analysis of hematological, biochemical, and oxidative stress parameters. Accordingly, consumption of GTE tablets improved blood hemoglobin levels when compared with the placebo; however, there were more responders to the GTE tablets. Interestingly, amounts of nonheme iron in RBC membranes tended to decrease in both GTE tablet groups when compared with the placebo. Importantly, consumption of GTE tablets lowered plasma levels of erythroferrone (p < 0.05) and reduced bilirubin non-significantly and dose-independently. Thus, GTE tablets could improve RBC hemolysis and modulate erythropoiesis regulators in transfusion-dependent thalassemia patients.
Collapse
Affiliation(s)
- Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasinee Hantrakool
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nuntouchaporn Hutachok
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimlak Charoenkwan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nopphadol Chalortham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
40
|
Swaidan A, Azakir B, Neugart S, Kattour N, Sokhn ES, Osaili TM, Darra NE. Evaluation of the Phenolic Composition and Biological Activities of Six Aqueous Date ( Phoenix dactylifera L.) Seed Extracts Originating from Different Countries: A Comparative Analysis. Foods 2023; 13:126. [PMID: 38201154 PMCID: PMC10778786 DOI: 10.3390/foods13010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Date seeds, which are the main by-products of date fruit consumption, were shown to possess promising biological activities and health benefits with minimal human use. The present investigation analyzed and compared the phenolic content of six date seed varieties from four different origins (Khudari, Sakai, and Safawi from Saudi Arabia, Majdool from Jordan, Zahdi from Iraq, and Kabkab from Iran). The aqueous extracts were examined for possible antioxidant, antibacterial, and anti-tumor potential. Date seed oil was extracted, and fatty acid profiles were compared. The results revealed that date seeds are a rich source of polyphenols, which have been linked to biological activities. Furthermore, the phenolic content seemed highly dependent on the variety, where Kabkab had the highest TPC value (271.2 mg GAE/g DM) while Majdool had the lowest value (63.2 mg GAE/g DM). Antioxidant activities of all varieties were highly correlated with the total phenolic content. The antibacterial investigation demonstrated that the Sakai variety possessed the dominant activity, whereas Majdool showed no activity. The results further indicated the sensitivity of both Staphylococcus aureus and Bacillus cereus, with a stronger effect against B. cereus, while no effect was observed against Gram-negative strains (Salmonella Typhi and Escherichia coli). All varieties were able to decrease colon and lung cancer cell viability, especially Khudari and Sakai, with stronger effects against colon cancer cells. Analysis of date seed oil showed high oleic acid content, especially in Sakai. The findings suggest that date seeds are promising candidates for future pharmaceutical applications as nutraceuticals to help combat certain illnesses, as well as functional foods and natural additives that boost the nutritional value of food products, increase their shelf lives, and improve the overall health of consumers.
Collapse
Affiliation(s)
- Aseel Swaidan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon;
| | - Bilal Azakir
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Susanne Neugart
- Division of Quality and Sensory of Plant Products, Department of Crop Sciences, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Naim Kattour
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1100 2807, Lebanon
| | - Elie Salem Sokhn
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Tareq M. Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Nada El Darra
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon;
| |
Collapse
|
41
|
Waheed M, Idris S, Jan F, Alam A, Alam A, Ibrahim M, AlAsmari AF, Alharbi M, Alasmari F, Khan M. Exploring the synthesis, structure, spectroscopy and biological activities of novel 4-benzylidene-1-(2-(2,4-dichloro phenyl)acetyl) thiosemicarbazide derivatives: An integrated experimental and theoretical investigation. Saudi Pharm J 2023; 31:101874. [PMID: 38088945 PMCID: PMC10711186 DOI: 10.1016/j.jsps.2023.101874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/12/2023] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Novel α-amylase inhibitors play a crucial role in managing diabetes and obesity, contributing to improved public health by addressing these challenging and prevalent conditions. Moreover, the synthesis of anti-oxidant agents is essential due to their potential in combating oxidative stress-related diseases and promoting overall health. OBJECTIVE Synthesis of thoisemicarbazone derivatives of 2,4-dichlorophenyl acetic acid and to screened them for their biological activities. METHOD Thiosemicarbazone derivatives (4-13) were synthesized by refluxing 2,4-dichlorophenyl acetic acid with sulfuric acid in ethanol to get the ester (2), which was further refluxed with thiosemicarbazide to get compound (3). Finally, different aromatic aldehydes were refluxed with compound (3) in ethanol in catalytic amount of acetic acid to obtained the final products (4-13). Using modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR, the structures of the created derivatives were confirmed. RESULTS The synthesized derivatives showed excellent to good inhibitory activity in the range of IC50 values of 4.95 ± 0.44 to 69.71 ± 0.05 µM against α-amylase enzyme when compared to standard drug acarbose (IC50 = 21.55 ± 1.31 µM). In case of iron chelating activity, these products showed potent activity better than standard EDTA (IC50 = 66.43 ± 1.07 µM) in the range of IC50 values of 22.43 ± 2.09 to 61.21 ± 2.83 µM. However, the obtained products also show excellent to good activity in the range of IC50 values of 28.30 ± 1.17 to 64.66 ± 2.43 µM against hydroxyl radical scavenging activity when compared with standard vitamin C (IC50 = 60.51 ± 1.02 µM). DFT used to calculate different reactivity factors including ionization potential, electronegativity, electron affinity, chemical softness, and chemical hardness were calculated using frontier molecular orbital (FMO) computations. The molecular docking studies for the synthesized derivatives with α-amylase were carried out using the AutoDock Vina to understand the binding affinities with active sites of the protein.
Collapse
Affiliation(s)
- Mahnoor Waheed
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Sana Idris
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Chakdara, Lower Dir 18800, Pakistan
| | - Aftab Alam
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
42
|
Wada T, Takenawa T, Komori N, Nishimura M, Fujita Y, Sawamoto O. Ascorbic acid enhances the cold preservation period of human adipose tissue-derived mesenchymal stromal cells. Regen Ther 2023; 24:154-160. [PMID: 37868720 PMCID: PMC10584694 DOI: 10.1016/j.reth.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction We previously developed 3% trehalose-added lactated Ringer's solution (LR-3T) and 3% trehalose- and 5% dextran-40-added lactated Ringer's solution (LR-3T-5D), which can be used to preserve adipose-derived mesenchymal stem cells (hADSCs) for 24 h at 5 and 25 °C. However, it is necessary to further extend the storage duration of cells to expand transportation zones and ensure time for quality control testing of final cell products. Therefore, we attempted to prolong the preservation duration of hADSCs by adding supplements to LR-3T-5D. We focused on ascorbic acid as an antioxidant because it is widely clinically as a nutrient. Methods We added the antioxidant ascorbic acid to LR-3T-5D and evaluated the viability, colony formation rate, proliferative capacity, and surface markers of hADSCs before and after preservation at 5 °C. Results Analysis of the concentration of ascorbic acid added to LR-3T-5D indicated that 1000 mg/L was the optimal concentration for maintaining the viability of hADSCs after 72 h of cold preservation. No changes were observed in the expression of specific cell surface markers or in the potential of hADSCs to differentiate into adipocytes, osteoblasts, or chondrocytes before and after cold preservation. Discussion These results suggest that cold preservation of hADSCs in LR-3T-5D supplemented with ascorbic acid helps maintain the quality of cells for use in cell therapy.
Collapse
Affiliation(s)
- Tamaki Wada
- Corresponding author. Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima 772-8601, Japan
| | | | - Natsuki Komori
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc. Tokushima, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc. Tokushima, Japan
| | - Yasutaka Fujita
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc. Tokushima, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc. Tokushima, Japan
| |
Collapse
|
43
|
Wang G, Li M, Liu J, Ye F, Cheng L, Fan X, Liu X, Riedel R. Robust Ti 3C 2T x MXene foam modified with natural antioxidants for long-term effective electromagnetic interference shielding. iScience 2023; 26:107176. [PMID: 38026166 PMCID: PMC10651686 DOI: 10.1016/j.isci.2023.107176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 06/15/2023] [Indexed: 12/01/2023] Open
Abstract
MXenes have been proven to be outstanding lossy phase of advanced electromagnetic interference (EMI) shielding materials. However, their poor tolerance to oxygen and water results in fast degradation of the pristine two-dimensional (2D) nanostructure and fading of the functional performance. Herein, in this research, natural antioxidants (e.g., melatonin, tea polyphenols, and phytic acid) were employed to protect the Ti3C2Tx MXene from its degradation in order to achieve a long-term stability of the EMI shielding performance. The results showed that the synthesized composites comprised of antioxidants and Ti3C2Tx exhibited a decelerating degradation rate resulting in an improved EMI shielding effective (SE) stability. The antioxidation mechanism of the applied antioxidants is discussed with respect to the nanostructure evolution of the Ti3C2Tx MXene. This work contributes to the basic foundations for the further development of advanced MXenes for stable applications in the EM field.
Collapse
Affiliation(s)
- Guohong Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Minghang Li
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Fang Ye
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Xiaomeng Fan
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Xingmin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Ralf Riedel
- Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| |
Collapse
|
44
|
Mahmoudi M, Boughalleb F, Maaloul S, Mabrouk M, Abdellaoui R. Phytochemical Screening, Antioxidant Potential, and LC-ESI-MS Profiling of Ephedra alata and Ephedra altissima Seeds Naturally Growing in Tunisia. Appl Biochem Biotechnol 2023; 195:5903-5915. [PMID: 36719522 PMCID: PMC9887572 DOI: 10.1007/s12010-023-04370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
Most Ephedra species are adapted to arid and desert conditions and are widely used in folk medicine to treat several disorders. The design of the current study was to determine the functional properties of seeds of two Ephedra species (E. alata and E. altissima) naturally growing in Tunisian arid zones by evaluating their mineral contents and bioactive compounds. The flame atomic absorption spectrometry revealed that seeds contained remarkable amounts of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), and iron (Fe). The colorimetric investigation revealed high total polyphenol, flavonoid, and condensed tannin contents. Furthermore, by utilizing high-performance liquid chromatography-electrospray ionization-mass spectrometry method (HPLC-ESI/MS), a total of 11 phenolics were identified and quantified including 7 flavonoid compounds and 4 phenolic acids that were mostly predominated by gallic acid and quercetrin. Results so far have been very encouraging and proved that Ephedra seeds are a valuable source of natural bioactive compounds and minerals which could potentially be used for industrial and pharmaceutical purposes.
Collapse
Affiliation(s)
- Maher Mahmoudi
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia.
- Laboratory of Plant, Soil and Environment Interactions (LIPSE), University of Tunis, El Manar 1068, LR21ES01, Tunis, Tunisia.
| | - Fayçal Boughalleb
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Samah Maaloul
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Mahmoud Mabrouk
- Platform Advanced Analysis, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Raoudha Abdellaoui
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
45
|
Thongboontho R, Petcharat K, Munkong N, Khonthun C, Boondech A, Phromnoi K, Thim-uam A. Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages. Nutr Res Pract 2023; 17:827-843. [PMID: 37780212 PMCID: PMC10522809 DOI: 10.4162/nrp.2023.17.5.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p22phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.
Collapse
Affiliation(s)
- Rungthip Thongboontho
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Kanoktip Petcharat
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Mae Ka 56000, Thailand
| | - Chakkraphong Khonthun
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Atirada Boondech
- Biology Program, Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Nakhon Chum 65000, Thailand
| | - Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Arthid Thim-uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| |
Collapse
|
46
|
Wang W, Le T, Wang W, Yu L, Yang L, Jiang H. Effects of Key Components on the Antioxidant Activity of Black Tea. Foods 2023; 12:3134. [PMID: 37628133 PMCID: PMC10453510 DOI: 10.3390/foods12163134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Many components (such as tea polyphenols, catechins, theaflavins, theasinensins, thearubigins, flavonoids, gallic acid, etc.) in black tea have antioxidant activities. However, it is not clear which components have a greater influence on the antioxidant activity of black tea. In this study, the antioxidant activity and contents of tea polyphenols, catechins, theaflavins, thearubigins, theabrownins, TSA, total flavonoids, amino acids, caffeine, and total soluble sugar were analyzed in 51 black teas. Principal component analysis (PCA), orthogonal partial least-squares discrimination analysis (OPLS-DA), and the correlation analysis method were used for data analysis. The results showed that catechins in tea polyphenols were the most important components that determine the antioxidant activity of black tea. Among them, epicatechin gallate (ECG), epi-gallocatechin gallate (EGCG), epicatechin (EC), and epi-gallocatechin (EGC) were significantly positively correlated with the antioxidant activity of black tea, and theabrownin was negatively correlated with the antioxidant activity of black tea. Furthermore, this study analyzed the correlation between the changes in catechin and its oxidized polymers with antioxidant activity during black tea fermentation; it verified that catechins were significantly positively correlated with the antioxidant activity of black tea, and theabrownin showed a negative correlation. And the antioxidant activity of catechins and their oxidation products in vitro and their correlation in black tea processing were used as validation. This study provides a comparison method for comparing the antioxidant activity of black tea.
Collapse
Affiliation(s)
| | | | | | | | | | - Heyuan Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (W.W.); (T.L.); (W.W.); (L.Y.); (L.Y.)
| |
Collapse
|
47
|
Yaowiwat N, Poomanee W, Leelapornpisid P, Chaiwut P. Utilization of Emulsion Inversion to Fabricate Tea ( Camellia sinensis L.) Flower Extract Obtained by Supercritical Fluid Extraction-Loaded Nanoemulsions. ACS OMEGA 2023; 8:28090-28097. [PMID: 37576676 PMCID: PMC10413370 DOI: 10.1021/acsomega.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
This study aimed to obtain tea flower extract (TFE) using supercritical fluid extraction, to determine the compounds present in the TFE and to establish its antioxidant activity. The fabrication of TFE nanoemulsions was also investigated using response surface methodology (RSM). UHPLC-ESI-QTOF-MS/MS and UHPLC-ESI-QqQ-MS/MS analysis showed that the TFE was composed of catechin and its derivatives, flavonols and anthocyanins, suggesting its potential as a free radical scavenger with strong reducing powers. A central composite design was applied to optimize the independent factors of the nanoemulsions. The factors had a significant (p < 0.05) effect on all response variables. The optimum level of factors for the fabrication was a surfactant-to-oil ratio of 2:1, a high hydrophilic-lipophilic balance (HLB) surfactant to low HLB surfactant ratio (HLR) of 1.6:1, and a PEG-40/PEG-60 hydrogenated castor oil ratio of 2:1. The responses obtained from the optimum levels were a 34.01 nm droplet size, a polydispersity index of 0.15, and 75.85% entrapment efficiency. In conclusion, TFE could be an antioxidant active ingredient and has been successfully loaded into nanoemulsions using RSM.
Collapse
Affiliation(s)
- Nara Yaowiwat
- School
of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Green
Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Worrapan Poomanee
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pimporn Leelapornpisid
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Phanuphong Chaiwut
- School
of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Green
Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
48
|
Sentkowska A, Pyrzynska K. Catechins and Selenium Species-How They React with Each Other. Molecules 2023; 28:5897. [PMID: 37570866 PMCID: PMC10420645 DOI: 10.3390/molecules28155897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The combination of selenium and tea infusion, both with antioxidant properties, has potentially complementary mechanisms of action. Se-enriched tea has been considered as a possible Se supplement and a functional beverage to reduce the health risk of Se deficiency. This work investigated the interactions between plant catechins present in tea infusions and selenium species based on changes in the concentration of both reagents, their stability in aqueous solutions, and the possibilities of selenonanoparticles (SeNPs) formation. Selenium species exhibited instability both alone in their standard solutions and in the presence of studied catechins; selenocystine appeared as the most unstable. The recorded UV-Vis absorption spectra indicated the formation of SeNPs in the binary mixtures of catechins and selenite. SeNPs have also formed with diameters smaller than 100 nm when selenite and selenomethionine were added to tea infusions. This is an advantage from the point of view of potential medical applications.
Collapse
Affiliation(s)
| | - Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
49
|
Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, Chitescu CL. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants (Basel) 2023; 12:1383. [PMID: 37507922 PMCID: PMC10376860 DOI: 10.3390/antiox12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Radu Tamaian
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Ioana Cristina Marinas
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Diana Mădălina Gaboreanu
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Miruna Stan
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Carmen Lidia Chitescu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| |
Collapse
|
50
|
Dan A, Chen Y, Tian Y, Wang S. In vivo anti-aging properties on fat diet-induced high fat Drosophila melanogaster of n-butanol extract from Paecilomyces hepiali. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|