1
|
Gorjanović S, Zlatanović S, Laličić-Petronijević J, Dodevska M, Micić D, Stevanović M, Pastor F. Enhancing composition and functionality of jelly candies through apple and beetroot pomace flour addition. NPJ Sci Food 2024; 8:85. [PMID: 39455671 PMCID: PMC11511959 DOI: 10.1038/s41538-024-00323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The functionalization of food products with agri-industial residues is of great interest. Apple and beetroot pomace flour, abundant in dietary fiber and antioxidants, were incorporated into jelly candies using agar, pectin, or gelatin. Three functional formulations were devised for each flour type at the pilot scale, resulting in jelly candies with desirable sensory properties and texture. The high content of total polyphenolics, flavonoids, betacyanins, and betaxantines was determined upon in vitro digestion. The influence of different matrices on these bioactives, crucial for exerting antioxidant activity, was evaluated using DPPH and FRAP assays on both fresh and nine-month stored jelly candies, showcasing good bioavailability and retention. Enrichment with APF and BPF also led to reduced postprandial glucose levels, glycemic index, and load determined in vivo. These findings affirm that compositionally optimized innovative formulations of jelly candies facilitate the efficient delivery of compounds with anti-obesity effect from upcycled raw materials.
Collapse
Affiliation(s)
- Stanislava Gorjanović
- Institute of General and Physical Chemistry, 11158, Belgrade, Serbia, Studentski trg 12/V
| | - Snežana Zlatanović
- Institute of General and Physical Chemistry, 11158, Belgrade, Serbia, Studentski trg 12/V.
| | | | - Margarita Dodevska
- Institute of Public Health of Serbia Dr Milan Jovanović Batut, 11000, Belgrade, Serbia, Dr Subotica 5
| | - Darko Micić
- Institute of General and Physical Chemistry, 11158, Belgrade, Serbia, Studentski trg 12/V
| | - Milica Stevanović
- University of Belgrade, Faculty of Agriculture, 11080, Belgrade, Serbia, Nemanjina 6
| | - Ferenc Pastor
- University of Belgrade, Faculty of Chemistry, 11158, Belgrade, Serbia, Studentski trg 16
| |
Collapse
|
2
|
Ozcan BE, Karakas CY, Karadag A. Application of purple basil leaf anthocyanins-loaded alginate-carrageenan emulgel beads in gelatin-based jelly candies. Int J Biol Macromol 2024; 277:134547. [PMID: 39116974 DOI: 10.1016/j.ijbiomac.2024.134547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Jelly candies could be considered promising food matrices for the delivery of bioactive compounds such as anthocyanins (ACNs). In this study, gelatin-based jelly candies were fortified with free ACNs-rich purple basil leaf extract (PBLE) and PBLE-loaded emulgel beads. The interaction between free ACNs and gelatin in the jelly matrix resulted in a lower release of ACNs in the mouth (8.27 %) and gastric stage (74.44 %) compared to those of free extract (24.92 and 86.13 %), as well as some protection in the intestinal stage. The release of ACNs from the jellies enriched with PBLE-loaded emulgel beads only began in the intestinal stage and reached 66.34-70.75 % of the initial load. Compared to those of PBLE-loaded emulgel beads, the introduction of beads within the jelly matrix increased the in vitro release of ACNs. The jelly samples enriched with PBLE-loaded emulgel beads yielded higher hardness, adhesiveness, flexibility, and chewiness compared to samples with free PBLE. While the color and appearance of jellies fortified with encapsulated PBLE were impaired, they got the highest sensory acceptance scores due to the masking of the bitter taste of the free extract. ACNs-loaded emulgel beads could be a viable method for fortifying jelly candies.
Collapse
Affiliation(s)
- Basak Ebru Ozcan
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Türkiye.
| | - Canan Yagmur Karakas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Türkiye
| | - Ayse Karadag
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Türkiye
| |
Collapse
|
3
|
Rashmi HB, Negi PS. Upcycling Surinam cherry and spine gourd fruit waste: development of anthelmintic jelly candies using fruit extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1905-1918. [PMID: 39285986 PMCID: PMC11401820 DOI: 10.1007/s13197-024-05967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 09/19/2024]
Abstract
Under-utilized fruits and vegetables are rich in nutraceuticals and have several medicinal properties. A large group of people widely consumes gummies and jelly candies, which can serve as an excellent vehicle to increase the intake of functional components. In the present study, jelly candies were developed by incorporating fruit extracts from commonly wasted segments of two under-utilized fruits (Surinam cherry and Spine gourd). Jelly candies were evaluated for their anthelmintic efficacy against Caenorhabditis elegans along with various physicochemical, microbial, colour, texture, and sensory parameters immediately after preparation, as well as during 150 days of storage at two conditions (ambient and accelerated). Ready-to-consume jelly candies (5 g) contained 0.21 g of fruit extract in Surinam cherry and 0.35 g of fruit extract in Spine gourd jelly candies. Jelly candies exhibited TSS in the range of 70.40 - 71.37°Brix, pH 2.33 to 2.84, aw 0.70-0.75, moisture 10.57-15.88%, a* value 5.33-1.27, b*value 10.66-1.28, no microbial contamination, and acceptable sensory parameters. Surinam cherry extract candy (4 mg/ml) showed a higher anthelmintic effect than Spine gourd extract candy (6.66 mg/ml) based on egg inhibition, larval death, and average adult worm paralysis time assays. These fruit extract-incorporated candies can be a novel healthier food product with anthelmintic potential, which can be an alternative to commonly used anthelmintic drugs. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05967-5.
Collapse
Affiliation(s)
- Havalli Bommegowda Rashmi
- Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
- Present Address: Department of Postharvest Management, College of Horticulture, University of Horticultural Sciences, Yelawala, Bagalkot, Mysuru, 571130 India
| | - Pradeep Singh Negi
- Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| |
Collapse
|
4
|
Niemira J, Galus S. Valorization of Red Beetroot ( Beta vulgaris L.) Pomace Combined with Golden Linseed ( Lini semen) for the Development of Vegetable Crispbreads as Gluten-Free Snacks Rich in Bioactive Compounds. Molecules 2024; 29:2105. [PMID: 38731596 PMCID: PMC11085057 DOI: 10.3390/molecules29092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
This work aimed to develop gluten-free snacks such as crispbread based on beetroot pomace (Beta vulgaris L.) and golden linseed (Lini semen). Beetroot is attracting more and more consumer attention because of its nutritional and health properties. The use of beet pomace contributes to waste management. Linseed, known as a superfood with many health-promoting properties, was used to produce crispbreads as an alternative to cereals, which are allergens. Beetroot pomace and whole or ground linseed were used in different proportions to produce crispbread snacks. Chemical and physical analyses were performed including water activity, dry matter, betalains, and polyphenols content, as well as Fourier transform infrared spectroscopy (FTIR). A sensory evaluation and microstructure observations were also performed. The obtained snacks were characterized by low water activity (0.290-0.395) and a high dry matter content (93.43-97.53%), which ensures their microbiological stability and enables longer storage. Beetroot pomace provided betalains-red (14.59-51.44 mg betanin/100 g d.m.) and yellow dyes (50.02-171.12 mg betanin/100 g d.m.)-while using linseed enriched the product with polyphenols (730-948 mg chlorogenic acid/100 g d.m.). FTIR analysis showed the presence of functional groups such as the following: -OH, -C-O, -COOH, and -NH. The most desired overall consumer acceptability was achieved for snacks containing 50% beetroot pomace and 50% linseed seeds. The obtained results confirmed that beetroot pomace combined with linseed can be used in the production of vegetable crispbread snacks.
Collapse
Affiliation(s)
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
5
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
6
|
Borah MS, Tiwari A, Sridhar K, Narsaiah K, Nayak PK, Stephen Inbaraj B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023; 12:3823. [PMID: 37893717 PMCID: PMC10606574 DOI: 10.3390/foods12203823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Food by-products and waste are a boundless source of bioactives, nutraceuticals, and naturally occurring substances that are good for human health. In fact, a lot of by-products and wastes are generated by several food businesses. Therefore, waste management and by-product utilization are the most important aspects of the food sector. According to various studies, many bioactive compounds such as phenolics, carotenoids, and proteins can be recovered as feed stock from various industries' by-products and wastes using potential technologies. As a result, current trends are shifting attention to the sustainable valorisation of food sector waste management and by-products utilization. Thus, the circular economy principles have been applied to the field of food science. The aim of the circular economy is to ensure environmental protection and promote economic development while minimizing the environmental impact of food production. All of these aspects of the circular economy, at present, have become a challenging area of research for by-product valorisation as well. Hence, this review aims to highlight the emerging trends in the efficient utilization of food industry waste and by-products by focusing on innovative encapsulation techniques and controlled release mechanisms of bioactive compounds extracted from food industry waste and by-products. This review also aims to suggest future research directions, and addresses regulatory and toxicity considerations, by fostering knowledge dissemination and encouraging eco-friendly approaches within the food industry. This review reveals the role of encapsulation strategies for the effective utilization of bioactive compounds extracted from food industry waste and by-products. However, further research is needed to address regulatory and toxicity considerations of encapsulated bioactive compounds and health-related concerns.
Collapse
Affiliation(s)
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar 788011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Kairam Narsaiah
- Agriculture Engineering Division, Indian Council of Agricultural Research, New Delhi 110012, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | | |
Collapse
|
7
|
Dhawan K, Rasane P, Singh J, Kaur S, Kaur D, Avinashe H, Mahato DK, Kumar P, Gunjal M, Capanoglu E, Haque S. Effect of Spice Incorporation on Sensory and Physico-chemical Properties of Matcha-Based Hard Candy. ACS OMEGA 2023; 8:29247-29252. [PMID: 37599978 PMCID: PMC10433358 DOI: 10.1021/acsomega.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
The present study was carried out to formulate and determine the sensory, proximate, phytochemical, and antioxidant properties of matcha hard candies incorporated with spices such as ginger (Zingiber officinale Rosc.), cinnamon (Cinnamomum zeylanicum and Cinnamon cassia), and holy basil (tulsi) (Ocimum sanctum L.). Standardized matcha (Camellia sinensis) hard candy was taken as a control, and spices/herbs were incorporated in different concentrations. The best formulation was GC5 (2% ginger powder) for matcha ginger hard candy, CZ10 (0.9% cinnamon powder) for matcha cinnamon hard candy, and TC7 (3% tulsi powder) for matcha tulsi hard candy. These formulations were selected based on the organoleptic evaluation. Furthermore, these selected hard candies were evaluated for the determination of proximate, phytochemical, and antioxidant profiles which exhibited significant results. This study demonstrates the excellent nutritional and phytochemical potential that spiced matcha hard candy has for use as a nutraceutical food product.
Collapse
Affiliation(s)
- Kajal Dhawan
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prasad Rasane
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jyoti Singh
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sawinder Kaur
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Damanpreet Kaur
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Harshal Avinashe
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dipendra Kumar Mahato
- CASS
Food Research Centre, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria 3125, Australia
| | - Pradeep Kumar
- Department
of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Mahendra Gunjal
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and
Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| |
Collapse
|
8
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
9
|
Zagórska J, Czernicka-Boś L, Kukula-Koch W, Iłowiecka K, Koch W. Impact of Thermal Processing on the Selected Biological Activities of Ginger Rhizome-A Review. Molecules 2023; 28:412. [PMID: 36615602 PMCID: PMC9824518 DOI: 10.3390/molecules28010412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Ginger (Zingiber officinale Rosc.) is a spice, medicinal and cosmetic plant that has been known for centuries. It can be used in dried, fresh, marinated or candied form, and is also an essential ingredient in well-known curry blends. Ginger rhizomes are often freeze-dried as the first step in the preparation of the raw material. Many studies have proved that the composition and biological activity of ginger changes due to thermal processing. Therefore, the aim of the review was to summarize the scientific results on the impact of traditional and unconventional methods of the heat treatment of ginger rhizomes and their influence on the antioxidant and other selected biological activities of the plant. The review of the available scientific data is inconclusive, and it is hard to state unequivocally whether the thermal treatment of the raw material increases or decreases biological activity. Based on the presented literature review, it can be concluded that traditional cooking and microwave processing in general decrease the antioxidant activity of the ginger rhizome, whereas frying, autoclaving, blanching or traditional drying in the sun mostly lead to a significant increase in ginger activity. Interesting data were presented in the works describing the freeze-drying process during which the antioxidant potential of ginger increased.
Collapse
Affiliation(s)
- Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Lidia Czernicka-Boś
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Katarzyna Iłowiecka
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
10
|
Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Zagórska J, Czernicka-Boś L, Kukula-Koch W, Szalak R, Koch W. Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome-A Review. Foods 2022; 11:3484. [PMID: 36360097 PMCID: PMC9656818 DOI: 10.3390/foods11213484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 08/27/2023] Open
Abstract
Ginger (Zingiber officinale Rosc.) is both a commonly used spice, and an ingredient of various dietary supplements and medications. Its diverse applications result from the range of health benefits that this plant brings thanks to the presence of active compounds (secondary metabolites) in the matrix. Even if several studies underline a stronger pharmacological activity of fresh ginger rhizomes, the unprocessed plant is relatively rarely used. Ginger rhizomes are subjected to thermal processing, such as boiling, blanching, steam drying and others, at different temperature and time settings. Additionally, freeze-drying of the rhizomes is used as the first step in the preparation of raw material. It was proved that the composition of secondary metabolites of the Zingiber officinale rhizome changes upon the influence of temperature. Therefore, the aim of the review was to put together scientific results on the impact of traditional and unconventional methods of heat treatment on ginger rhizomes and to show the compositional differences that they induce in the plant matrix. Variations in the content and the transformation of some compounds into other metabolites will be also discussed, with particular attention paid to two major groups of secondary metabolites present in the plant, namely, phenolics and terpenes.
Collapse
Affiliation(s)
- Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Lidia Czernicka-Boś
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
12
|
More PR, Jambrak AR, Arya SS. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Jain A, Mehra R, Garhwal R, Rafiq S, Sharma S, Singh B, Kumar S, Kumar K, Kumar N, Kumar H. Manufacturing and characterization of whey and stevia-based popsicles enriched with concentrated beetroot juice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3591-3599. [PMID: 35875238 PMCID: PMC9304454 DOI: 10.1007/s13197-022-05364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
The beet-root (Beta vulgaris) and whey powder together, can potentially use as a multifunctional ingredient in the manufacturing of the "Popsicles", due to their biochemical composition that can enhance the concentration of bioactive compounds. In the present study, beet-root juice concentrates were prepared at different time/temperature treatments viz 45 °C, 55 °C, and 65 °C for 120, 80 and 45 min. The effect of different time/temperature treatments on physicochemical composition, colour, antioxidant activity (%), bioactive compounds, spectral data and sensory acceptance were evaluated. The physicochemical parameters of popsicles (PTI, PT2, PT3) including protein, total phenols, betalain, radical scavenging activity %, colour and melting values were significantly affected (p ≤ 0.05) by the different time/temperature treatments. The concentration of betalain and protein in all the popsicles ranged from 1134 to 1299 mg/L and 1.92 to 1.54 g/100 g respectively. The reduction of bioactive components viz betacyanins, betaxanthins, betanin, oxalic and syringic acid was also observed in popsicle (PTI) as compared to control. Furthermore, popsicle (PT1) was prepared with beet-root juice concentrated at 45 °C showed maximum sensory acceptance. The physicochemical and organoleptic attributes of processed popsicles encourage the commercial usage of whey powder and concentrated beetroot juice.
Collapse
Affiliation(s)
- Aayushi Jain
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Rahul Mehra
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Renu Garhwal
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Shafiya Rafiq
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Seema Sharma
- Department of Food Technology, Jaipur National University, Jaipur, India
| | - Barinderjit Singh
- Department of Applied Agriculture, Central University of Punjab, Bathinda, India
| | - Shiv Kumar
- Department of Food Science and Technology, Institute of Hotel Management, Maharishi Markandeshwar University, Mullana, Ambala, Haryana India
| | - Krishan Kumar
- Department of Food Technology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Naveen Kumar
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| |
Collapse
|
14
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
15
|
Sharma K, Kumar V, Kumar S, Pinakin DJ, Babbar N, Kaur J, Sharma BR. Process optimization for drying of
Bauhinia variegata
flowers: Effect of different pre‐treatments on quality attributes. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kartik Sharma
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| | - Vikas Kumar
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- College of Horticulture and Forestry, Thunag, Mandi Dr. YS Parmar University of Horticulture and Forestry Solan India
| | - Dave Jaydeep Pinakin
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| | - Neha Babbar
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Jaspreet Kaur
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| | - Basista Rabina Sharma
- School of Biotechnology and Biosciences Lovely Professional University Phagwara India
| |
Collapse
|
16
|
Kumar V, Joshi VK, Thakur NS, Kumar S, Gupta RK, Sharma N, Sharma A. Bioprocess optimization for production of apple tea wine: influence of different variables on the quality attributes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01262-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Afzaal M, Saeed F, Ahmed A, Ikram A, Ahmad M, Raza MA, Khan TS, Hussain M. Exploring the effect of ginger supplementation on candy attributes. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Aftab Ahmed
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Masood Ahmad
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Talha Shireen Khan
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
18
|
Chen L, Zhu Y, Hu Z, Wu S, Jin C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci Nutr 2021; 9:6406-6420. [PMID: 34760270 PMCID: PMC8565237 DOI: 10.1002/fsn3.2577] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, beetroot is mainly consumed as a food additive. In recent years, the beetroot, especially the betalains (betanin) and nitrates it contains, now has received increasing attention for their effective biological activity. Betalains have been proven to eliminate oxidative and nitrative stress by scavenging DPPH, preventing DNA damage, and reducing LDL. It also has been found to exert antitumor activity by inhibiting cell proliferation, angiogenesis, inducing cell apoptosis, and autophagy. In some chronic diseases, nitrate is the main component for lowing blood lipids, glucose, and pressure, while its role in treating hypertension and hyperglycemia has not been clearly stated. Moreover, the intake of nitrate-rich beetroot could enhance athletic performance and attenuate muscle soreness in certain types of exercise. The objective of this review is to provide sufficient evidence for the clarification of health benefits of beetroot, especially in the aspect of biooxidation, neoplastic diseases, some chronic diseases, and energy supplementation.
Collapse
Affiliation(s)
- Liping Chen
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Yuankang Zhu
- College of Second Clinical MedicalWenzhou Medical UniversityWenzhouChina
| | - Zijing Hu
- Chemical Biology Research CenterCollege of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Shengjie Wu
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Chengtao Jin
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| |
Collapse
|
19
|
Kaur M, Aggarwal P, Kumar V. Effect of chilli varieties and storage conditions on quality attributes of honey chilli sauce: A preservation study. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manpreet Kaur
- Department of Food Science and Technology Punjab Agricultural University Ludhiana Punjab India
| | - Poonam Aggarwal
- Department of Food Science and Technology Punjab Agricultural University Ludhiana Punjab India
| | - Vikas Kumar
- Department of Food Science and Technology Punjab Agricultural University Ludhiana Punjab India
| |
Collapse
|
20
|
Janiszewska-Turak E, Rybak K, Grzybowska E, Konopka E, Witrowa-Rajchert D. The Influence of Different Pretreatment Methods on Color and Pigment Change in Beetroot Products. Molecules 2021; 26:3683. [PMID: 34208715 PMCID: PMC8235720 DOI: 10.3390/molecules26123683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable processing pomace contains valuable substances such as natural colors that can be reused as functional ingredients. Due to a large amount of water, they are an unstable material. The aim of our research was to assess how the pretreatment method (thermal or nonthermal) affects the properties of powders obtained from beet juice and pomace after the freeze-drying process. The raw material was steamed or sonicated for 10 or 15 min, and then squeezed into juice and pomace. Both squeezed products were freeze-dried. The content of dry substance; L*, a*, and b* color parameters; and the content of betalain pigments were analyzed. Pretreatments increased the proportion of red and yellow in the juices. Steam and ultrasound caused a significant reduction in parameter b* in the dried pomace. A significant increase in betanin in lyophilizates was observed after pretreatment with ultrasound and steam for 15 min. As a result of all experiments, dried juices and pomaces can also be used as a colorant source. However, there is higher potential with pomaces due to their additional internal substances as well as better storage properties. After a few hours, juice was sticky and not ready to use.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (E.G.); (E.K.); (D.W.-R.)
| | | | | | | | | |
Collapse
|
21
|
Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 2021; 362:130141. [PMID: 34091168 DOI: 10.1016/j.foodchem.2021.130141] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
Color is the prime attribute with a large impact on consumers' perception, selection, and acceptance of foods. However, the belief in bio-safety protocols, health benefits, and the nutritional importance of food colors had focused the attention of the scientific community across the globe towards natural colorants that serve to replace their synthetic toxic counterparts. Moreover, multi-disciplinary applications of greener extraction techniques and their hyphenated counterparts for selective extraction of bioactive compounds is a hot topic focusing on process intensification, waste valorization, and retention of highly stable bioactive pigments from natural sources. In this article, we have reviewed available literature to provide all possible information on various aspects of natural colorants, including their sources, photochemistry and associated biological activities explored under in-vitro and in-vivo animal and human studies. However a particular focus is given on innovative technological approaches for the effective extraction of natural colors for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Nairah Noor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| |
Collapse
|
22
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
23
|
Dhiman A, Suhag R, Thakur D, Gupta V, Prabhakar PK. Current Status of Loquat (Eriobotrya Japonica Lindl.): Bioactive Functions, Preservation Approaches, and Processed Products. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1866007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Atul Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| | - Rajat Suhag
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| | - Dhruv Thakur
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| | - Viresh Gupta
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana, India
| |
Collapse
|
24
|
Aguirre-Calvo TR, Molino S, Perullini M, Rufián-Henares J, Santagapita PR. Effects of in vitro digestion-fermentation over global antioxidant response and short chain fatty acid production of beet waste extracts in Ca(ii)-alginate beads. Food Funct 2020; 11:10645-10654. [PMID: 33216078 DOI: 10.1039/d0fo02347g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present work was to analyze the effect of in vitro gastrointestinal digestion-fermentation on antioxidant capacity, total phenols and production of short chain fatty acids (SCFAs) from biocompounds derived from beet waste (leaf and stem) encapsulated in different formulations of Ca(ii)-alginate beads. The encapsulated systems presented higher antioxidant capacity in different phases (digested and fermented) than the extracts without encapsulation, making Ca(ii)-alginate beads a suitable delivery vehicle. Levels of total phenolic compounds and antioxidant capacity of the fermented fraction were up to ten times higher than those of the digested fraction, boosted by the contribution of bioactive compounds from the by-product of beet as well as by sugars and biopolymers. Among the formulations used, those that had excipients (sugars and/or biopolymers) presented a better overall antioxidant response than the beads with just alginate. Guar gum and sucrose lead to a promising enhancement of Ca(ii)-alginate beads not only for preservation and protection but also in terms of stability under in vitro digestion-fermentation and production of SCFAs.
Collapse
Affiliation(s)
- Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
25
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
26
|
Red beet extract usage in gelatin/gellan based gummy candy formulation introducing Salix aegyptiaca distillate as a flavouring agent. Journal of Food Science and Technology 2020; 57:3355-3362. [PMID: 32713961 DOI: 10.1007/s13197-020-04368-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the functionalization of food products using natural health-promoting additives is of great interest. Betalains are the natural pigments of red beets and are known for their health-promoting characteristics. The aim of this study was to evaluate gummy candies formulated with red beet extract (0.1 or 0.3%) as the coloring agent, Salix aegyptiaca distillate as the flavoring agent, and gellan gum (0.5 or 1.5%) as the gelling co-agent. The prepared gummy candy samples were assessed via texture profile analysis, DPPH assay, sensory evaluation, and color analysis. The results revealed that hardness (~ 60 N) improved and gumminess (~ 15 N) decreased with an increment in gellan gum content in the gummy candy formulation. Statistical analysis indicated that by addition of red beet extract, the radical scavenging capacity of the samples increased (50%) significantly (p < 0.05). Furthermore, gellan gum usage lead to the generation of a glossy red color and enhanced the lightness of the samples in comparison with gelatin-based gummy candies. About sensory evaluation, the panelists confirmed that usage of Salix aegyptiaca improved the sensory characteristics of the gummy candy (overall acceptance from 7.4 to 8.2; out of 9). Our findings suggest that gellan gum (as a highly transparent, acid-resistant, gel-forming gum), red beet extract (as an acid-stabilized natural color), and Salix aegyptiaca distillate have immense potential in the food industry for use as structuring, coloring, and flavoring agents, respectively.
Collapse
|
27
|
Chen GT, Yuan B, Wang HX, Qi GH, Cheng SJ. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes. Int J Biol Macromol 2019; 139:801-809. [PMID: 31400421 DOI: 10.1016/j.ijbiomac.2019.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022]
Abstract
In this study, two different processes of hot water (HW) and ultrasonic-assisted (UA) for the extraction of polysaccharide from ginger pomace (GPPs) were employed under their respective best parameters, and the characterization and antioxidant activity of the purified polysaccharide (HW-GPP1, HW-GPP2, HW-GPP3, and UA-GPP1, UA-GPP2, UA-GPP3, respectively) were analyzed. The data implied that the yield of the polysaccharide obtained by UA was higher than that of HW. Meanwhile, two kinds of GPPs possessed the different preliminary structural characteristics including molecular weight distributions, total sugar and protein content, uronic acid content, while similar monosaccharide compositions and sulfuric radical contents. In vitro antioxidant activity assays indicated that UA-GPP3 showed the strongest scavenging abilities on DPPH radicals, while UA-GPP2 possessed the strongest scavenging abilities on hydroxyl and superoxide radicals. Moreover, the antioxidant activity of each fractions of GPPs extracted by UA was better than that of the corresponding fractions of GPPs extracted by HW. These results showed that UA was more beneficial to enhance the extraction yields of the polysaccharides, and also resulted in GPPs with higher bioactivity. Therefore, it indicated that UA-GPPs could be used as a potential natural antioxidant. Accordingly, the ginger pomace could be used as a potential source for natural antioxidant.
Collapse
Affiliation(s)
- Gui-Tang Chen
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal, Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China.
| | - Biao Yuan
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal, Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Hai-Xiang Wang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal, Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Guo-Hong Qi
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal, Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Shu-Jie Cheng
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal, Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| |
Collapse
|
28
|
Effects of Plasma-Activated Water and Blanching on Microbial and Physicochemical Properties of Tiger Nuts. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02323-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Dey A, Rasane P, Singhal S, Kumar V, Kaur S, Singh J, Garba U, Kaur N, Arora M. Cactus cladode polysaccharide as cryoprotectant in frozen
Paneer
(Indian Cottage Cheese). INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anirban Dey
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
- Pimpernel Food Products Pvt. Ltd Hooghly West Bengal712136India
| | - Prasad Rasane
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
- Centre of Food Science and Technology Banaras Hindu University Varanasi221005India
| | - Somya Singhal
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
| | - Vikas Kumar
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
| | - Jyoti Singh
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
| | - Umar Garba
- Department of Agro‐Industry, Faculty of Agriculture, Natural Resources Naresuan University Phitsanulok65000Thailand
| | - Navneet Kaur
- School of Engineering Technology and Applied Science Centennial College Toronto Ontario Canada
| | - Mehak Arora
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab144411India
| |
Collapse
|
30
|
Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC. Bioactive potential of fruit and vegetable wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:157-225. [PMID: 32035596 DOI: 10.1016/bs.afnr.2019.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids). Recently, the recovery of these bioactive compounds from industry by-products has received significant attention, mainly due to their possible health benefits for humans. This chapter focuses on the bioactive potential of fruit and vegetable by-products with possible applications in the food industry (functional foods) and in the health sector (nutraceuticals).
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
31
|
Majerska J, Michalska A, Figiel A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: Gummy candies. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Pigments and vitamins from plants as functional ingredients: Current trends and perspectives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:259-303. [PMID: 31445597 DOI: 10.1016/bs.afnr.2019.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The food manufacturing industry has increasingly focused in the development of wholesome and safer products, including certified labeled "super foods," "healthy foods" and "functional foods," which are currently under great demand worldwide. Plant pigments and vitamins are amidst the most common additives incorporated to foodstuff, not only for improving their nutritional status but also for coloration, preservation, and even therapeutic purposes. The recovery of pigments from agro industrial wastes using green emerging approaches is a current trend and clearly the best alternative to ensure their sustainable obtainment and make these ingredients more popular, although still full of challenging aspects. Stability and bioavailability limitations of these active molecules in food matrices have been increasingly studied, and a number of methods have been proposed to minimize these issues, among which the incorporation of a co-pigment, exclusion of O2 during processing and storage, and above all, microencapsulation and nanoencapsulation techniques. The most recent advances and challenges in the application of natural pigments and vitamins in functional foods, considering only reports of the last 5 years, were the focus of this chapter.
Collapse
|
34
|
Trigo JP, Alexandre EMC, Saraiva JA, Pintado ME. High value-added compounds from fruit and vegetable by-products – Characterization, bioactivities, and application in the development of novel food products. Crit Rev Food Sci Nutr 2019; 60:1388-1416. [DOI: 10.1080/10408398.2019.1572588] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- João P. Trigo
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Elisabete M. C. Alexandre
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Jorge A. Saraiva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Manuela E. Pintado
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
35
|
Jiao L, Xia S, Zhang X, Liu J, Yu J, Zhang M, Wang X, Qi X. Effect of calcium chloride on the uniformity of colouring in sushi red ginger slices by modulating the properties of starch. RSC Adv 2019; 9:1664-1670. [PMID: 35517994 PMCID: PMC9059557 DOI: 10.1039/c8ra09025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/22/2018] [Indexed: 11/21/2022] Open
Abstract
The colour of sushi red ginger slices without blanching is not uniform, which seriously affects their sensory quality. The effect of calcium chloride (CaCl2) pretreatment on the uniformity of colouring and the properties of ginger starch have been studied. The crystalline region of the starch in blanched ginger slices was broken, which might be beneficial for uniform colouring. The effect of CaCl2 pretreatment on starch properties depended on the concentration. The influence of CaCl2 at a concentration higher than 3.5 mol L−1 was more pronounced than that at a lower concentration. The uniformity of colouring was close to the effect of blanching treatment. Furthermore, the starch crystallization was destroyed, the granules were broken, and the polarized cross disappeared, which was consistent with that observed for the starch in blanched ginger slices. Therefore, it is possible to achieve a uniform colour in red ginger slices at room temperature through CaCl2 pretreatment. 4 mol L−1 CaCl2 change the crystallization and polarization properties of starch at room temperature, which made ginger coloring evenly.![]()
Collapse
Affiliation(s)
- Liping Jiao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- Jiangnan University
- Wuxi
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- Jiangnan University
- Wuxi
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- Jiangnan University
- Wuxi
| | | | - Jingyang Yu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- Jiangnan University
- Wuxi
| | - Man Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- Jiangnan University
- Wuxi
| | - Xuejiao Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- Jiangnan University
- Wuxi
| | | |
Collapse
|
36
|
Ningrum A, Supriyadi, Anggrahini S, Kusumaningrum LD, Hapsari MW, Schreiner M. Valorization of food by product from selected tropical fruits pomace. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/205/1/012034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Analysis of Moisture Content in Beetroot using Fourier Transform Infrared Spectroscopy and by Principal Component Analysis. Sci Rep 2018; 8:7996. [PMID: 29789563 PMCID: PMC5964165 DOI: 10.1038/s41598-018-26243-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 11/08/2022] Open
Abstract
The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614–4000 and 1465–1853 cm−1 with a spectral resolution of 8 cm−1. In order to estimate the transmittance peak height (Tp) and area under the transmittance curve \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\int }_{{\bar{\nu }}_{i}}^{{\bar{\nu }}_{f}}{T}_{p}d\bar{\nu })$$\end{document}(∫ν¯iν¯fTpdν¯) over the spectral ranges of 2614–4000 and 1465–1853 cm−1, Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614–4000 and 1465–1853 cm−1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.
Collapse
|