1
|
Lee Y, Baek J, Kwon Y. Assessing dietary bisphenol A exposure among Koreans: comprehensive database construction and analysis using the Korea National Health and Nutrition Examination Survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1018-1055. [PMID: 38923903 DOI: 10.1080/19440049.2024.2362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) exposure primarily occurs through dietary intake. This study aimed to estimate the extent of dietary BPA exposure among Koreans. A thorough literature search was conducted to establish a BPA content database encompassing common foods consumed in Korea, including various food raw materials and processed food products. Dietary exposure levels were estimated by integrating the constructed BPA database with comprehensive nationwide 24 h-dietary recall datasets. The finding revealed that dietary BPA exposure was low for most Koreans, with a mean of 14.5 ng/kg bw/day, but was higher for preschool-age children (over 23 ng). Canned foods accounted for 9-36% of the total dietary exposure of the highest dietary exposure groups; while across all age groups, a considerable amount was derived from canned tuna, contribution of canned fruits and canned coffee (milk-containing) was high for preschool-age children and adults, respectively. Notably, for adults, a substantial proportion also stemmed from beer packaged in cans. While diet contributed over 80% of aggregate exposure for most age groups, preschool-age children experienced 60% exposure through diet due to additional exposure from indoor dust. Even at the high exposure scenario, aggregate BPA exposure levels remained lower than the current tolerable daily intake (TDI) set by the Korean agency (20 μg/kg bw/day). Nevertheless, most Koreans were exposed to BPA levels surpassing the strictest TDI (0.2 ng/kg bw/day) set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Jiyun Baek
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| |
Collapse
|
2
|
Zhou R, Kong C, Wen Y, Yang G, Huo W, Zhang C, Sun H, Liu H, Huang D, Li J. One step cleanup of 160 pesticides and veterinary drugs in aquatic products using melamine-based automatic pressure filtration purification method combined with HPLC-MS/MS. Food Chem 2024; 443:138493. [PMID: 38281413 DOI: 10.1016/j.foodchem.2024.138493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
A 15-channel pressure filtration purification method was presented for high throughput sample preparation of aquatic products. A cost-effective device was constructed and melamine sponge was selected as the cleanup sorbent. Upon interfacing with HPLC-MS/MS, the analytical procedure demonstrated its suitability for quantifying 160 pesticides and veterinary drug residues in aquatic products such as fish, shrimp, and crab. The method achieved sample recoveries ranging from 61.3 to 124.9 %. The detection limits were established between 0.5 and 1.0 μg/kg, while the quantitation limits were confirmed to be within the range of 1.0-2.0 μg/kg. The method was applied to quantify the pesticide and veterinary drug residues in mostly consumed aquatic products from five coastal provinces in China. The results showed significant differences between different aquatic products in the concentrations of pesticide and veterinary drug residues, implying the necessity of supervision for the accurate determination of pesticides and veterinary drugs.
Collapse
Affiliation(s)
- Ruidong Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Yupeng Wen
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Wendi Huo
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China; School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
| | - Chaoying Zhang
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China
| | - Huiwu Sun
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China
| | - Huan Liu
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China
| | - Dongmei Huang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Jincheng Li
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China.
| |
Collapse
|
3
|
Zhang K, Wang J, Guo R, Nie Q, Zhu G. Acid induced dispersive liquid-liquid microextraction based on in situ formation of hydrophobic deep eutectic solvents for the extraction of bisphenol A and alkylphenols in water and beverage samples. Food Chem 2024; 442:138425. [PMID: 38242002 DOI: 10.1016/j.foodchem.2024.138425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
This study describes the development of an acid induced dispersive liquid-liquid microextraction method based on the in situ formation of hydrophobic deep eutectic solvents for the extraction of bisphenol A and alkylphenols from environmental water and beverage samples. Hydrochloric acid altered the hydrophilic-hydrophobic state of fatty acid salts to obtain hydrophobic fatty acids, which formed hydrophobic deep eutectic solvents with analytes in situ to extract the analytes. Under optimized conditions, the limits of detection and limits of quantitation were 0.03-0.1 μg L-1 and 0.12-0.3 μg L-1, the intraday and interday relative standard deviations were less than 3.9 %, and the enrichment factor was 29-32. The recoveries of bisphenol A and alkylphenols were 95.9-104.9 % and 86.9-105.0 %, respectively. The extraction process used only hydrochloric acid and fatty acid salts, and the extraction process required less than 1 min. This method has the advantages of simplicity, speed, low cost and environmental friendliness.
Collapse
Affiliation(s)
- Kaige Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Jing Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Rong Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qiujun Nie
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
4
|
Zang X, Chang Q, Hou F, Zhang S, Wang C, Wang Z, Xu J. Hydroxyl and carboxyl group functionalized conjugated microporous nanomaterial as adsorbent for the solid-phase extraction of phenolic endocrine disrupting chemicals from freshwater fish samples. Food Chem 2024; 436:137674. [PMID: 37832421 DOI: 10.1016/j.foodchem.2023.137674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Endocrine disruption chemicals (EDCs) in food can seriously harm human health. In this study, a hydroxyl and carboxyl group functionalized conjugated microporous nanomaterial (CMP) was prepared by Friedel-Crafts reaction and used as solid-phase extraction (SPE) adsorbent. A functionalized CMP based SPE combined with high performance liquid chromatography-diode array detection was built for the determination of phenolic EDCs from nine fish samples. The extraction conditions were optimized by both single factor and response surface methodology (Box-Behnken Design). The established method performed well in terms of the response linearity (in the range of 0.50-100 ng g-1 with coefficient of determination larger than 0.9942), limits of detection (0.15-0.30 ng g-1, S/N of 3), limits of quantification (0.50-1.00 ng g-1, S/N = 10), method recoveries (78.4-121 %) and repeatability (relative standard deviation < 11 %). It can be used as an efficient method to detect trace phenolic EDCs in real fish samples.
Collapse
Affiliation(s)
- Xiaohuan Zang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Fangyuan Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Jianzhong Xu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
5
|
Amorim VE, Morais H, Ferreira ACS, Pardal MA, Cruzeiro C, Cardoso PG. Application of a robust analytical method for quantifying progestins in environmental samples from three Portuguese Estuaries. MARINE POLLUTION BULLETIN 2024; 199:115967. [PMID: 38159385 DOI: 10.1016/j.marpolbul.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the last years, progestins have raised special concerns for their documented negative effects on aquatic species, yet little is known about their environmental levels in surface waters and bioaccumulation in the trophic web. This study aimed to 1) adapt an extraction method for quantifying progestins in freeze-dried matrices, 2) validate the analytical procedure for three matrices: bivalve, polychaete, and crustacean, and 3) characterize levels of the four most prescribed synthetic progestins in key species across three Portuguese estuaries. Through the validated method, progestins were only quantifiable for the crustacean. Values were generally low, peaking with drospirenone values in Ria de Aveiro (1.33 ± 0.26 ng/g ww) and Tagus estuary (1.42 ± 0.55 ng/g ww), while Ria Formosa exhibited the lowest progestin concentrations (< 1 ng/g ww). This study enabled the development of a precise extraction and analytical method for quantifying steroid hormones in three distinct biological matrices.
Collapse
Affiliation(s)
- V E Amorim
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - H Morais
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A C Silva Ferreira
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Institute for Wine Biotechnology (IWBT), Department of Viticulture and Oenology (DVO), University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa; Cork Supply Portugal, S.A., Rua Nova do Fial 102, 4535 São Paio de Oleiros, Portugal
| | - M A Pardal
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Portugal
| | - C Cruzeiro
- Unit Environmental Simulation (EUS), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - P G Cardoso
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
6
|
Xu CY, Cui YY, Yang CX. Fabrication of magnetic Fe 3O 4 doped β-cyclodextrin microporous organic network for the efficient extraction of endocrine disrupting chemicals from food takeaway boxes. J Chromatogr A 2024; 1715:464625. [PMID: 38171066 DOI: 10.1016/j.chroma.2023.464625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Endocrine disrupting chemicals (EDCs) are a typical class of natural or man-made endogenous hormone agonists or antagonists that can directly or potentially interfere with human endocrine system. However, it is still difficult to analyze trace EDCs directly from complex environment and food matrices. Therefore, the proper sample pretreatment is highly desired and the preparation of efficient adsorbents is of great challenge and importance. Herein, we report the facile one-pot solvothermal synthesis of Fe3O4 nanoparticle doped magnetic β-cyclodextrin microporous organic network composites (MCD-MONs) for the magnetic solid phase extraction (MSPE) of four phenolic EDCs in water and food takeaway boxes prior to the high-performance liquid chromatography analysis. The sheet-like Fe3O4 doped MCD-MONs offered good magnetic property (16.5 emu g-1) and stability, and provided numerous hydrogen bonding, hydrophobic, π-π, and host-guest interaction sites for EDCs. Under the optimal experimental conditions, the established method was successfully verified with wide linear range (2.0-1000 µg L-1), low limits of detection (0.6-1.0 µg L-1), good precisions (intra-day and inter-day RSDs < 5.2 %, n = 3), large enrichment factors (88-98) and adsorption capacity (90.3-255.8 mg g-1), short extraction time (6 min), less adsorbent consumption (3 mg), and good reusability (at least 8 times) for EDCs. The proposed method was successfully applied to detect the trace EDCs in real samples with the recovery of 84.0-99.7 %. This work demonstrated the great potential of MCD-MONs for the efficient MSPE of trace EDCs from complex food takeaway boxes and water samples and uncovered the prospect of CD-based MONs in sample pretreatment.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
7
|
Zhao J, Li ZY, Yang CX, Li YP, Liu YS, Hu ZH, Pan XM, Ma XL, Wang W, Yang XS, Wang LL. Magnetic covalent organic frameworks for extraction and determination of endocrine-disrupting chemicals in beverage and water samples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:257-265. [PMID: 37552783 DOI: 10.1002/jsfa.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Phenolic endocrine-disrupting chemicals (EDCs) are widespread and easily ingested through the food chain. They pose a serious threat to human health. Magnetic solid-phase extraction (MSPE) is an effective sample pre-treatment technology to determine traces of phenolic EDCs. RESULTS Magnetic covalent organic framework (COF) (Fe3 O4 @COF) nanospheres were prepared and characterized. The efficient and selective extraction of phenolic EDCs relies on a large specific surface and the inherent porosity of COFs and hydrogen bonding, π-π, and hydrophobic interactions between COF shells and phenolic EDCs. Under optimal conditions, the proposed magnetic solid-phase extraction-high-performance liquid chromatography-ultra violet (MSPE-HPLC-UV) based on the metallic covalent organic framework method for phenolic EDCs shows good linearities (0.002-6 μg mL-1 ), with R2 of 0.995 or higher, and low limits of detection (6-1.200 ng mL-1 ). CONCLUSION Magnetic covalent organic frameworks (Fe3 O4 @COFs) with good MSPE performance for phenolic EDCs were synthesized by the solvothermal method. The magnetic covalent organic framework-based MSPE-HPLC-UV method was applied successfully to determine phenolic EDCs in beverage and water samples with satisfactory recoveries (90.200%-123%) and relative standard deviations (2.100%-12.100%). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Zhao
- School of Food Engineering, Ludong University, Yantai, China
| | - Zi-Yu Li
- School of Food Engineering, Ludong University, Yantai, China
| | - Chun-Xu Yang
- School of Food Engineering, Ludong University, Yantai, China
| | - Ya-Ping Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, China
- Institute of Bionanotechnology, Ludong University, Yantai, China
| | - Zhen Hua Hu
- School of Food Engineering, Ludong University, Yantai, China
- Institute of Bionanotechnology, Ludong University, Yantai, China
| | - Xiao-Ming Pan
- School of Food Engineering, Ludong University, Yantai, China
| | - Xiu-Li Ma
- School of Food Engineering, Ludong University, Yantai, China
| | - Wei Wang
- School of Food Engineering, Ludong University, Yantai, China
| | - Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, China
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, China
- Institute of Bionanotechnology, Ludong University, Yantai, China
| |
Collapse
|
8
|
Li S, Shi B, He D, Zhou H, Gao Z. DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131874. [PMID: 37379602 DOI: 10.1016/j.jhazmat.2023.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Diethylstilbestrol (DES) is a threatening factor to the human endocrine system. Here, we reported a DNA origami-assembled plasmonic dimer nanoantenna-based surface-enhanced Raman scattering (SERS) biosensor for measuring trace DES in foods. A critical factor influencing the SERS effect is interparticle gap modulation of SERS hotspots with nanometer-scale accuracy. DNA origami technology aims to generate naturally perfect structures with nano-scale precision. Exploiting the specificity of base-pairing and spatial addressability of DNA origami to form plasmonic dimer nanoantenna, the designed SERS biosensor generated electromagnetic-enhancement and uniform-enhancement hotspots to improve sensitivity and uniformity. Owing to their high target-binding affinity, aptamer-functionalized DNA origami biosensors transduced the target recognition into dynamic structural transformations of plasmonic nanoantennas, which were further converted to amplified Raman outputs. A broad linear range from 10-10 to 10-5 M was obtained with the detection limit of 0.217 nM. Our findings demonstrate the utility of aptamer-integrated DNA origami-based biosensors as a promising approach for trace analysis of environmental hazards.
Collapse
Affiliation(s)
- Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Naval Logistics Academy, Tianjin 300451, China
| | - Baodi Shi
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Defu He
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
9
|
Chafi S, Ballesteros E. A Simple, Efficient, Eco-Friendly Sample Preparation Procedure for the Simultaneous Determination of Hormones in Meat and Fish Products by Gas Chromatography-Mass Spectrometry. Foods 2022; 11:3095. [PMID: 36230170 PMCID: PMC9562678 DOI: 10.3390/foods11193095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Food safety can be severely compromised by the presence of chemical contaminants. This has raised a pressing need to develop efficient analytical methods for their determination at very low levels in complex food matrices. In this manuscript, we developed a simple, sensitive, fast, green analytical method for the determination of thirteen natural and synthetic hormones from different families including progestogens, estrogens and androgens in meat and fish products. The method involves direct extraction with a (9:1) acetonitrile-water mixture and subsequent purification of the extract by semi-automated solid-phase extraction on a sorbent column (hydrophilic-lipophilic copolymer of N-vinylpyrrolidone and divinylbenzene). This treatment enriches samples with the target compounds while removing proteins, lipids and other potential interferences from their matrix for the accurate determination of the analytes by gas chromatography-mass spectrometry, all within 15 min. The proposed method exhibits good linearity (r ≥ 0.996), low limits of detection (0.4-15 ng/kg), acceptable recoveries (90-105%) and relative standard deviations (≤7%); in addition, it is scarcely subject to matrix effects (1-20%). The method was successfully used to determine natural and synthetic hormones in meat and fish products from Spain, Portugal, Italy, Germany, Greece, Norway, Morocco and the USA. The analytes were found at especially high levels (30-1900 ng/kg) in mussels, beef and pork.
Collapse
Affiliation(s)
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, Avenida de la Universidad, s/n, 23700 Linares, Spain
| |
Collapse
|
10
|
Mu S, Teng T, Zhou R, Liu H, Sun H, Li J. Development and evaluation of a semi-automatic single-step clean-up apparatus for rapid analysis of 18 antibiotics in fish samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Azooz EA, Al-Wani HSA, Gburi MS, Al-Muhanna EHB. Recent modified air-assisted liquid–liquid microextraction applications for medicines and organic compounds in various samples: A review. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Air-assisted liquid–liquid microextraction (AALLME) is a procedure for sample preparation that has high recoveries and high preconcentration factors while using a small amount of extractants. This procedure has gained widespread acceptance among scientists due to a variety of advantages, including its easiness, being cheap, green, and available in most laboratories. The current review has focused on the analysis of medicines and organic compounds using various modes of AALLME. The use of various extractants and support factors were developed in many modes of AALLME. A review of literature revealed that the procedure is used as a powerful and efficient approach for extracting medicals and organic compounds. This review explained 12 different types of AALLME methods. The findings on the modifications of AALLME modes that have been published are summarized. Future directions are also being discussed.
Collapse
Affiliation(s)
- Ebaa Adnan Azooz
- Chemistry Department, The Gifted Students’ School in Al-Najaf, Ministry of Education , Al-Najaf , Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University , Najaf , Iraq
| | | | - Muna Shakir Gburi
- Chemistry Department, The Gifted Students’ School in Al-Najaf, Ministry of Education , Al-Najaf , Iraq
| | | |
Collapse
|
12
|
Liu J, Li G, Wang P. Thiol-ene click synthesis of β-cyclodextrin-functionalized covalent organic framework-based magnetic nanocomposites (Fe3O4@COF@β-CD) for solid-phase extraction and determination of estrogens and estrogen mimics. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
LIU H, JIN J, GUO C, CHEN J, HU C. [Advances in solid-phase extraction for bisphenols in environmental samples]. Se Pu 2021; 39:835-844. [PMID: 34212584 PMCID: PMC9404209 DOI: 10.3724/sp.j.1123.2021.02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
Owing to the strict restrictions on the production and use of bisphenol A (BPA), bisphenol analogs (e. g., bisphenol S and bisphenol F) are gradually coming to use in many fields. BPA and these bisphenol analogs are so-called bisphenols (BPs). BPs as a class of endocrine disrupters are widely distributed in the environment (water, sediments, sludge, and aquatic products). BPs enter the human body through various routes, leading to endocrine disruption, cytotoxicity, genotoxicity, reproductive toxicity, dioxin-like effects, and neurotoxicity. The Canadian government has identified BPs as substances for further scoping/problem formulation. Because of the widespread attention paid to BPs in the environmental field, research is being expanded to cover water, sediment, dust, and biological samples, and other media. Given the significant differences in the complexity and pollution concentration of environmental samples, the development of pretreatment methods that afford high extraction efficiency, good purification selectivity, strong universality, operational simplicity, and high-throughput extraction and purification, are necessary to realize the highly sensitive detection of BPs in environmental media. In recent years, solid-phase extraction (SPE), accelerated solvent extraction (ASE), microwave-assisted extraction (MAE), and dispersion liquid-liquid-microextraction (DLLME) as new pretreatment technologies have gradually replaced the traditional liquid-liquid extraction and Soxhlet extraction. SPE has seen rapid development for the extraction and purification of BPs in various environmental samples, overcoming the bottlenecks related to time, energy, and solvent consumption in traditional methods while extending technical support for the analysis of emerging pollutants. The physicochemical properties, usage, and environmental hazards of typical BPs were briefly reviewed, with emphasis on the application of SPE products, development of new adsorbents, and transformation of the SPE mode. Commercialized SPE products are universally applicable in the field of environmental monitoring, while products suitable for the pretreatment of BPs are limited. The development of new adsorbents mainly focused on their adsorption capacity and selectivity. For example, ordered mesoporous silicon, carbon nanomaterials, metal-organic frameworks, and cyclodextrins have large surface areas, good adsorption performance, and regular pore structures, which improve the adsorption capacity of BPs. Molecularly imprinted polymers (MIPs) and mixed-mode ion-exchange polymers are mainly used to improve the selectivity of BPs in the purification process. In addition, MIPs have high chemical, mechanical, and thermal stabilities, which ensures their widespread application in the extraction, preconcentration, and separation of BPs. A variety of new SPE adsorbents can partially meet the diverse needs for detection. There is a consensus that the current challenges in analytical chemistry include the determination of contaminants at low concentration levels, but at the same time, more efficient and environment-friendly methodologies are required. With the introduction of high-sensitivity instruments in the market, the SPE model is seeing gradual development in terms of miniaturization, automation, and simplification. This in turn has minimized solvent consumption, analysis time, and labor cost, resulting in more efficient and affordable analytical methods such as QuEChERS, solid-phase microextraction (SPME), and magnetic solid-phase extraction (MSPE) to adapt to the new development scenario.
Collapse
Affiliation(s)
| | - Jing JIN
- *Tel:(0411)84379972,E-mail:
(金静)
| | | | | | | |
Collapse
|
14
|
Cañadas R, Garrido Gamarro E, Garcinuño Martínez RM, Paniagua González G, Fernández Hernando P. Occurrence of common plastic additives and contaminants in mussel samples: Validation of analytical method based on matrix solid-phase dispersion. Food Chem 2021; 349:129169. [PMID: 33548886 DOI: 10.1016/j.foodchem.2021.129169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
A new matrix solid-phase dispersion (MSPD) extraction methodology, combined with high-performance liquid chromatography equipped with a diode-array detector, was developed and validated for the simultaneous determination of 10 compounds in mussels from Galician Rias (Spain). These pollutants are compounds commonly used for plastic production as additives, as well as common plastic contaminants. The compounds selected were bisphenol-A, bisphenol-F, bisphenol-S, nonylphenol-9, nonylphenol, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene. The parameters affecting the MSPD extraction efficiency such as the type of sorbent, mass sample-sorbent ratio, and extraction solvent were optimised. The proposed method provided satisfactory quantitative recoveries (80-100%), with relative standard deviations lower than 7%. In all cases, the matrix-matched calibration curves were linear in the concentration range of 0.32-120.00 µg/kg, with quantification limits of 0.25-16.20 µg/kg. The novel developed MSPD-high-performance liquid chromatography methodology provided good sensitivity, accuracy, and repeatability for quality control analysis in mussels.
Collapse
Affiliation(s)
- R Cañadas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain
| | - E Garrido Gamarro
- Fishery Officer, Fisheries Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy.
| | - R M Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain.
| | - G Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain.
| | - P Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain
| |
Collapse
|
15
|
Mu S, Wang C, Liu H, Han G, Wu L, Li J. Development and evaluation of a novelty single-step cleanup followed by HPLC-QTRAP-MS/MS for rapid analysis of tricaine, tetracaine, and bupivacaine in fish samples. Biomed Chromatogr 2021; 35:e5176. [PMID: 33990966 DOI: 10.1002/bmc.5176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 01/11/2023]
Abstract
A novelty single-step cleanup method combined with HPLC coupled with triple quadrupole-linear ion trap MS/MS (HPLC-QTRAP-MS/MS) was developed for the analysis of tricaine, tetracaine, and bupivacaine in fish tissue. The target analytes were extracted using acetonitrile based on the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method under ultrasound irradiation. A cheap analytical filtration syringe (CAFS) cleanup column for single-step purification was proposed first; 300 mg of primary/secondary amino was proposed as the optimum purification sorbent; 1 mL of acetonitrile extract was transferred into a CAFS cleanup column and purified for analysis using HPLC-QTRAP-MS/MS. The limits of detection and the limits of quantification were 2.0 and 5.0 μg kg-1 , respectively. The recoveries were in the range of 88.73-108.72%. Inter-day and intra-day relative standard deviations were lower than 15% for all analytes. The developed method has been applied to measure real samples obtained from the local market.
Collapse
Affiliation(s)
- Shuhe Mu
- Chinese Academy of Fishery Sciences, Beijing, P. R. China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, P. R. China.,Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Hainan, P. R. China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
| | - Chunyu Wang
- Chinese Academy of Fishery Sciences, Beijing, P. R. China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, P. R. China.,Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Hainan, P. R. China
| | - Huan Liu
- Chinese Academy of Fishery Sciences, Beijing, P. R. China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, P. R. China.,Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Hainan, P. R. China
| | - Gang Han
- Chinese Academy of Fishery Sciences, Beijing, P. R. China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, P. R. China.,Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Hainan, P. R. China
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing, P. R. China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, P. R. China.,Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Hainan, P. R. China
| | - Jincheng Li
- Chinese Academy of Fishery Sciences, Beijing, P. R. China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, P. R. China.,Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Hainan, P. R. China
| |
Collapse
|
16
|
Rotimi OA, Olawole TD, De Campos OC, Adelani IB, Rotimi SO. Bisphenol A in Africa: A review of environmental and biological levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142854. [PMID: 33097272 DOI: 10.1016/j.scitotenv.2020.142854] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a synthetic ubiquitous environmental toxicant present in many industrial and consumer products. BPA is recognized as an endocrine-disrupting chemical (EDC), and its mechanisms of perturbation of the physiological process include interference with hormone pathways and epigenetic modifications. An increase in industrial productions and food packaging across Africa has resulted in increased utilization of BPA-containing products with a concomitant increase in environmental bioaccumulation and human exposure. In order to assess the extent of this bioaccumulation, we identified, collated, and summarized the levels of BPA that have been reported across Africa. To achieve this aim, we performed a systematic search of four indexing databases to identify articles and extracted the necessary data from the selected articles. Of the 42 publications we retrieved, 42% were on water samples, 22% on food, 20% on human biological fluids, 10% on sediments, soils, and sludge and 6% on consumer and personal care products (PCPs). The highest level of BPA reported in literature across Africa was 251 ng/mL, 384.8 ng/mL, 937.49 ng/g, 208.55 ng/mL, 3,590 μg/g, and 154,820 μg/g for water, wastewater, food, biological fluids, consumer and PCPs, and semisolids, respectively. This review presented a comparative perspective of these levels relative to regulatory limits and levels reported from other continents. Finally, this review highlighted critical needs for the regulation of BPA across Africa in order to stem its environmental and toxicological impact. We hope that this review will stimulate further research in understanding the impact of BPA on health outcomes and wellbeing across Africa.
Collapse
|
17
|
Liu J, Wu D, Yu Y, Liu J, Li G, Wu Y. Highly sensitive determination of endocrine disrupting chemicals in foodstuffs through magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1666-1675. [PMID: 32888325 DOI: 10.1002/jsfa.10787] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/15/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs), proved to be potential carcinogenic threats to human health, have received great concerns in food field. It was essential to develop effective methods to detect EDCs in food samples. The present study proposed an efficient method to determine trace EDCs including estrone (E1), 17β-estradiol (E2), estriol (E3) and bisphenol A (BPA) based on magnetic solid-phase extraction (MSPE) coupled high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in meat samples. RESULTS Fe3 O4 @COF(TpBD)/TiO2 nanocomposites were synthesized via functionalization of magnetic covalent organic frameworks (COFs) with titanium dioxide (TiO2 ) nanoparticles, and used as absorbents of MSPE to enrich EDCs. The efficient EDCs enrichment relies on π-π stacking interaction, hydrogen bonding, and the interaction between titanium ions (IV, Ti4+ ) and hydroxyl groups in EDCs, which improves the selectivity and sensitivity. Under the optimized conditions, target EDCs were rapidly extracted through MSPE with 5 min. Combining Fe3 O4 @COF(TpBD)/TiO2 based MSPE and HPLC-MS/MS to determine EDCs, good linearities were observed with correlation coefficient (R2 ) ≥ 0.9989. The limits of detection (LODs) and limits of quantification (LOQs) were 0.13-0.41 μg kg-1 and 0.66-1.49 μg kg-1 , respectively. Moreover, the proposed method was successfully applied to real samples analysis. CONCLUSIONS The established MSPE-HPLC-MS/MS method was successfully applied to determine EDCs in meat samples with rapidness, improved selectivity and sensitivity. It shows great prospects for EDCs detection in other complicated matrices. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Yanxin Yu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jichao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
18
|
Luo Z, Xu M, Wang R, Liu X, Huang Y, Xiao L. Magnetic Ti 3C 2 MXene functionalized with β-cyclodextrin as magnetic solid-phase extraction and in situ derivatization for determining 12 phytohormones in oilseeds by ultra-performance liquid chromatography-tandem mass spectrometry. PHYTOCHEMISTRY 2021; 183:112611. [PMID: 33341665 DOI: 10.1016/j.phytochem.2020.112611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Magnetic solid phase extraction integrated with in situ derivations for the profiling of 12 phytohormones in a single rapeseed seed was developed by using ultra-high performance liquid chromatography-tandem mass spectrometry. The Fe3O4@Ti3C2@β-cyclodextrin nanoparticles were firstly synthesized and used as an adsorbent for the solid-phase extraction of phytohormones. The magnetic dispersive solid-phase extraction and in situ derivation by the addition of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide were ingeniously combined. This efficient pre-treatment method integrated the extraction, purification, and derivatization processes into one single step. Satisfactory methodological performance was achieved by optimization of the parameters. Linearities (R2 > 0.9928) and recoveries (80.4 %-115.1%) at three spiked levels, as well as the low matrix effect (from -16.63% to 17.06%) and limits of detection (0.89-13.62 pg/mL) were obtained. The spatio-temporal profiling of target phytohormones in different tissues of rapeseed germination was investigated. This method was successfully employed for analyzing target phytohormones in different oilseeds samples.
Collapse
Affiliation(s)
- Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Mengwei Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Ruozhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiubing Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yongkang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Langtao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
19
|
Xu Y, Li X, Zhang W, Jiang H, Pu Y, Cao J, Jiang W. Zirconium(Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Food Chem 2020; 344:128650. [PMID: 33229159 DOI: 10.1016/j.foodchem.2020.128650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022]
Abstract
Zirconium(Ⅳ)-based metal-organic framework (MOF)-UiO-66-NH2 was fabricated to adsorb the imidacloprid and thiamethoxam in fruit samples before analysis using UPLC-MS/MS. The UiO-66-NH2 was confirmed by SEM, FTIR, and XRD. Key experimental parameters were investigated by response surface methodology (RSM). The desirability recovery of imidacloprid was 94.52% under optimum conditions (mount of adsorbent = 52.48 mg, volume of eluent = 5.18 mL, pH = 9, extraction time = 15 min). The desirability recovery of thiamethoxam was 93.57% under optimum conditions (mount of adsorbent = 50.58 mg, volume of eluent = 2.6 mL, pH = 5.65, extraction time = 11.94 min). Under the optimal conditions, the actual recovery of imidacloprid and thiamethoxam was 92.39% and 94.37%, respectively. Besides, the method was applied successfully to detect imidacloprid and thiamethoxam in different fruit samples. The results demonstrated that the UiO-66-NH2 is an excellent adsorbent for the extraction imidacloprid and thiamethoxam from fruit samples.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
20
|
Miossec C, Mille T, Lanceleur L, Monperrus M. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry. Food Chem 2020; 322:126765. [DOI: 10.1016/j.foodchem.2020.126765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/25/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
|
21
|
Wang X, Liu H, Sun Z, Zhao S, Zhou Y, Li J, Cai T, Gong B. Monodisperse restricted access material with molecularly imprinted surface for selective solid‐phase extraction of 17β‐estradiol from milk. J Sep Sci 2020; 43:3520-3533. [DOI: 10.1002/jssc.202000449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoxiao Wang
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Huachun Liu
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Zhian Sun
- School of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Shanwen Zhao
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Yanqiang Zhou
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Jianmin Li
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Tianpei Cai
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Bolin Gong
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| |
Collapse
|
22
|
Xiong X, Li D, Du Z, Xiong C, Jiang H. Magnetic solid-phase extraction modified Quick, Easy, Cheap, Effective, Rugged and Safe method combined with pre-column derivatization and ultra-high performance liquid chromatography-tandem mass spectrometry for determination of estrogens and estrogen mimics in pork and chicken samples. J Chromatogr A 2020; 1622:461137. [DOI: 10.1016/j.chroma.2020.461137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/01/2023]
|
23
|
Bonfoh SI, Li D, Xiong X, Du Z, Xiong C, Jiang H. Novel PEP-PAN@PSF rods extraction of EDCs in environmental water, sediment, and fish homogenate followed by pre-column derivatization and UHPLC-MS/MS detection. Talanta 2020; 210:120661. [DOI: 10.1016/j.talanta.2019.120661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/16/2019] [Accepted: 12/19/2019] [Indexed: 11/26/2022]
|
24
|
Air–assisted liquid–liquid microextraction; principles and applications with analytical instruments. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115734] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Jia L, Yang J, Zhao W, Jing X. Air-assisted ionic liquid dispersive liquid-liquid microextraction based on solidification of the aqueous phase for the determination of triazole fungicides in water samples by high-performance liquid chromatography. RSC Adv 2019; 9:36664-36669. [PMID: 35547267 PMCID: PMC9087865 DOI: 10.1039/c9ra07348e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/03/2019] [Indexed: 01/24/2023] Open
Abstract
A simple, rapid, and environmentally friendly approach was introduced to determine triazole fungicides in water samples by air-assisted ionic liquid dispersive liquid-liquid microextraction based on solidification of the aqueous phase using high-performance liquid chromatography-diode array detection. Ionic liquid was applied as the extraction solvent rather than a high-toxicity extraction solvent. The air-assisted dispersion method induced a trace amount of the ionic liquid to disperse as small droplets in the water sample, which significantly increased the contact area between the organic phase and the aqueous phase for the rapid transfer of target fungicides without using a dispersion solvent or auxiliary extraction devices. The solidification of the aqueous phase facilitated the collection of extraction solvent. The type of extraction solvent, the volume ratio of the extraction solvent to the water sample, the number of extraction cycles, the addition of NaCl, and pH values were evaluated. The recoveries were 72.65-100.13% with a relative standard deviation of 0.92% to 5.99%. The limits of quantification varied from 0.65 ng mL-1 to 1.83 ng mL-1. This approach can be used to determine fungicides in ground, river, and lake water samples.
Collapse
Affiliation(s)
- Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang Jiangxi 330047 China
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| |
Collapse
|
26
|
Azzouz A, Colón LP, Souhail B, Ballesteros E. A multi-residue method for GC-MS determination of selected endocrine disrupting chemicals in fish and seafood from European and North African markets. ENVIRONMENTAL RESEARCH 2019; 178:108727. [PMID: 31520833 DOI: 10.1016/j.envres.2019.108727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
An integrated study was conducted to determine the presence of six types of endocrine disrupting chemicals (bisphenol A, triclosan, two alkylphenols, two phenylphenols, eleven organophosphorus pesticides and seven parabens) in the fish and seafood samples from Europe and North Africa. The proposed method involves ultrasound-assisted extraction followed by continuous solid-phase extraction prior to GC-MS analysis. Analytical quality parameters such as linearity, accuracy, precision, sensitivity and selectivity were all good. Limits of detections ranged from 0.5 to 20.0 ng/kg. The relative standard deviation was lower than 7.5% and recoveries ranged from 84 to 105%. The method was successfully used to determine the target analytes in 20 fish and seafood samples from different fish shops and supermarkets in Europe and North Africa. Analyte contents spanned the range 4.6-730 ng/kg and were all below the maximum legally allowed limits. EDCs most frequently found in the samples analysed were dichlorvos, 2-phenylphenol and nonylphenol.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain; Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Laura Palacios Colón
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain.
| |
Collapse
|
27
|
Liu X, Yang Y, Chen Y, Zhang Q, Lu P, Hu D. Dissipation, residues and risk assessment of oxine-copper and pyraclostrobin in citrus. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1538-1550. [DOI: 10.1080/19440049.2019.1640894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiangwu Liu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Ya Yang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Ya Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Qingtao Zhang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Ping Lu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P.R. China
| | - Deyu Hu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
28
|
Xue J, Zhu X, Wu X, Shi T, Zhang D, Hua R. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice. J Sep Sci 2019; 42:2993-3001. [PMID: 31301158 DOI: 10.1002/jssc.201900473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 11/07/2022]
Abstract
A novel dispersive liquid-liquid microextraction that combines self-induced acid-base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self-reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1-undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001-0.1 µg/L), good recoveries (86.2-103.6%), high enrichment factors (25-50), and negligible matrix effects (-12.3-13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid-content matrices.
Collapse
Affiliation(s)
- Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Xianbin Zhu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Taozhong Shi
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Dong Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| |
Collapse
|
29
|
An eco-friendly sample preparation procedure base on low-density solvent-based air-assisted liquid-liquid microextraction for the simultaneous determination of 21 potential endocrine disruptors in urine samples by liquid chromatography-tandem mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Rocha DG, Lana MAG, Augusti R, Faria AF. Simultaneous Identification and Quantitation of 38 Hormonally Growth Promoting Agent Residues in Bovine Muscle by a Highly Sensitive HPLC-MS/MS Method. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01507-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH2-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2019; 1047:62-70. [DOI: 10.1016/j.aca.2018.09.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
|