1
|
Liang Y, Luo K, Wang B, Huang B, Fei P, Zhang G. Inhibition of polyphenol oxidase for preventing browning in edible mushrooms: A review. J Food Sci 2024; 89:6796-6817. [PMID: 39363229 DOI: 10.1111/1750-3841.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Edible mushrooms are rich in nutrients and bioactive compounds, but their browning affects their quality and commercial value. This article reviews various methods to inhibit polyphenol oxidase (PPO)-induced browning in mushrooms. Physical methods such as heat treatment, low temperatures, irradiation, and ultrasound effectively reduce PPO activity but may affect mushroom texture and flavor. Chemical inhibitors, including synthetic chemicals and natural plant extracts, provide effective PPO inhibition but require careful monitoring of their content. Biological methods, including gene editing and microbial fermentation, show promise in targeting PPO genes and enhancing antioxidant production. Combining these methods offers a comprehensive strategy for preserving mushroom quality, extending shelf life, and maintaining nutritional value. PRACTICAL APPLICATION: These approaches can be applied in the food industry to improve post-harvest mushroom preservation, enhance product quality, and reduce waste, benefiting both producers and consumers. Further research and innovation are needed to optimize the practical application of these methods in large-scale processing and storage conditions.
Collapse
Affiliation(s)
- Yingqi Liang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Kaimei Luo
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingli Wang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingqing Huang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Peng Fei
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Guoguang Zhang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| |
Collapse
|
2
|
Fazel R, Hassani B, Zare F, Jokar Darzi H, Khoshneviszadeh M, Poustforoosh A, Behrouz M, Sabet R, Sadeghpour H. Design, synthesis, in silico ADME, DFT, molecular dynamics simulation, anti-tyrosinase, and antioxidant activity of some of the 3-hydroxypyridin-4-one hybrids in combination with acylhydrazone derivatives. J Biomol Struct Dyn 2024; 42:9518-9528. [PMID: 37674457 DOI: 10.1080/07391102.2023.2252087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme in synthesizing melanin. Melanin is responsible for changing the color of fruits and vegetables and protecting against skin photo-carcinogenesis. Herein, some of the hybrids of 3-hydroxypyridine-4-one and acylhydrazones were designed and synthesized to study the anti-tyrosinase and antioxidant activities. The diphenolase activity of mushroom tyrosinase using L-DOPA assayed the inhibitory effects, and the antioxidant activity was assessed using DPPH free radical. The synthesized derivatives were confirmed using 1H-NMR, 13C-NMR, IR, and Mass spectroscopy. Among analogs, compound 5h bearing furan ring with IC50=8.94 μM was more potent than kojic acid (IC50=16.68 μM). The pharmacokinetic profile of the compounds showed that the tested compounds had suitable oral bioavailability and drug-likeness properties. The molecular docking studies showed that compound 5h was located in the tyrosinase-binding site. Also, the molecular dynamics simulation was performed on compound 5h, proving the obtained molecular docking results. At the B3LYP/6-31 + G** level of theory, the reactivity descriptors for 5 g and 5h were investigated using DFT calculations. Also, IR frequency was calculated to verify DFT results with experimental data. The electrostatic potential energy of the surface and the HOMO and LUMO molecular orbitals were also studied. It agrees with experimental results that the 5h is a soft molecule and ready for chemical reaction with other interacting molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habibollah Jokar Darzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Jung HJ, Park HS, Kim HJ, Park HS, Park Y, Chun P, Chung HY, Moon HR. Design, Synthesis, and Anti-Melanogenic Activity of 2-Mercaptomethylbenzo[ d]imidazole Derivatives Serving as Tyrosinase Inhibitors: An In Silico, In Vitro, and In Vivo Exploration. Antioxidants (Basel) 2024; 13:1248. [PMID: 39456501 PMCID: PMC11505594 DOI: 10.3390/antiox13101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
2-Mercaptomethylbenzo[d]imidazole (2-MMBI) derivatives were designed and synthesized as tyrosinase (TYR) chelators using 2-mercaptomethylimidazole scaffolds. Seven of the ten 2-MMBI derivatives exhibited stronger inhibition of mushroom TYR activity than kojic acid. Their ability to chelate copper ions was demonstrated through experiments using the copper chelator pyrocatechol violet and assays measuring TYR activity in the presence or absence of exogenous CuSO4. The inhibition mechanisms of derivatives 1, 3, 8, and 9, which showed excellent TYR inhibitory activity, were elucidated through kinetic studies and supported by the docking simulation results. Derivatives 3, 7, 8, and 10 significantly inhibited cellular TYR activity and melanin production in B16F10 cells in a dose-dependent manner, with stronger potency than kojic acid. Furthermore, in situ, derivatives 7 and 10 showed stronger inhibitory effects on B16F10 cell TYR activity than kojic acid. Six derivatives, including 8, showed highly potent depigmentation in zebrafish larvae, outpacing kojic acid even at 200-670 times lower concentrations. Additionally, all derivatives could scavenge for reactive oxygen species without causing cytotoxicity in epidermal cells. These results suggested that 2-MMBI derivatives are promising anti-melanogenic agents.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.J.K.); (H.S.P.)
| | - Hyeon Seo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.J.K.); (H.S.P.)
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.J.K.); (H.S.P.)
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.J.K.); (H.S.P.)
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea;
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.J.K.); (H.S.P.)
| |
Collapse
|
4
|
Sadeghian S, Zare F, Khoshneviszadeh M, Hafshejani AF, Salahshour F, Khodabakhshloo A, Saghaie L, Goshtasbi G, Sarikhani Z, Poustforoosh A, Sabet R, Sadeghpour H. Synthesis, biological evaluation, molecular docking, MD simulation and DFT analysis of new 3-hydroxypyridine-4-one derivatives as anti-tyrosinase and antioxidant agents. Heliyon 2024; 10:e35281. [PMID: 39170370 PMCID: PMC11336475 DOI: 10.1016/j.heliyon.2024.e35281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
In the present study, ten new substituted 3-hydroxypyridine-4-one derivatives were synthesized in a four-step method, and their chemical structures were confirmed using various spectroscopic techniques. Subsequently, the inhibitory activities of these derivatives against tyrosinase enzyme and their antioxidant activities were evaluated. Amongest the synthesized compounds, 6b bearing a 4-OH-3-OCH3 substitution was found to be a promising tyrosinase inhibitor with an IC50 value of 25.82 μM, which is comparable to the activity of kojic acid as control drug. Kinetic study indicated that compound 6b is a competitive inhibitor of tyrosinase enzyme, which was confirmed by molecular docking results. The molecular docking study and MD simulation showed that compound 6b was properly placed within the tyrosinase binding pocket and interacted with key residues, which is consistent with its biological activity. The DFT analysis demonstrated that compound 6b is kinetically more stable than the other compounds. In addition, compounds 6a and 6b exhibited the best antioxidant activities. The findings indicate that compound 6b could be a promising lead for further studies.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Fathi Hafshejani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhang Salahshour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Khodabakhshloo
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazal Goshtasbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sarikhani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
García Molina P, Saura-Sanmartin A, Berna J, Teruel JA, Muñoz Muñoz JL, Rodríguez López JN, García Cánovas F, García Molina F. Considerations about the inhibition of monophenolase and diphenolase activities of tyrosinase. Characterization of the inhibitor concentration which generates 50 % of inhibition, type and inhibition constants. A review. Int J Biol Macromol 2024; 267:131513. [PMID: 38608979 DOI: 10.1016/j.ijbiomac.2024.131513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Tyrosinase is a copper oxidase enzyme which catalyzes the first two steps in the melanogenesis pathway, L-tyrosine to L-dopa conversion and, then, to o-dopaquinone and dopachrome. Hypopigmentation and, above all, hyperpigmentation issues can be originated depending on their activity. This enzyme also promotes the browning of fruits and vegetables. Therefore, control of their activity by regulators is research topic of great relevance. In this work, we consider the use of inhibitors of monophenolase and diphenolase activities of the enzyme in order to accomplish such control. An experimental design and data analysis which allow the accurate calculation of the degree of inhibition of monophenolase activity (iM) and diphenolase activity (iD) are proposed. The IC50 values (amount of inhibitor that causes 50 % inhibition at a fixed substrate concentration) can be calculated for the two activities and from the values of IC50M (monophenolase) and IC50D(diphenolase). Additionally, the strength and type of inhibition can be deduced from these values. The data analysis from these IC50D values allows to obtain the values of [Formula: see text] or [Formula: see text] , or and [Formula: see text] from the values of IC50M. In all cases, the values of the different must satisfy their relationship with IC50M and IC50D.
Collapse
Affiliation(s)
- Pablo García Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, E-30100 Espinardo, Murcia, Spain.
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, E-30100 Espinardo, Murcia, Spain
| | - Jose Antonio Teruel
- Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Muñoz Muñoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Jose Neptuno Rodríguez López
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco García Cánovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco García Molina
- Department of Anatomía Patológica, Hospital General Universitario Reina Sofía, Av. Intendente Jorge Palacios, 1, 30003 Murcia, Spain.
| |
Collapse
|
6
|
Li R, Li D, Xu S, Zhang P, Zhang Z, He F, Li W, Sun G, Jiang R, Li Z, Tian Y, Liu X, Kang X. Whole-transcriptome sequencing reveals a melanin-related ceRNA regulatory network in the breast muscle of Xichuan black-bone chicken. Poult Sci 2024; 103:103539. [PMID: 38382189 PMCID: PMC10900940 DOI: 10.1016/j.psj.2024.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
The economic losses incurred due to reduced muscle pigmentation highlight the crucial role of melanin-based coloration in the meat of black-bone chickens. Melanogenesis in the breast muscle of black-bone chickens is currently poorly understood in terms of molecular mechanisms. This study employed whole-transcriptome sequencing to analyze black and white breast muscle samples from black-bone chickens, leading to the identification of 367 differentially expressed (DE) mRNAs, 48 DElncRNAs, 104 DEcircRNAs, and 112 DEmiRNAs involved in melanin deposition. Based on these findings, a competitive endogenous RNA (ceRNA) network was developed to better understand the complex mechanisms of melanin deposition. Furthermore, our analysis revealed key DEmRNAs (TYR, DCT, EDNRB, MLPH and OCA2) regulated by DEmiRNAs (gga-miR-140-5p, gga-miR-1682, gga-miR-3529, gga-miR-499-3p, novel-m0012-3p, gga-miR-200b-5p, gga-miR-203a, gga-miR-6651-5p, gga-miR-7455-3p, gga-miR-31-5p, miR-140-x, miR-455-x, novel-m0065-3p, gga-miR-29b-1-5p, miR-455-y, novel-m0085-3p, and gga-miR-196-1-3p). These DEmiRNAs competitively interacted with DElncRNAs including MSTRG.2609.2, MSTRG.4185.1, LOC112530666, LOC112533366, LOC771030, LOC107054724, LOC121107411, LOC100859072, LOC101750037, LOC121108550, LOC121109224, LOC121110876, and LOC101749016, as well as DEcircRNAs, such as novel_circ_000158, novel_circ_000623, novel_001518, and novel_circ_003596. The findings from this study provide insight into the mechanisms that regulate lncRNA, circRNA, miRNA, and mRNA expression in chicken melanin deposition.
Collapse
Affiliation(s)
- Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - DongHua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Shuohui Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Zhiyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fumin He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450046, China
| |
Collapse
|
7
|
He M, Zhang J, Li N, Chen L, He Y, Peng Z, Wang G. Synthesis, anti-browning effect and mechanism research of kojic acid-coumarin derivatives as anti-tyrosinase inhibitors. Food Chem X 2024; 21:101128. [PMID: 38292671 PMCID: PMC10826612 DOI: 10.1016/j.fochx.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Thirteen kojic acid-coumarin derivatives were synthesized using the principle of molecular hybridization, and their structures were characterized by 1H NMR, 13C NMR, and HRMS. In vitro enzyme inhibition experiments showed that all newly synthesized derivatives have excellent inhibition of tyrosinase (TYR) activity. As a mixed inhibitor, compound 6f has the strongest activity, with an IC50 value of 0.88 ± 0.10 µM. Multispectral experiments have confirmed that the mode of action of compound 6f on TYR was static quenching. In addition, compound 6f formed a new complex with TYR, which increased the hydrophobicity of the enzyme microenvironment, reduced the content of the α-helix in the enzyme, and changed the secondary structure. The experimental results showed that compound 6f effectively inhibited the browning of lotus root slices and had low cytotoxicity. Therefore, compound 6f is believed to have great development potential as a TYR inhibitor in the food industry.
Collapse
Affiliation(s)
- Min He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jinfeng Zhang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Na Li
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Chen
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Ahmad I, Parveen W, Noor S, Udin Z, Ali A, Ali I, Ullah R, Ali H. Design and synthesis of novel dihydropyridine- and benzylideneimine-based tyrosinase inhibitors. Front Pharmacol 2024; 15:1332184. [PMID: 38595924 PMCID: PMC11002185 DOI: 10.3389/fphar.2024.1332184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 04/11/2024] Open
Abstract
Tyrosinase (TYR) inhibitors are very significant as they inhibit enzyme tyrosinase activity, and its inhibition is vital for skin care, anticancer medication, and antibrowning of fruits and vegetables. This work presents a novel and economical route for the preparation of new synthetic tyrosinase inhibitors using amlodipine (4). The novel conjugates 6 (a-o) were designed, synthesized, and characterized by spectroscopic analyses, including Fourier transform infrared and low- and high-resolution mass spectroscopy. The purified compound 4 was refluxed with various aldehydes and ketones 5 (a-o) for 5-8 h in methanol at 60°C-90°C. This research modified the drug in a step-by-step manner to develop therapeutic properties as a tyrosinase inhibitor. The structures of synthesized ligands 6 (a-o) were established based on spectral and analytical data. The synthesized compounds 6 (a-o) were screened against tyrosinase enzyme. Kojic acid was taken as standard. All the prepared compounds 6 (a-o) have good inhibition potential against the enzyme tyrosinase. Compounds 6o, 6b, 6f, and 6k depicted excellent antityrosinase activity. Compound 6k, with an IC50 value of 5.34 ± 0.58 µM, is as potent as the standard kojic acid (IC50 6.04 ± 0.11 µM), standing out among all synthesized compounds 6 (a-o). The in silico studies of the conjugates 6 (a-o) were evaluated via PatchDock. Compound 6k showed a binding affinity score of 8,999 and an atomic contact energy (ACE) value of -219.66 kcal/mol. The structure-activity relationship illustrated that the presence of dihydropyridine nuclei and some activating groups at the ortho and para positions of the benzylideneimine moiety is the main factor for good tyrosinase activity. The compound 6k could be used as a lead compound for drug modification as a tyrosinase inhibitor for skin care, anticancer medication, and antibrowning for fruits and vegetables.
Collapse
Affiliation(s)
- Ifraz Ahmad
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Warda Parveen
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Shah Noor
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Zahoor Udin
- Chemistry Department, Gomal University, Dera Ismail Khan, Pakistan
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
9
|
Hassanuddin NA, Normaya E, Ismail H, Iqbal A, Piah MBM, Abd Hamid S, Ahmad MN. Methyl 4-pyridyl ketone thiosemicarbazone (4-PT) as an effective and safe inhibitor of mushroom tyrosinase and antibrowning agent. Int J Biol Macromol 2024; 255:128229. [PMID: 37981274 DOI: 10.1016/j.ijbiomac.2023.128229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Enzymatic browning is of concern as it can affect food safety and quality. In this study, an effective and safe tyrosinase inhibitor and anti-browning agent, methyl 4-pyridyl ketone thiosemicarbazone (4-PT), was synthesised and characterised using Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The vibrational frequencies of 4-PT were studied theoretically using vibrational energy distribution analysis (VEDA). Density functional theory (DFT) was applied to elucidate its chemical properties, including the Mulliken atomic charges, molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM) and reduced density gradient non-covalent interactions (RDG-NCIs). Moreover, 4-PT was compared with kojic acid in terms of its effectiveness as a tyrosinase inhibitor and anti-browning agent. The toxicity and physicochemical properties of 4-PT were predicted via ADME evaluation, which proved that 4-PT is safer than kojic acid. Experimentally, 4-PT (IC50 = 5.82 μM, browning index (10 days) = 0.292 ± 0.002) was proven to be an effective tyrosinase inhibitor and anti-browning agent compared to kojic acid (IC50 = 128.17 μM, browning index (10 days) = 0.332 ± 0.002). Furthermore, kinetic analyses indicated that the type of tyrosinase inhibition is a mixed inhibition, with Km and Vmax values of 0.85 mM and 2.78 E-09 μM/s, respectively. Finally, the mechanism of 4-PT for tyrosinase inhibition was proven by 1D, second derivative and 2D IR spectroscopy, molecular docking and molecular dynamic simulation approaches.
Collapse
Affiliation(s)
- Nur Amanina Hassanuddin
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
10
|
Sadeghian S, Zare F, Saghaie L, Fassihi A, Zare P, Sabet R. New 3-Hydroxypyridine-4-one Analogues: Their Synthesis, Antimicrobial Evaluation, Molecular Docking, and In Silico ADME Prediction. Med Chem 2024; 20:900-911. [PMID: 38840401 DOI: 10.2174/0115734064307744240523112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Drug resistance to existing antimicrobial drugs has become a serious threat to human health, which highlights the need to develop new antimicrobial agents. METHODS In this study, a new set of 3-hydroxypyridine-4-one derivatives (6a-j) was synthesized, and the antimicrobial effects of these derivatives were evaluated against a variety of microorganisms using the microdilution method. The antimicrobial evaluation indicated that compound 6c, with an electron-donating group -OCH3 at the meta position of the phenyl ring, was the most active compound against S. aureus and E. coli species with an MIC value of 32 μg/mL. Compound 6c was more potent than ampicillin as a reference drug. RESULTS The in vitro antifungal results showed that the studied derivatives had moderate effects (MIC = 128-512 μg/mL) against C. albicans and A. niger species. The molecular modeling studies revealed the possible mechanism and suitable interactions of these derivatives with the target protein. CONCLUSION The obtained biological results offer valuable insights into the design of more effective antimicrobial agents.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Zare
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
12
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
13
|
Wang G, He M, Huang Y, Peng Z. Synthesis and biological evaluation of new kojic acid-1,3,4-oxadiazole hybrids as tyrosinase inhibitors and their application in the anti-browning of fresh-cut mushrooms. Food Chem 2023; 409:135275. [PMID: 36586247 DOI: 10.1016/j.foodchem.2022.135275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In the food industry, inhibition of tyrosinase activity is considered as one of the main means to prevent browning. Therefore, fourteen kojic acid-1,3,4-oxadiazole hybrids (5a-5n) were prepared and tested for their tyrosinase inhibitory effects. Among them, 5f (IC50 = 5.32 ± 0.58 μM) has the best anti-tyrosinase activity and was 9 times higher than that of kojic acid (IC50 = 49.77 ± 1.19 μM). Additionally, the inhibitory mechanism was studied by copper-chelating assay, ultraviolet spectrophotometry, fluorescence quenching, molecular docking, etc. The results had shown that 5f could not only bind to the copper ion in the active region of tyrosinase but also change the secondary structure of tyrosinase. Combined with the outstanding anti-browning effect and low cytotoxicity of 5f, it is concluded that these title derivatives could be used as the leading molecules in the development of new anti-browning agents.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
14
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
15
|
Li G, Zhao Y, Qin Z, Wei S, Liang D, Liang Y, Song W, Ding B. Mechanistic Understanding of Tyrosinase Inhibition by Polymeric Proanthocyanidins from Acacia confusa Stem Bark and Their Effect on the Browning Resistance of Fresh-Cut Asparagus Lettuce. Molecules 2023; 28:3435. [PMID: 37110667 PMCID: PMC10143530 DOI: 10.3390/molecules28083435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Tyrosinase inhibitors are capable of preventing unfavorable enzymatic browning of fruits and vegetables. In this study, the capacity of Acacia confusa stem bark proanthocyanidins (ASBPs) to inhibit tyrosinase activity was evaluated. ASBPs were shown to be a high-potential inhibitor of tyrosinase with IC50 values of 92.49 ± 4.70 and 61.74 ± 8.93 μg/mL when using L-tyrosine and L-DOPA as the substrate, respectively. The structural elucidation performed with UV-vis, FT-IR spectroscopy, ESI-MS and thiolysis coupled to HPLC-ESI-MS suggested that ASBPs had structural heterogeneity in monomer units and interflavan linkages and consisted mainly of procyanidins dominant with B-type linkages. To gain insights into the inhibitory mechanisms of ASBPs against tyrosinase, different spectroscopic and molecular docking methods were further conducted. Results validated that ASBPs possessed the ability to chelate copper ions and could prevent the oxidation process of substrates by tyrosinase. The hydrogen bond formed with Lys-376 residue played a key role in the binding force of ASBPs with tyrosinase that induced a certain alteration in the microenvironment and secondary structure of tyrosinase, resulting in the enzymatic activity being ultimately restricted. It was also observed that ASBPs treatment effectively inhibited the activities of PPO and POD to retard the surface browning of fresh-cut asparagus lettuce and thus extended their shelf-life. The results provided preliminary evidence supporting the exploitation of ASBPs into potential antibrowning agents for the fresh-cut food industry.
Collapse
Affiliation(s)
- Guanghui Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yaying Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Zeya Qin
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Dandan Liang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yun Liang
- College of Life Science, Yangtze University, Jingzhou 434025, China
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Song
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
16
|
Zhang X, Wu YT, Wei XY, Xie YY, Zhou T. Preparation, antioxidant and tyrosinase inhibitory activities of chitosan oligosaccharide-hydroxypyridinone conjugates. Food Chem 2023; 420:136093. [PMID: 37062084 DOI: 10.1016/j.foodchem.2023.136093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Two novel chitosan oligosaccharide (COS)-hydroxypyridone (HPO) conjugates were prepared by reacting chitosan oligosaccharide with 2-chloromethyl-5-hydroxypyridone (HPO), which was synthesized by a series of reactions starting from kojic acid. The degree of substitution of COS-HPO2 reached 1.2, with a yield of 74.9%. The structure of the two conjugates (COS-HPO1 and COS-HPO2) was identified by NMR and FT-IR analysis. The two conjugates showed significantly higher free radical (DPPH•, ABTS+• and •OH) scavenging activity and reducing power than those of COS and HPO (p < 0.05). Both COS-HPO1 and COS-HPO2 possessed significantly stronger tyrosinase inhibitory activity than those of COS, with IC50 values of 0.67 and 0.28 mg/mL for monophenolase, 0.73 and 0.30 mg/mL for diphenolase, respectively. In addition, the conjugates were found to be non-toxic to RAW264.7 macrophages and MRC-5 human lung cells. This work proposes a facile method to enhance the oxidative and tyrosinase inhibitory properties of COS.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yun-Tao Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Yi Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai 200235, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
17
|
Lu L, Zhang X, Kang Y, Xiong Z, Zhang K, Xu XT, Bai LP, Li HG. Novel coumarin derivatives as potential tyrosinase inhibitors: Synthesis, binding analysis and biological evaluation. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
18
|
Wang M, Chen T, Wang Q, Shi Y. Antioxidant, Bacteriostatic and Preservative Effects of Extractable Condensed Tannins Isolated from Longan Pericarps and Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:512. [PMID: 36771597 PMCID: PMC9921410 DOI: 10.3390/plants12030512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In the process of longan production and processing, a large amount of remnants is produced, such as dried longan pericarps and seeds, which have been reported to be rich in polyphenols but not effectively utilized. In this paper, the total phenolic contents in the remnants of longan pericarps and seeds were found to be 39.58 ± 3.54 and 69.53 ± 1.99 mg/g (DW), respectively, accounting for 60-80% of those in fresh samples. The contents of extractable condensed tannins (ECTs) in the remnants of longan pericarps and seeds were 19.25 ± 6.71 mg/g (DW) and 44.59 ± 2.05 mg/g (DW), respectively, accounting for 60-70% of the fresh samples. These data indicate that the polyphenols in the remnants of the sampled longan pericarps and seeds were effectively retained. The antioxidant capacity of ECTs from the longan pericarps and seeds was more than 60% of the fresh samples measured with the 1, 1-diphenyl-2-trinitrophenylhydrazine and ferric reducing ability of plasma methods. Further exploration showed that ECTs from the longan pericarps and seeds had significant inhibitory effects on Pseudomonas aeruginosa, Escherichia coli, Salmonella and Staphylococcus aureus. The minimum inhibitory concentration (MIC) of the longan pericarp ECTs on all four studied bacteria was 3 mg/mL. The MIC of longan seed ECTs on Salmonella was 3 mg/mL, and that of the other three bacteria was 1.5 mg/mL. In view of the good antioxidant and antibacterial activities of longan pericarps and seeds, we applied them to the preservation of fresh-cut lotus roots. When the concentration of ECTs in the longan pericarps and seeds was 2 mg/mL and 1 mg/mL, respectively, the two kinds of ECTs showed an obvious preservative effect. After the ECT treatment of the lotus roots, their browning degree was reduced, their color was better maintained, their respiration was inhibited and their nutrient loss was reduced. Bacterial reproduction was inhibited, and cell senescence was slowed. Accordingly, the shelf life of ECT-treated fruits and vegetables can be effectively extended. Overall, we can suggest that ECTs from the remnants of dried longan pericarps and seeds could be used as natural preservatives for fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Mengli Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ting Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, F-75006 Paris, France
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Demonstration Center for Experimental Life Sciences Education, Xiamen University, Xiamen 361102, China
| |
Collapse
|
19
|
Hassan M, Shahzadi S, Kloczkowski A. Tyrosinase Inhibitors Naturally Present in Plants and Synthetic Modifications of These Natural Products as Anti-Melanogenic Agents: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010378. [PMID: 36615571 PMCID: PMC9822343 DOI: 10.3390/molecules28010378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Tyrosinase is a key enzyme target to design new chemical ligands against melanogenesis. In the current review, different chemical derivatives are explored which have been used as anti-melanogenic compounds. These are different chemical compounds naturally present in plants and semi-synthetic and synthetic compounds inspired by these natural products, such as kojic acid produced by several species of fungi; arbutin-a glycosylated hydroquinone extracted from the bearberry plant; vanillin-a phenolic aldehyde extracted from the vanilla bean, etc. After enzyme inhibition screening, various chemical compounds showed different therapeutic effects as tyrosinase inhibitors with different values of the inhibition constant and IC50. We show how appropriately designed scaffolds inspired by the structures of natural compounds are used to develop novel synthetic inhibitors. We review the results of numerous studies, which could lead to the development of effective anti-tyrosinase agents with increased efficiency and safety in the near future, with many applications in the food, pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: or (M.H.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Correspondence: or (M.H.); (A.K.)
| |
Collapse
|
20
|
Song Y, Li J, Tian H, Xiang H, Chen S, Li L, Hu X. Copper chelating peptides derived from tilapia (Oreochromis niloticus) skin as tyrosinase inhibitor: Biological evaluation, in silico investigation and in vivo effects. Food Res Int 2023; 163:112307. [PMID: 36596203 DOI: 10.1016/j.foodres.2022.112307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Binuclear copper ions at the active site determine the catalysis of tyrosinase (TYR)1 whose activity can be inhibited by copper's chelation with other compounds. In this study, tilapia (Oreochromis niloticus) skin was used to generate TYR-inhibitory peptides after being treated by different enzymes and 4 h-Alcaline protease hydrolysate exhibited the highest TYR inhibition and copper chelation. Immobilized metal affinity chromatography was used for purifying copper chelating peptides, among which PFRMY (IC50: 0.43 ± 0.08 mg/mL) and RGFTGM (IC50: 1.61 ± 0.04 mg/mL) exhibited the highest TYR-inhibitory capacity and the lowest docking energy. Both two peptides inhibited TYR in a mixed manner and interacted with key residues binding to copper ions within TYR mainly by hydrogen bonds and hydrophobic forces, while PFRMY had a more compact and stable conjugation with TYR. Zebrafish assay revealed that PFRMY reduced not only melanin synthesis but in vivo TYR activity.
Collapse
Affiliation(s)
- Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Han Tian
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Peng Z, Wang G, He Y, Wang JJ, Zhao Y. Tyrosinase inhibitory mechanism and anti-browning properties of novel kojic acid derivatives bearing aromatic aldehyde moiety. Curr Res Food Sci 2022; 6:100421. [PMID: 36605465 PMCID: PMC9807860 DOI: 10.1016/j.crfs.2022.100421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Kojic acid-aromatic aldehydes 6a-6m were synthesized and screened for their anti-tyrosinase activities. These compounds showed potently anti-tyrosinase activity with IC50 values in the range of 5.32 ± 0.23 to 77.89 ± 3.36 μM compared with kojic acid (IC50 = 48.05 ± 3.28 μM). Thereinto, compound 6j with 3-fluorine and 4-aldehyde substitutions showed the most potent anti-tyrosinase activity (IC50 = 5.32 ± 0.23 μM). Enzyme kinetic study revealed that 6j is a noncompetitive tyrosinase inhibitor (Ki = 2.73 μM). The action mechanism of 6j was evaluated by fluorescence spectrum quenching, molecular docking, 1H NMR titration, etc. The anti-browning assay showed that 6j could delay the enzymatic browning of fresh-cut apples. Besides, the cell viability assay proved that 6j had a good safety profile as an anti-browning agent. Hence, these results identify a new class of anti-tyrosinase and anti-browning agents for further investigation in the food industry.
Collapse
Affiliation(s)
- Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
- Corresponding author. College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Corresponding author.
| |
Collapse
|
22
|
An insight into the mechanisms underpinning the anti-browning effect of Codium tomentosum on fresh-cut apples. Food Res Int 2022; 161:111884. [DOI: 10.1016/j.foodres.2022.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
23
|
Arnold M, Gramza-Michałowska A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:5038-5076. [PMID: 36301625 DOI: 10.1111/1541-4337.13059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023]
Abstract
Apple (Malus domestica) is widely consumed by consumers from various regions. It contains a high number of phenolic compounds (majorly hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols, dihydrochalcones, and anthocyanins) and antioxidant activity, which are beneficial for human health. The trends on healthy and fresh food have driven the food industry to produce minimally processed apple, such as fresh-cut, puree, juice, and so on without degrading the quality of products. Enzymatic browning is one of the problems found in minimally processed apple as it causes the undesirable dark color as well as the degradation of phenolics and antioxidant activity, which then reduces the health benefits of apple. Proper inhibition is needed to maintain the quality of minimally processed apple with minimal changes in sensory properties. This review summarizes the inhibition of enzymatic browning of apple products based on recent studies using the conventional and nonconventional processing, as well as using synthetic and natural antibrowning agents. Nonconventional processing and the use of natural antibrowning agents can be used as promising treatments to prevent enzymatic browning in minimally processed apple products. Combination of 2-3 treatments can improve the effective inhibition of enzymatic browning. Further studies, such on as other potential natural antibrowning agents and their mechanisms of action, should be conducted.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
24
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
25
|
Amaral LM, Moniz T, Leite A, Oliveira A, Fernandes P, Ramos MJ, Araújo AN, Freitas M, Fernandes E, Rangel M. A combined experimental and computational study to discover novel tyrosinase inhibitors. J Inorg Biochem 2022; 234:111879. [DOI: 10.1016/j.jinorgbio.2022.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
26
|
Zhu YZ, Chen K, Chen YL, Zhang C, Xie YY, Hider RC, Zhou T. Design and synthesis of novel stilbene-hydroxypyridinone hybrids as tyrosinase inhibitors and their application in the anti-browning of freshly-cut apples. Food Chem 2022; 385:132730. [PMID: 35318180 DOI: 10.1016/j.foodchem.2022.132730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
In order to develop the tyrosinase inhibitors with potential application in food industry, a series of stilbene-hydroxypyridinone hybrids were prepared. Among these compounds, 1h was found to possess the most potent tyrosinase inhibitory effect on both monophenolase and diphenolase activities, with IC50 values of 2.72 μM and 15.86 μM, respectively. The inhibitory effect of 1h on monophenolase activity was 4.6 times that of kojic acid. An inhibition kinetic assay indicated that 1h was a mixed-type and reversible inhibitor. The copper-binding and reducing ability assays, molecular docking study, intrinsic and ANS-binding fluorescence assays indicated that copper coordination and reduction is likely to be the causative mechanism for 1h-induced inhibition on tyrosinase. The results of color measurement and browning index determination indicated that treatment with 1h retarded effectively the browning of freshly-cut apples during their storage. Meanwhile, PPO and POD activities in apple slices were found to be effectively inhibited.
Collapse
Affiliation(s)
- Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Changjun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
27
|
Xia W, Chen K, Zhu YZ, Zhang CJ, Chen YL, Wang F, Xie YY, Hider RC, Zhou T. Antioxidant and anti-tyrosinase activity of a novel stilbene analogue as an anti-browning agent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3817-3825. [PMID: 34923627 DOI: 10.1002/jsfa.11731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tyrosinase inhibitors find potential application in food, cosmetic and medicinal products, but most of the identified tyrosinase inhibitors are not suitable for practical use because of safety regulations or other problems. For the purpose of development of novel tyrosinase inhibitors that meet the requirement for practical application, a novel stilbene analogue (SA) was designed. RESULTS SA was found to possess a potent inhibitory effect against both mono- and diphenolase activities of mushroom tyrosinase, with IC50 values of 1.56 and 7.15 μmol L-1 , respectively. Compared with a natural tyrosinase inhibitor - kojic acid - the anti-tyrosinase effect of SA was significantly improved. Analysis of inhibition kinetics indicated that SA was a reversible and competitive-noncompetitive mixed-type inhibitor. SA was also found to possess more potent antioxidant activities (DPPH, superoxide anion radical and hydroxyl radical scavenging ability) than those of kojic acid. Cell viability studies revealed that SA was non-toxic to two cell lines. Furthermore, an anti-browning test demonstrated that SA effectively delayed the blackening of shrimp. CONCLUSION SA has potential as an anti-browning agent in foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Chang-Jun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| |
Collapse
|
28
|
Whole Cell-mediated Biocatalytic Synthesis of Helicid Cinnamylate and Its Biological Evaluation as a Novel Tyrosinase Inhibitor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
30
|
Antioxidant and antityrosinase activity of extractable condensed tannins from durian shells with antibrowning effect in fresh-cut asparagus lettuce model. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Guo Y, Cariola A, Matera R, Gabbanini S, Valgimigli L. Real-time oxygen sensing as a powerful tool to investigate tyrosinase kinetics allows revising mechanism and activity of inhibition by glabridin. Food Chem 2022; 393:133423. [DOI: 10.1016/j.foodchem.2022.133423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
|
32
|
Song Y, Chen S, Li L, Zeng Y, Hu X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules 2022; 27:molecules27092710. [PMID: 35566061 PMCID: PMC9103514 DOI: 10.3390/molecules27092710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including SOD, CAT, and GSH-Px to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase. More importantly, peptides reduce the tyrosinase expression content, primarily through the cAMP/PKA/CREB pathway, with PI3K/AKT/GSK3β, MEK/ERK/MITF and p38 MAPK/CREB/MITF as side pathways. The objective of this overview is to recap three main mechanisms for peptides to inhibit tyrosinase and the emerging bioinformatic technologies used in developing new inhibitors.
Collapse
Affiliation(s)
- Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
33
|
Fan X. Chemical inhibition of polyphenol oxidase and cut surface browning of fresh-cut apples. Crit Rev Food Sci Nutr 2022; 63:8737-8751. [PMID: 35416745 DOI: 10.1080/10408398.2022.2061413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fresh-cut apples, which offer consumers health benefits and convenience, have become popular in recent years. One of the main challenges for processing fresh-cut apples is rapid development of cut surface browning, immediately after fruits are cut. Browning, a physiological response that impacts organoleptic properties and deters consumer purchase of fresh-cut fresh produce, is mainly a result of enzymatic reaction of phenolic compounds with oxygen catalyzed by polyphenol oxidase (PPO), a decapper enzyme. Many antibrowning agents have been developed and evaluated to inhibit PPO activities by using reducing agents (antioxidants), chelating agents, acidulants, etc. The present manuscript reviews the diverse characteristics of PPO (such as optimum pH and temperature, and molecular weight) in apples reported in the literature and the enzyme's latency, multiplicity and copper states in the active site. It also summarizes the latest development in the investigation and formulations of antibrowning compounds, and discusses future research needs. This review should stimulate further research to discover more effective, low cost, and natural antibrowning compounds to meet the demand of consumers as well as the food industry for clean label and long shelf-life of fresh-cut apples.
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, PA, USA
| |
Collapse
|
34
|
Augusto A, Miranda A, Costa L, Pinheiro J, Campos MJ, Raimundo D, Pedrosa R, Mitchell G, Niranjan K, Silva SF. A pilot plant scale testing of the application of seaweed‐based natural coating and modified atmosphere packaging for shelf‐life extension of fresh‐cut apple. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ana Augusto
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Andreia Miranda
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Leonor Costa
- iBET – Instituto de Biologia Experimental e Tecnológica, 2781‐901 Oeiras Portugal
| | - Joaquina Pinheiro
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Maria J. Campos
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | | | - Rui Pedrosa
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Geoffrey Mitchell
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
| | - Susana F.J. Silva
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| |
Collapse
|
35
|
Santos MA, Irto A, Buglyó P, Chaves S. Hydroxypyridinone-Based Metal Chelators towards Ecotoxicity: Remediation and Biological Mechanisms. Molecules 2022; 27:1966. [PMID: 35335329 PMCID: PMC8950932 DOI: 10.3390/molecules27061966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hydroxypyridinones (HPs) are recognized as excellent chemical tools for engineering a diversity of metal chelating agents, with high affinity for hard metal ions, exhibiting a broad range of activities and applications, namely in medical, biological and environmental contexts. They are easily made and functionalizable towards the tuning of their pharmacokinetic properties or the improving of their metal complex thermodynamic stabilities. In this review, an analysis of the recently published works on hydroxypyridinone-based ligands, that have been mostly addressed for environmental applications, namely for remediation of hard metal ion ecotoxicity in living beings and other biological matrices is carried out. In particular, herein the most recent developments in the design of new chelating systems, from bidentate mono-HP to polydentate multi-HP derivatives, with a structural diversity of soluble or solid-supported backbones are outlined. Along with the ligand design, an analysis of the relationship between their structures and activities is presented and discussed, namely associated with the metal affinity and the thermodynamic stability of the corresponding metal complexes.
Collapse
Affiliation(s)
- M. Amélia Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Anna Irto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres, 31, I-98166 Messina, Italy;
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Sílvia Chaves
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
36
|
Kojic Acid Showed Consistent Inhibitory Activity on Tyrosinase from Mushroom and in Cultured B16F10 Cells Compared with Arbutins. Antioxidants (Basel) 2022; 11:antiox11030502. [PMID: 35326152 PMCID: PMC8944748 DOI: 10.3390/antiox11030502] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Kojic acid, β-arbutin, α-arbutin, and deoxyarbutin have been reported as tyrosinase inhibitors in many articles, but some contradictions exist in their differing results. In order to provide some explanations for these contradictions and to find the most suitable compound as a positive control for screening potential tyrosinase inhibitors, the activity and inhibition type of the aforementioned compounds on monophenolase and diphenolase of mushroom tyrosinase (MTYR) were studied. Their effects on B16F10 cells melanin content, tyrosinase (BTYR) activity, and cell viability were also exposed. Results indicated that α-arbutin competitively inhibited monophenolase activity, whereas they uncompetitively activated diphenolase activity of MTYR. β-arbutin noncompetitively and competitively inhibited monophenolase activity at high molarity (4000 µM) and moderate molarity (250–1000 µM) respectively, whereas it activated the diphenolase activity of MTYR. Deoxyarbutin competitively inhibited diphenolase activity, but could not inhibit monophenolase activity and only extended the lag time. Kojic acid competitively inhibited monophenolase activity and competitive–noncompetitive mixed-type inhibited diphenolase activity of MTYR. In a cellular experiment, deoxyarbutin effectively inhibited BTYR activity and reduced melanin content, but it also potently decreased cell viability. α-arbutin and β-arbutin dose-dependently inhibited BTYR activity, reduced melanin content, and increased cell viability. Kojic acid did not affect cell viability at 43.8–700 µM, but inhibited BTYR activity and reduced melanin content in a dose-dependent manner. Therefore, kojic acid was considered as the most suitable positive control among these four compounds, because it could inhibit both monophenolase and diphenolase activity of MTYR and reduce intercellular melanin content by inhibiting BTYR activity without cytotoxicity. Some explanations for the contradictions in the reported articles were provided.
Collapse
|
37
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Peng Z, Li Y, Tan L, Chen L, Shi Q, Zeng QH, Liu H, Wang JJ, Zhao Y. Anti-tyrosinase, antioxidant and antibacterial activities of gallic acid-benzylidenehydrazine hybrids and their application in preservation of fresh-cut apples and shrimps. Food Chem 2022; 378:132127. [PMID: 35033723 DOI: 10.1016/j.foodchem.2022.132127] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 11/04/2022]
Abstract
A series of gallic acid-benzylidenehydrazine hybrids were synthesized and evaluated for their tyrosinase inhibitory activity. Thereinto, compounds 5d and 5f potently inhibited tyrosinase with IC50 of 15.3 and 3.3 μM, compared to kojic acid (44.4 μM). The inhibition mechanism suggested that 5d and 5f not only chelated with Cu2+, but also reduced Cu2+ to Cu1+ in the tyrosinase active site. Additionally, 5d and 5f exhibited strong DPPH scavenging and antibacterial activities against Vibrio parahaemolyticu and Staphylococcus aureus, which can be attributed to the function of gallic acid and hydrazone moiety. These compounds also exhibited capacity to preserve fresh-cut apples and shrimps. Finally, 5d and 5f exhibited low cytotoxic activity in a human cell line (HEK293). Therefore, these compounds possess anti-tyrosinase, antioxidant, and antibacterial activities, and can be used in the development of novel food preservatives.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijun Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China.
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
39
|
Wang L, Qin Y, Wang Y, Zhou Y, Liu B, Bai M, Tong X, Fang R, Huang X. Inhibitory mechanism of two homoisoflavonoids from Ophiopogon japonicus on tyrosinase activity: insight from spectroscopic analysis and molecular docking. RSC Adv 2021; 11:34343-34354. [PMID: 35497266 PMCID: PMC9042378 DOI: 10.1039/d1ra06091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
The inhibition mechanism of two homoisoflavonoids from Ophiopogon japonicus including methylophiopogonanone A (MO-A) and methylophiopogonanone B (MO-B) on tyrosinase (Tyr) was studied by multiple spectroscopic techniques and molecular docking. The results showed that the two homoisoflavonoids both inhibited Tyr activity via a reversible mixed-inhibition, with a half inhibitory concentration (IC50) of (10.87 ± 0.25) × 10-5 and (18.76 ± 0.14) × 10-5 mol L-1, respectively. The fluorescence quenching and secondary structure change of Tyr caused by MO-A and B are mainly driven by hydrophobic interaction and hydrogen bonding. Molecular docking analysis indicated that phenylmalandioxin in MO-A and methoxy in MO-B could coordinate with a Cu ion in the active center of Tyr, and interacted with amino acid Glu322 to form hydrogen bonding, occupying the catalytic center to block the entry of the substrate and consequently inhibit Tyr activity. This study may provide new perspectives on the inhibition mechanism of MO-A and MO-B on Tyr and serve a scientific basis for screening effective Tyr inhibitors.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yuchuan Qin
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yanbin Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Bentong Liu
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Minge Bai
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | | | - Ru Fang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Xubo Huang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| |
Collapse
|
40
|
Li TX, Liang JX, Liu LL, Shi FC, Jia XW, Li MH, Xu CP. Novel kojic acid derivatives with anti-inflammatory effects from Aspergillus versicolor. Fitoterapia 2021; 154:105027. [PMID: 34492330 DOI: 10.1016/j.fitote.2021.105027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Two novel kojic acid derivatives, kojicones A and B (1 and 2), along with the precursors kojic acid (3) and (2R,4R)-4-hydroxy-5-methoxy-2,4-dimethyl-2- [(2R)-2-methylbutyryloxy]-5-cyclohexen-1,3-dione (4), were isolated from a fungal strain Aspergillus versicolor. Their structures and absolute configurations were accurately confirmed by HRESIMS data, NMR analysis, and electronic circular dichroism (ECD) calculations. Kojicones A and B were the first examples of kojic acid adducts with cyclohexen-1,3-dione possessing unprecedented tricycle skeletons. Compounds 1-3 were found to have inhibition on the NO production of murine RAW 264.7 cells. They can also reduce the mRNA expression of four cytokines (IL-6, IL-1β, TNF-α, and iNOS) and promote the expression of IL-4 at 20 μM. Moreover, kojic acid (3) could treat the DSS (dextran sulfate sodium)-induced colitis on mice with the effectiveness similar to that of the positive control. The results suggested that kojic acid and its derivatives could be a promising anti-inflammatory source for the medicinal and cosmetic industry.
Collapse
Affiliation(s)
- Tian-Xiao Li
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jia-Xin Liang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Lu-Lu Liu
- Technical Center of China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Feng-Cheng Shi
- Technical Center of China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Xue-Wei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ming-Hui Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Chun-Ping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
41
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
42
|
Barros MR, da Silva LP, Menezes TM, Garcia YS, Neves JL. Efficient tyrosinase nano-inhibitor based on carbon dots behaving as a gathering of hydrophobic cores and key chemical group. Colloids Surf B Biointerfaces 2021; 207:112006. [PMID: 34343910 DOI: 10.1016/j.colsurfb.2021.112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Small organic molecules have been extensively applied to achieve enzymatic inhibition. Although numerous efforts have been made to deliver efficient inhibitors, small inhibitors applications are hindered by many drawbacks. Moreover, reporters comprising nanoparticle inhibitory activity against enzymes are very scarce in the literature. In this scenario, carbon nanodots (CDs) emerge as promising candidates for efficient enzyme inhibition due to their unique properties. Here, CDs specific molecular characteristics (core composition and chemical surface groups) have been investigated to produce a more potent enzyme inhibition. Mushroom tyrosinase (mTyr) has been adopted as an enzymatic prototype. The CDs revealed a high affinity to mTyr (Ka ≈ 106 M-1), mainly through hydrophobic forces and followed by slight mTyr structural alteration. CDs competitively inhibit mTyr, with low inhibition constant (KI = 517.7 ± 17.0 nM), which is up 70 fold smaller then the commercial inhibitor (kojic acid) and the starch nanoparticles previously reported. The results expose that the CDs act as a hydrophobic agglomerate with carboxyl groups on its surface, mimicking characteristics found on small molecule inhibitors (but with superior performance). All these results highlight the CD excellent potential as an efficient low toxic Tyr inhibitor, opening the prospect of using these nanoparticles in the cosmetic and food industries.
Collapse
Affiliation(s)
- Marcela Rodrigues Barros
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Lucas Pereira da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Thais Meira Menezes
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Yarima Sanchez Garcia
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Centro de estudos avanzados de Cuba, CEA, Valle Grande, La Lisa 17100, La Habana, Cuba.
| | - Jorge Luiz Neves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| |
Collapse
|
43
|
Zhou JM, Shi MJ, Wei XY, Zhou T. Enzymatic degradation of polysaccharide from Enteromorpha prolifera: an efficient way to enhance its antioxidant and tyrosinase inhibitory activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01039-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
He M, Fan M, Liu W, Li Y, Wang G. Design, synthesis, molecular modeling, and biological evaluation of novel kojic acid derivatives containing bioactive heterocycle moiety as inhibitors of tyrosinase and antibrowning agents. Food Chem 2021; 362:130241. [PMID: 34118508 DOI: 10.1016/j.foodchem.2021.130241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023]
Abstract
Tyrosinase plays an important role in melanin biosynthesis and enzymatic browning of fresh-cut fruit and vegetables. To discover potent tyrosinase inhibitors and antibrowning agents, a series of novel kojic acid derivatives containing bioactive heterocycle moiety (4a-4l) were designed and synthesized. Thereinto, 4d displayed the most potent tyrosinase inhibitory activity with IC50 of 3.23 ± 0.26 μM and behaved as a competitive inhibitor with a Ki of 1.96 μM, compared to kojic acid (IC50 = 32.23 ± 2.01 μM). Besides, copper-chelating assay, fluorescence spectrum quenching experiment, ANS-binding fluorescence quenching analysis, and molecular modeling studies indicated that 4d may inhibit tyrosinase activity by chelating with copper ions in the active site of tyrosinase. Furthermore, 4d exhibited low cytotoxic activity and significant antibrowning effects.This study suggests that these compounds may serve as lead molecules for developing novel tyrosinase inhibitors and antibrowning agents.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
45
|
He M, Fan M, Peng Z, Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur J Med Chem 2021; 221:113546. [PMID: 34023737 DOI: 10.1016/j.ejmech.2021.113546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Hydroxypyranone and hydroxypyridinone are important oxygen-containing or nitrogen-containing heterocyclic nucleus and attracted increasing attention in medicinal chemistry and drug discovery over the past decade. Previous literature reports revealed that hydroxypyranone and hydroxypyridinone derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, antioxidant, anticonvulsant, and anti-diabetic activities. In this review, we systematically summarized the literature reported biological activities of hydroxypyranone and hydroxypyridinone derivatives. In particular, we focus on their biological activity, structure-activity relationship (SAR), mechanism of action, and interaction mechanisms with the target. The collected information is expected to provide rational guidance for the development of clinically useful agents from these pharmacophores.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.
| |
Collapse
|
46
|
Singh LR, Chen YL, Xie YY, Xia W, Gong XW, Hider RC, Zhou T. Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity. J Enzyme Inhib Med Chem 2021; 35:1562-1567. [PMID: 32746652 PMCID: PMC7470021 DOI: 10.1080/14756366.2020.1801669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In an attempt to synthesise new tyrosinase inhibitors, we designed and synthesised a series of chalcone-hydroxypyridinone hybrids as potential tyrosinase inhibitors adopting strategic modifications of kojic acid. All the newly synthesised compounds were characterised by NMR and mass spectrometry. Initial screening of the target compounds demonstrated that compounds 1a, 1d, and 1n had relatively strong inhibitory activities against tyrosinase monophenolase, with IC50 values of 3.07 ± 0.85, 2.25 ± 0.8 and 2.75 ± 1.19 μM, respectively. The inhibitory activity against monophenolase was 6- to 8-fold higher than that of kojic acid. Compounds 1a, 1d, and 1n also showed inhibition of diphenolase, with IC50 values of 17.05 ± 0.07, 11.70 ± 0.03 and 19.3 ± 0.28 μM, respectively. The inhibition kinetics of diphenolase indicates that compounds 1a and 1d induce reversible inhibition on tyrosinase. Finally, we found that copper coordination should be one of the important inhibitory mechanism of these compounds in tyrosinase.
Collapse
Affiliation(s)
- L Ravithej Singh
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| | - Yu-Lin Chen
- Division of Pharmaceutical Science, King's College London, London, UK
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| | - Xing-Wen Gong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| | - Robert C Hider
- Division of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
47
|
Feng YX, Wang ZC, Chen JX, Li HR, Wang YB, Ren DF, Lu J. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Food Chem 2021; 353:129471. [PMID: 33730668 DOI: 10.1016/j.foodchem.2021.129471] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Defatted walnut meal protein was hydrolyzed using alcalase to yield tyrosinase inhibitory peptides. After separation by ultrafiltration and Sephadex G-25, the fraction with the highest tyrosinase inhibitory activity was identified using liquid chromatography-tandem mass spectrometry and 606 peptides were obtained. Then, molecular docking was used to screen for tyrosinase inhibitory peptides and to clarify the theoretical interaction mechanism between the peptides and tyrosinase. A peptide with the sequence Phe-Pro-Tyr (FPY, MW: 425.2 Da) was identified and the synthesized peptide inhibited tyrosine monophenolase and diphenolase with IC50 values of 1.11 ± 0.05 and 3.22 ± 0.09 mM, respectively. The inhibition of tyrosinase by FPY was competitive and reversible. Good stability of FPY toward digestion was observed in an in vitro gastrointestinal digestion simulation experiment. These results indicated that FPY can be used as a potential tyrosinase inhibitor in the food, medicine, and cosmetics industries.
Collapse
Affiliation(s)
- Yan-Xia Feng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Zi-Chun Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jia-Xin Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Hai-Rong Li
- Hebei Huang Jin Long Agricultural Technology Co. LTD, (Heibei province, She County), People's Republic of China
| | - Yan-Bing Wang
- Hebei Huang Jin Long Agricultural Technology Co. LTD, (Heibei province, She County), People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, Beijing 100015, People's Republic of China.
| |
Collapse
|
48
|
Structure Analysis and Study of Biological Activities of Condensed Tannins from Bruguiera gymnorhiza (L.) Lam and Their Effect on Fresh-Cut Lotus Roots. Molecules 2021; 26:molecules26051369. [PMID: 33806398 PMCID: PMC7961348 DOI: 10.3390/molecules26051369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
Bruguiera gymnorhiza (L.) Lam is a mangrove plant that spread in many parts of the world. Though mangrove plant polyphenols have been reported to exhibit many biological activities, little is known about mangrove plant tannins. To explore the application value of tannins from B. gymnorhiza, analyses on the structure and biological activity of condensed tannins (CTs) from Bruguiera gymnorhiza (L.) Lam were carried out. The results from 13C nuclear magnetic resonance (13C-NMR) and reversed-phase, high-performance liquid chromatography (RP-HPLC) showed that the CTs were dominated by procyanidins, with a small quantity of prodelphinidins and propelargonidins; and that the monomeric constituents of B. gymnorhiza tannins were catechin/epicatechin, gallocatechin/epigallocatechin and afzelechin/epiafzelechin. The CTs were reversible and mixed competitive inhibitors of tyrosinase and the 50% inhibiting concentration (IC50) was estimated to be 123.90 ± 0.140 μg/mL. The antioxidant activities of CTs from B. gymnorhiza leaves were evaluated, the IC50 for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt) (ABTS) scavenging activities were 88.81 ± 0.135 and 105.03 ± 0.130 μg/mL, respectively, and the ferric ion reducing antioxidant power (FRAP) value was 1052.27 ± 4.17 mgAAE/g. In addition, the results from fresh-keeping assays on fresh-cut lotus root reveal that CTs from B. gymnorhiza had excellent effects on inhibiting the activities of polyphenol oxidase (PPO) and peroxidase (POD), protecting fresh-cut lotus root from the oxidation of total phenolics and malondialdehyde (MDA) content and slowing the increase in total phenol content (TPC) at 4 °C during the whole storage period. Therefore, CTs showed good effects against the browning of fresh-cut lotus root. Together, these results suggested that B. gymnorhiza CTs are promising antibrowning agents for fresh-cut fruits.
Collapse
|
49
|
Thiosemicarbazide binds with the dicopper center in the competitive inhibition of mushroom tyrosinase enzyme: Synthesis and molecular modeling of theophylline analogues. Bioorg Med Chem Lett 2021; 36:127826. [PMID: 33513384 DOI: 10.1016/j.bmcl.2021.127826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
Theophylline is long known for its anti-ageing and anti-oxidative properties. Moreover, Tyrosinase is a crucial enzyme that regulates the melanin synthetic pathway, which is involved in various physiological metabolic processes including aging. The current paper describes the synthesis of various heterocyclic systems coupled with theophylline moiety along with their tyrosinase inhibition activity in view to identify the potent nucleus. Around 19 compounds were synthesized and screened for enzyme inhibition. Based on the current study, it is suggested that compound 18 having thiosemicarbazide has strong enzyme inhibition potential. The enzyme kinetics and docking studies provide important insights into how the compound interacts with the mushroom tyrosinase active site. The work will provide clue to developing new, potent tyrosinase inhibitors for drug development.
Collapse
|
50
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|