1
|
Wang Y, Zhang T, Zhu L, Li R, Jiang Y, Li Z, Gao M, Zhan X. Optimization of welan gum extraction and purification using lysozyme and alkaline protease. Appl Microbiol Biotechnol 2024; 108:70. [PMID: 38194137 DOI: 10.1007/s00253-023-12880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
Welan gum, a natural polysaccharide produced by Sphingomonas sp. ATCC 31555, has attracted considerable attention in the scientific community due to its desirable properties. However, challenges, such as high viscosity, residual bacterial cells, carotenoids, and protein complexation, hinder the widespread application of welan gum. In this study, we established a method for the extraction and purification of welan gum using a synergistic approach with lysozyme and alkaline protease. Lysozyme hydrolysis conditions were optimized by applying response surface methodology, and the best results for bacterial cell removal were achieved at 11 000 U/g, 44 °C, and pH 9 after 3 h of treatment. Subsequently, we evaluated protein hydrolysis through computer simulation and identified alkaline protease as the most suitable enzyme. Through experimental investigations, we found that the optimal conditions for alkaline protease hydrolysis were 7500 U/g, 50 °C, pH 10, and 600 rpm. These conditions resulted in a sugar recovery rate of 76.1%, carotenoid removal rate of 89.5%, bacterial removal rate of 95.2%, and protein removal rate of 87.3% after 3 h of hydrolysis. The purified welan gum exhibited high transparency and purity. Structural characterization and antioxidant activity evaluation revealed that enzymatically purified welan gum has potential application prospects. Our study provides valuable insights into the optimal method for the enzymatic extraction and purification of welan gum. Such a method is conducive to the development of the multiple potential applications of welan gum. KEY POINTS: • A novel process for the synergistic purification of welan gum using lysozyme and alkaline protease was established. • In silico virtual digestion was employed to select the purification enzyme. • Welan gum with high transparency and purity was obtained.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - TianTian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Zhu
- A & F Biotech. Ltd, Burnaby, BC, V5A3P6, Canada
| | - Ruotong Li
- School of Communication, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Arnittali M, Tegopoulos SN, Kyritsis A, Harmandaris V, Papagiannopoulos A, Rissanou AN. Exploring the Origins of Association of Poly(acrylic acid) Polyelectrolyte with Lysozyme in Aqueous Environment through Molecular Simulations and Experiments. Polymers (Basel) 2024; 16:2565. [PMID: 39339029 PMCID: PMC11434948 DOI: 10.3390/polym16182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
This study provides a detailed picture of how a protein (lysozyme) complexes with a poly(acrylic acid) polyelectrolyte (PAA) in water at the atomic level using a combination of all-atom molecular dynamics simulations and experiments. The effect of PAA and temperature on the protein's structure is explored. The simulations reveal that a lysozyme's structure is relatively stable except from local conformational changes induced by the presence of PAA and temperature increase. The effect of a specific thermal treatment on the complexation process is investigated, revealing both structural and energetic changes. Certain types of secondary structures (i.e., α-helix) are found to undergo a partially irreversible shift upon thermal treatment, which aligns qualitatively with experimental observations. This uncovers the origins of thermally induced aggregation of lysozyme with PAA and points to new PAA/lysozyme bonds that are formed and potentially enhance the stability in the complexes. As the temperature changes, distinct amino acids are found to exhibit the closest proximity to PAA, resulting into different PAA/lysozyme interactions; consequently, a different complexation pathway is followed. Energy calculations reveal the dominant role of electrostatic interactions. This detailed information can be useful for designing new biopolymer/protein materials and understanding protein function under immobilization of polyelectrolytes and upon mild denaturation processes.
Collapse
Affiliation(s)
- Maria Arnittali
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, IACM/FORTH, GR-71110 Heraklion, Greece; (M.A.); (V.H.)
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Sokratis N. Tegopoulos
- School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR-15772 Athens, Greece; (S.N.T.); (A.K.)
| | - Apostolos Kyritsis
- School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR-15772 Athens, Greece; (S.N.T.); (A.K.)
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, IACM/FORTH, GR-71110 Heraklion, Greece; (M.A.); (V.H.)
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Aristeidis Papagiannopoulos
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, GR-11635 Athens, Greece
| | - Anastassia N. Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, GR-11635 Athens, Greece
| |
Collapse
|
3
|
Wu Z, Yu X, Chen P, Pan M, Liu J, Sahandi J, Zhou W, Mai K, Zhang W. Dietary Clostridium autoethanogenum protein has dose-dependent influence on the gut microbiota, immunity, inflammation and disease resistance of abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109737. [PMID: 38960106 DOI: 10.1016/j.fsi.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0 % (control), 4.10 % (CAP4.10) and 16.25 % (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1 % of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as β-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10 % of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25 % of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.
Collapse
Affiliation(s)
- Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Javad Sahandi
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Moreno-Vásquez MJ, Carretas-Valdez MI, Luque-Alcaraz AG, Quintero-Reyes IE, Tapia-Hernández JA, Arvizu-Flores AA, Moreno-Córdova EN, Graciano-Verdugo AZ. Conjugation of Lysozyme and Epigallocatechin Gallate for Improving Antibacterial and Antioxidant Properties. Curr Microbiol 2024; 81:264. [PMID: 39001894 DOI: 10.1007/s00284-024-03776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
One of the main interests in the food industry is the preservation of food from spoilage by microorganisms or lipid oxidation. A novel alternative is the development of additives of natural origin with dual activity. In the present study, a chemically modified lysozyme (Lys) with epigallocatechin gallate (EGCG) was developed to obtain a conjugate (Lys-EGCG) with antibacterial/antioxidant activity to improve its properties and increase its application potential. The modification reaction was carried out using a free radical grafting method for the Lys modification reaction, using ascorbic acid and hydrogen peroxide as radical initiators in an aqueous medium. The synthesis of Lys-EGCG conjugate was confirmed by spectroscopic (FT-IR, 1H-RMN, and XPS) and calorimetry differential scanning (DSC) analyses. The EGCG binding to the Lys biomolecule was quantified by the Folin-Ciocalteu method; the antibacterial activity was evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MCB) against Staphylococcus aureus and Pseudomonas fluorescens; the antioxidant activity was evaluated by ABTS, DPPH, and FRAP. The spectroscopic results showed that the Lys-EGCG conjugate was successfully obtained, and the DSC analysis revealed a 20 °C increase (P < 0.05) in the denaturation temperature of Lys due to EGCG modification. The EGCG concentration in Lys-EGCG was 97.97 ± 4.7 µmol of EGCG/g of sample. The antibacterial and antioxidant activity of the Lys-EGCG conjugate was higher (P < 0.05) than pure EGCG and Lys. The chemical modification of Lys with EGCG allows for the bioconjugate with a dual function (antibacterial/antioxidant), broadening the range of Lys and EGCG applications to different areas such as food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- María J Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, 83000, México
| | | | - Ana G Luque-Alcaraz
- Ingeniería Biomédica, Universidad Estatal de Sonora, Hermosillo, 83100, México
| | | | - José A Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, 83000, México
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, 83000, México
| | - Elena N Moreno-Córdova
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, 83000, México
| | | |
Collapse
|
5
|
Shi YJ, Che YN, Zhao YM, Ran RX, Zhao YQ, Yu SS, Chen MY, Dong LY, Zhao ZY, Wang XH. High-efficient separation of deoxyribonucleic acid from pathogenic bacteria by hedgehog-inspired magnetic nanoparticles microextraction. J Chromatogr A 2024; 1724:464923. [PMID: 38653039 DOI: 10.1016/j.chroma.2024.464923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Efficient separation of deoxyribonucleic acid (DNA) through magnetic nanoparticles (MN) is a widely used biotechnology. Hedgehog-inspired MNs (HMN) possess a high-surface-area due to the distinct burr-like structure of hedgehog, but there is no report about the usage of HMN for DNA extraction. Herein, to improve the selection of MN and illustrate the performance of HMN for DNA separation, HMN and silica-coated Fe3O4 nanoparticles (Fe3O4@SiO2) were fabricated and compared for the high-efficient separation of pathogenic bacteria of DNA. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical Gram-negative and Gram-positive bacteria and are selected as model pathogenic bacteria. To enhance the extraction efficiency of two kinds of MNs, various parameters, including pretreatment, lysis, binding and elution conditions, have been optimized in detail. In most separation experiments, the DNA yield of HMN was higher than that of Fe3O4@SiO2. Therefore, a HMN-based magnetic solid-phase microextraction (MSPE) and quantitative real-time PCR (qPCR) were integrated and used to detect pathogenic bacteria in real samples. Interestingly, the HMN-based MSPE combined qPCR strategy exhibited high sensitivity with a limit of detection of 2.0 × 101 CFU mL-1 for E. coli and 4.0 × 101 CFU mL-1 for S. aureus in orange juice, and 2.8 × 102 CFU mL-1 for E. coli and 1.1 × 102 CFU mL-1 for S. aureus in milk, respectively. The performance of the proposed strategy was significantly better than that of commercial kit. This work could prove that the novel HMN could be applicable for the efficient separation of DNA from complex biological samples.
Collapse
Affiliation(s)
- Yu-Jun Shi
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ya-Ning Che
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yi-Mei Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Rui-Xue Ran
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ya-Qi Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Meng-Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Chen J, Zhang Z, Li H, Sun M, Tang H. Preparation, structural characterization, and functional attributes of zein-lysozyme-κ-carrageenan ternary nanocomposites for curcumin encapsulation. Int J Biol Macromol 2024; 270:132264. [PMID: 38734340 DOI: 10.1016/j.ijbiomac.2024.132264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The low water solubility and inadequate bioavailability of curcumin significantly hinder its broad biological applications in the realms of food and medicine. There is limited information currently available regarding the particle characteristics and functional capabilities of zein-lysozyme-based nanomaterials. Thereby, the primary goal of the current work is to effectively develop innovative zein-lysozyme-κ-carrageenan complex nanocomposites (ZLKC) as a reliable carrier for curcumin encapsulation. As a result, ZLKC nanoparticles showed a smooth spherical nanostructure with improved encapsulation efficiency. Fourier-transform infrared, fluorescence spectroscopy, dissociation assay, and circular dichroism analysis revealed that hydrophobic and electrostatic interactions and hydrogen bonding were pivotal in the construction and durability of these composites. X-ray diffraction examination affirmed the lack of crystallinity in curcumin encapsulated within nanoparticles. The incorporation of κ-carrageenan significantly improved the physicochemical stability of ZLKC nanoparticles in diverse environmental settings. Additionally, ZLKC nanocomposites demonstrated enhanced antioxidant and antimicrobial properties, as well as sustained release characteristics. Therefore, these findings demonstrate the potential application of ZLKC nanocomposites as delivery materials for encapsulating bioactive substances.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Mengchu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
7
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Zhang Q, Zhao Y, Yao Y, Wu N, Chen S, Xu L, Tu Y. Characteristics of hen egg white lysozyme, strategies to break through antibacterial limitation, and its application in food preservation: A review. Food Res Int 2024; 181:114114. [PMID: 38448098 DOI: 10.1016/j.foodres.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Hen egg white lysozyme (HEWL) is used as a food additive in China due to its outstanding antibacterial properties. It is listed as GRAS grade (generally recognized as safe) by the United States Food and Drug Administration (FDA, US) and has been extensively researched and used in food preservation. And the industrial production of HEWL already been realized. Given the complex food system that can affect the antibacterial activity of HEWL, and the limitations of HEWL itself on Gram-negative bacteria. Based on the structure and main biological characteristics of HEWL, this paper focuses on reviewing methods to enhance the stability and antibacterial properties of HEWL. Immobilization tactics such as chemically driven self-assembly, embedding and adsorption address the restriction of poor HEWL antibacterial activity effected by external factors. Both intermolecular and intramolecular modification strategies break the bactericidal deficiencies of HEWL itself. It also comprehensively analyzes the current application status and future prospects of HEWL in the food preservation. There was limited research on the biological methods in modifying HEWL. If the HEWL is genetically engineered, it can broaden its antimicrobial spectrum, improve its other biological activities, so as to further expand its application in the food industry. At present, research on HEWL mainly focused on its antibacterial properties, whereas its application in anti-inflammatory and antioxidant effects also presented great potential.
Collapse
Affiliation(s)
- Qingqing Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
Naveed M, Wen S, Chan MWH, Wang F, Aslam S, Yin X, Xu B, Ullah A. Expression of BSN314 lysozyme genes in Escherichia coli BL21: a study to demonstrate microbicidal and disintegarting potential of the cloned lysozyme. Braz J Microbiol 2024; 55:215-233. [PMID: 38146050 PMCID: PMC10920529 DOI: 10.1007/s42770-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 μg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 μg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 μg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 μg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Sai Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Asad Ullah
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, 75280, Pakistan
| |
Collapse
|
10
|
Xu Y, Liu Y, Luo Y, Xu X, Li Y, Zhao L, Li T, Zhang Y, He P, Mou X. Targeted-activation superparamagnetic spherical nucleic acid nanomachine for ultrasensitive SERS detection of lysozyme based on a bienzymatic-mediated in situ amplification strategy. ANAL SCI 2024; 40:429-438. [PMID: 38112960 DOI: 10.1007/s44211-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Lysozyme (LYS) is a widely used bacteriostatic enzyme. In this paper, we built a sensitive and accurate Raman biosensing platform to detect trace amounts of LYS. The method is based on magnetic spherical nucleic acid formed by a combination of LYS aptamer (Apt) and magnetic beads (MBs). Meanwhile, this method utilizes a dual enzyme-assisted nucleic acid amplification circuit and surface-enhanced Raman scattering (SERS). In this sensing strategy, which is based on the specific recognition of Apt, magnetic spherical nucleic acids were associated with SERS through a nucleic acid amplification circuit, and the low abundance of LYS was converted into a high-specificity Raman signal. Satellite-like MB@AuNPs were formed in the presence of the target, which separated specifically in a magnetic field, effectively avoided the interference of complex sample environment. Under the optimal sensing conditions, the concentration of LYS exhibited a good linear relationship between 1.0 × 10-14 and 5.0 × 10-12 M and the limit of detection was as low as 8.3 × 10-15 M. In addition, the sensor strategy shows excellent accuracy and sensitivity in complex samples, providing a new strategy for the specific detection of LYS.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yue Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yu Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xinlin Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yingying Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lin Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Peng He
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoming Mou
- Analytical and Testing Center, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
11
|
Xu J, Xia W, Sheng G, Jiao G, Liu Z, Wang Y, Zhang X. Progress of disinfection catalysts in advanced oxidation processes, mechanisms and synergistic antibiotic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169580. [PMID: 38154648 DOI: 10.1016/j.scitotenv.2023.169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Human diseases caused by pathogenic microorganisms make people pay more attention to disinfection. Meanwhile, antibiotics can cause microbial resistance and increase the difficulty of disease treatment, resulting in risk of triggering a vicious circle. Advanced oxidation process (AOPs) has been widely studied in the field of synergistic treatment of the two contaminates. This paper reviews the application of catalytic materials and their modification strategies in the context of AOPs for disinfection and antibiotic degradation. It also delves into the mechanisms of disinfection such as the pathways for microbial inactivation and the related influencing factors, which are essential for understanding the pivotal role of catalytic materials in disinfection principles by AOPs. More importantly, the exploratory research on the combined use of AOPs for disinfection and antibiotic degradation is discussed, and the potential and prospects in this field is highlighted. Finally, the limitations and challenges associated with the application of AOPs in disinfection and antibiotic degradation are summarized. It aims to provide a starting point for future research efforts to facilitate the widespread use of advanced oxidation processes in the field of public health.
Collapse
Affiliation(s)
- Jin Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wannan Xia
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guo Sheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanhao Jiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenhao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Guo S, He F, Hu S, Zong W, Liu R. Novel evidence on iodoacetic acid-induced immune protein functional and conformational changes: Focusing on cellular and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169359. [PMID: 38103599 DOI: 10.1016/j.scitotenv.2023.169359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Elevated levels of iodide occur in raw water in certain regions, where iodination disinfection byproducts are formed during chloramine-assisted disinfection of naturally iodide-containing water. Iodoacetic acid (IAA) is one of the typical harmful products. The mechanisms underlying IAA-induced immunotoxicity and its direct effects on biomolecules remained unclear in the past. Cellular, biochemical, and molecular methods were used to investigate the mechanism of IAA-induced immunotoxicity and its binding to lysozyme. In the presence of IAA, the cell viability of coelomocytes was significantly reduced to 70.8 %, as was the intracellular lysozyme activity. Upon binding to IAA, lysozyme underwent structural and conformational changes, causing elongation and unfolding of the protein due to loosening of the backbone and polypeptide chains. IAA effectively quenched the fluorescence of lysozyme and induced a reduction in particle sizes. Molecular docking revealed that the catalytic residue, Glu 35, which is crucial for lysozyme activity, resided within the docking range, suggesting the preferential binding of IAA to the active site of lysozyme. Moreover, electrostatic interaction emerged as the primary driving force behind the interaction between IAA and lysozyme. In conclusion, the structural and conformational changes induced by IAA in lysozyme resulted in impaired immune protein function in coelomocytes, leading to cellular dysfunction.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
13
|
Li B, Wang X, Gao J, Liang H, Wu D, Chu S, Zhu X, Zhou B. Effect of tannic acid modification on the interface and emulsification properties of zein colloidal particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:643-654. [PMID: 37647552 DOI: 10.1002/jsfa.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/15/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Interface modification driven by supramolecular self-assembly has been accepted as a valuable strategy for emulsion stabilization enhancement. However, there has been a dearth of comparative research on the effect of simple complexation and assembly from the perspective of the responsible mechanism. RESULTS The present study selected zein and tannic acid (TA) as representative protein and polyphenol modules for self-assembly (coined as TA-modified zein particle and TA-zein complex particle) to explore the surface properties and interfacial behavior, as well as the stability of constructed Pickering emulsions to obtain the regulation law of different modification methods on the interfacial behavior of colloidal particles. The results demonstrated that TA-modified zein colloidal particles potentially improved the emulsifying properties. When the TA concentration was 3 mmol L-1 , the optimized TA-modified zein particle was nano-sized (109.83 nm) and had advantageous interfacial properties, including sharply reduced surface hydrophobicity, as well as a low diffusion rate at the oil/water interface. As a result, the shelf life of Pickering emulsion containing 50% oil phase was extended to 90 days. CONCLUSION Through multi-angled research on the properties of the interfacial membrane, improvement of emulsion stability was a result of the formation of viscoelastic interfacial film that resulted from the decrease of absorption rate between particles and interface. Using refined regulation to investigate the role of different sample preparation methods from a mechanistic perspective. Overall, the present study has provided a reference for TA to regulate the surface properties and interface behavior of zein colloidal particles, enriched the understanding of colloidal interface assembly, and provided a theoretical basis for the quality control of interface-oriented food systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bojia Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin Gao
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shang Chu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Xiangwei Zhu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Bin Zhou
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education Hubei Province), Hubei University of Technology, Wuhan, China
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
| |
Collapse
|
14
|
Han Z, Wang N, Lv Y, Fu Q, Wang G, Su X. A novel self-assembled dual-emissive ratiometric fluorescent nanoprobe for alkaline phosphatase sensing. Anal Chim Acta 2024; 1287:342146. [PMID: 38182401 DOI: 10.1016/j.aca.2023.342146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alkaline phosphatase (ALP) is widely found in various organs and tissues of the human body which could assist in the verification of the presence of various diseases through its content in the blood. In the past few years, many analytical methods for ALP activity assays have been explored. However, a simple and economical method with high sensitivity and specificity also remains great challenge. Therefore, the development of sensitive and efficient approach for ALP analysis is of great significance in biomedical studies. RESULTS Herein, we constructed a highly sensitive and label-free ratiometric fluorometric biosensing platform for the determination of ALP activity, which utilizing lysozyme(Ly)-functionalized 5-methyl-2-thiouracil(MTU)-modified gold nanoclusters (MTU-Ly@Au NC) and poly-dopamine (PDA) as signal indicators. Dopamine (DA) can self-polymerizes to form PDA under alkaline conditions that can further quenched the fluorescence of MTU-Ly@Au NC at 525 nm due to fluorescence resonance energy transfer (FRET) and absorption competition quenching (ACQ) effects. In this process, the PDA fluorescence intensity at 325 nm was nearly unchanged. After the addition of ALP, ascorbic acid (AA) which can alleviate the self-polymerization process of DA was generated from the substrate ascorbic acid 2-phosphate (AAP), thus changing ratiometric fluorescence intensity of I525/I325. Hence, by monitoring the fluorescence ratio (I525/I325), a ratiometric fluorescence biosensing platform for ALP was established with the linear calibration in the range of 0.5-8 U L-1 and the limit of detection of 0.157 U L-1. SIGNIFICANCE This work not only synthesized a novel fluorescence probe with simple preparation and low cost for ALP which has excellent anti-interference properties and selectivity. Furthermore, this biosensing platform was successfully applied for the determination of ALP activity in human serum samples. This work provided a potential tool for biomedical diagnostics in the future.
Collapse
Affiliation(s)
- Zhixuan Han
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical University, Shenyang, 110034, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Chen LL, Shi WP, Zhou YQ, Zhang TD, Lin WJ, Guo WH, Zhou RB, Yin DC. High-efficiency antibacterial calcium alginate/lysozyme/AgNPs composite sponge for wound healing. Int J Biol Macromol 2024; 256:128370. [PMID: 38000594 DOI: 10.1016/j.ijbiomac.2023.128370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Infection poses a significant barrier to effective wound repair, leading to increased inflammatory responses that ultimately result in incomplete and prolonged wound healing. To address this challenge, numerous antibacterial ingredients have been incorporated into dressings to inhibit wound infection. Our previous work demonstrated that lysozyme/silver nanoparticles (LYZ/AgNPs) complexes, prepared using an eco-friendly one-step aqueous method, exhibited excellent antibacterial efficacy with favorable biosafety. To further explore its potential application in advancing wound healing, calcium alginate (CA) with good porosity, water absorption, and water retention capacities was formulated with LYZ/AgNPs to prepare composite sponge (CA/LYZ/AgNPs). As expected, in vivo experiments involving full-thickness skin wound and scald wound healing experiments demonstrated that CA-LYZ-AgNPs composite sponges with excellent biocompatibility exhibited remarkable antibacterial activity against gram-positive bacteria, gram-negative bacteria and fungi, and outperformed the wound healing process efficacy of other commercially available AgNPs-loaded wound dressings. In summary, this work introduces a CA/LYZ/AgNPs sponge featuring exceptional antibacterial efficacy and biocompatibility, thus holding promising potential in wound care applications.
Collapse
Affiliation(s)
- Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China; The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712000, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Ya-Qing Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Ren-Bin Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
16
|
Asgharzadeh S, Shareghi B, Farhadian S. Structural alterations and inhibition of lysozyme activity upon binding interaction with rotenone: Insights from spectroscopic investigations and molecular dynamics simulation. Int J Biol Macromol 2024; 254:127831. [PMID: 37935297 DOI: 10.1016/j.ijbiomac.2023.127831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
The pervasive employment of pesticides such as rotenone on a global scale represents a substantial hazard to human health through direct exposure. Therefore, exploring the interactions between such compounds and body macromolecules such as proteins is crucial in comprehending the underlying mechanisms of their detrimental effects. The present study aims to delve into the molecular interaction between rotenone and lysozyme by employing spectroscopic techniques along with Molecular dynamics (MD) simulation in mimicked physiological conditions. The binding interaction resulted in a fluorescence quenching characterized by both dynamic and static mechanisms, with static quenching playing a prominent role in governing this phenomenon. The analysis of thermodynamic parameters indicated that hydrophobic interactions primarily governed the spontaneous bonding process. FT-IR and circular dichroism findings revealed structural alternations of lysozyme upon complexation with rotenone. Also, complexation with rotenone declined the biological activity of lysozyme, thus rotenone could be considered an enzyme inhibitor. Further, the binding interaction substantially decreased the thermal stability of lysozyme. Molecular docking studies showed the binding location and the key residues interacting with rotenone. The findings of the spectroscopic investigations were confirmed and accurately supported by MD simulation studies.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
17
|
Choi D, Bedale W, Chetty S, Yu JH. Comprehensive review of clean-label antimicrobials used in dairy products. Compr Rev Food Sci Food Saf 2024; 23:e13263. [PMID: 38284580 DOI: 10.1111/1541-4337.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suraj Chetty
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Bellassai N, D'Agata R, Spoto G. Plasmonic aptasensor with antifouling dual-functional surface layer for lysozyme detection in food. Anal Chim Acta 2023; 1283:341979. [PMID: 37977796 DOI: 10.1016/j.aca.2023.341979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Antifouling coatings are critically necessary for optical biosensors for various analytical application sectors, from medical diagnostics to foodborne pathogen detection. They help avoid non-specific protein/cell attachment on the active biosensor surface and catch the analytes directly in the complex media. Advances in antifouling plasmonic surfaces have been mainly focused on detecting clinical biomarkers in real biofluids, whereas developing antifouling coatings for direct analysis of analytes in complex media has been scarcely investigated for food quality control and safety. Herein, we propose a new low-fouling poly-l-lysine (PLL)-based surface layer for directly detecting an allergen protein, lysozyme, in the food matrix using surface plasmon resonance. The PLL-based polymer contains densely immobilized anionic oligopeptide side chains to create an electric charge-balanced layer able to repel the non-specific adsorption of undesired molecules on the biosensor surface. It also includes sparsely attached aptamer probes for capturing lysozyme directly in food sources with no pre-analytical sample treatment. We optimized the surface layer fabrication condition and tested the dual-functional surface to evaluate its ability to detect the target protein selectively. The developed analytical approach allowed for achieving a limit of detection of 0.04 μg mL-1 (2.95 nM) and a limit of quantification of 0.13 μg mL-1 (8.95 nM). Lysozyme was successfully quantified in milk samples using the plasmonic dual-functional aptasensor without sample pre-treatment or target isolation, illustrating the device's utility.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
19
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
20
|
Liu H, Guan F, Liu T, Yang L, Fan L, Liu X, Luo H, Wu N, Yao B, Tian J, Huang H. MECE: a method for enhancing the catalytic efficiency of glycoside hydrolase based on deep neural networks and molecular evolution. Sci Bull (Beijing) 2023; 68:2793-2805. [PMID: 37867059 DOI: 10.1016/j.scib.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
The demand for high efficiency glycoside hydrolases (GHs) is on the rise due to their various industrial applications. However, improving the catalytic efficiency of an enzyme remains a challenge. This investigation showcases the capability of a deep neural network and method for enhancing the catalytic efficiency (MECE) platform to predict mutations that improve catalytic activity in GHs. The MECE platform includes DeepGH, a deep learning model that is able to identify GH families and functional residues. This model was developed utilizing 119 GH family protein sequences obtained from the Carbohydrate-Active enZYmes (CAZy) database. After undergoing ten-fold cross-validation, the DeepGH models exhibited a predictive accuracy of 96.73%. The utilization of gradient-weighted class activation mapping (Grad-CAM) was used to aid us in comprehending the classification features, which in turn facilitated the creation of enzyme mutants. As a result, the MECE platform was validated with the development of CHIS1754-MUT7, a mutant that boasts seven amino acid substitutions. The kcat/Km of CHIS1754-MUT7 was found to be 23.53 times greater than that of the wild type CHIS1754. Due to its high computational efficiency and low experimental cost, this method offers significant advantages and presents a novel approach for the intelligent design of enzyme catalytic efficiency. As a result, it holds great promise for a wide range of applications.
Collapse
Affiliation(s)
- Hanqing Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tuoyu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingxi Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jian Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Guagliano M, Cristiani C, Dell’Anno M, Dotelli G, Finocchio E, Lacalamita M, Mesto E, Reggi S, Rossi L, Schingaro E. A Commercial Clay-Based Material as a Carrier for Targeted Lysozyme Delivery in Animal Feed. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2965. [PMID: 37999319 PMCID: PMC10674955 DOI: 10.3390/nano13222965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The controlled supply of bioactive molecules is a subject of debate in animal nutrition. The release of bioactive molecules in the target organ, in this case the intestine, results in improved feed, as well as having a lower environmental impact. However, the degradation of bioactive molecules' in transit in the gastrointestinal passage is still an unresolved issue. This paper discusses the feasibility of a simple and cost-effective procedure to bypass the degradation problem. A solid/liquid adsorption procedure was applied, and the operating parameters (pH, reaction time, and LY initial concentration) were studied. Lysozyme is used in this work as a representative bioactive molecule, while Adsorbo®, a commercial mixture of clay minerals and zeolites which meets current feed regulations, is used as the carrier. A maximum LY loading of 32 mgLY/gAD (LY(32)-AD) was obtained, with fixing pH in the range 7.5-8, initial LY content at 37.5 mgLY/gAD, and reaction time at 30 min. A full characterisation of the hybrid organoclay highlighted that LY molecules were homogeneously spread on the carrier's surface, where the LY-carrier interaction was mainly due to charge interaction. Preliminary release tests performed on the LY(32)-AD synthesised sample showed a higher releasing capacity, raising the pH from 3 to 7. In addition, a preliminary Trolox equivalent antioxidant capacity (TEAC) assay showed an antioxidant capacity for the LY of 1.47 ± 0.18 µmol TroloxEq/g with an inhibition percentage of 33.20 ± 3.94%.
Collapse
Affiliation(s)
- Marianna Guagliano
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy;
| | - Cinzia Cristiani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy;
| | - Matteo Dell’Anno
- Dipartimento di Medicina Veterinaria e Scienze Animali—DIVAS, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.D.); (S.R.); (L.R.)
| | - Giovanni Dotelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy;
| | - Elisabetta Finocchio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Via Opera Pia 15, 16145 Genova, Italy;
| | - Maria Lacalamita
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (M.L.); (E.M.); (E.S.)
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (M.L.); (E.M.); (E.S.)
| | - Serena Reggi
- Dipartimento di Medicina Veterinaria e Scienze Animali—DIVAS, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.D.); (S.R.); (L.R.)
| | - Luciana Rossi
- Dipartimento di Medicina Veterinaria e Scienze Animali—DIVAS, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.D.); (S.R.); (L.R.)
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (M.L.); (E.M.); (E.S.)
| |
Collapse
|
22
|
Lu N, Wang B, Zhu X. Soft Sensor Modeling Method for the Marine Lysozyme Fermentation Process Based on ISOA-GPR Weighted Ensemble Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:9119. [PMID: 38005505 PMCID: PMC10675238 DOI: 10.3390/s23229119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Due to the highly nonlinear, multi-stage, and time-varying characteristics of the marine lysozyme fermentation process, the global soft sensor models established using traditional single modeling methods cannot describe the dynamic characteristics of the entire fermentation process. Therefore, this study proposes a weighted ensemble learning soft sensor modeling method based on an improved seagull optimization algorithm (ISOA) and Gaussian process regression (GPR). First, an improved density peak clustering algorithm (ADPC) was used to divide the sample dataset into multiple local sample subsets. Second, an improved seagull optimization algorithm was used to optimize and transform the Gaussian process regression model, and a sub-prediction model was established. Finally, the fusion strategy was determined according to the connectivity between the test samples and local sample subsets. The proposed soft sensor model was applied to the prediction of key biochemical parameters of the marine lysozyme fermentation process. The simulation results show that the proposed soft sensor model can effectively predict the key biochemical parameters with relatively small prediction errors in the case of limited training data. According to the results, this model can be expanded to the soft sensor prediction applications in general nonlinear systems.
Collapse
Affiliation(s)
| | - Bo Wang
- Key Laboratory of Agricultural Measurement and Control Technology and Equipment for Mechanical Industrial Facilities, School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (N.L.); (X.Z.)
| | | |
Collapse
|
23
|
Zhou H, Zhang S, Lei M, Cai Y, Wang H, Sun J, Cui J, Liu C, Qu X. A suture-free, shape self-adaptive and bioactive PEG-Lysozyme implant for Corneal stroma defect repair and rapid vision restoration. Bioact Mater 2023; 29:1-15. [PMID: 37456580 PMCID: PMC10338238 DOI: 10.1016/j.bioactmat.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Corneal transplantation is a prevailing treatment to repair injured cornea and restore vision but faces the limitation of donor tissue shortage clinically. In addition, suturing-needed transplantation potentially causes postoperative complications. Herein, we design a PEG-Lysozyme injective hydrogel as a suture-free, shape self-adaptive, bioactive implant for corneal stroma defect repair. This implant experiences a sol-gel phase transition via an in situ amidation reaction between 4-arm-PEG-NHS and lysozyme. The physicochemical properties of PEG-Lysozyme can be tuned by the components ratio, which confers the implant mimetic corneal modulus and provides tissue adhesion to endure increased intraocular pressure. In vitro tests prove that the implant is beneficial to Human corneal epithelial cells growth and migration due to the bioactivity of lysozyme. Rabbit lamellar keratoplasty experiment demonstrates that the hydrogel can be filled into defect to form a shape-adaptive implant adhered to native stroma. The implant promotes epithelialization and stroma integrity, recovering the topology of injured cornea to normal. A newly established animal forging behavior test prove a rapid visual restoration of rabbits when use implant in a suture free manner. In general, this work provides a promising preclinical practice by applicating a self-curing, shape self-adaptive and bioactive PEG-Lysozyme implant for suture-free stroma repair.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yixin Cai
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, 200237, China
| |
Collapse
|
24
|
Wang Y, Wang B, Gao Y, Nakanishi H, Gao XD, Li Z. Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris. Biotechnol J 2023; 18:e2300259. [PMID: 37470505 DOI: 10.1002/biot.202300259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Human lysozyme (hLYZ), an emerging antibacterial agent, has extensive application in the food and pharmaceutical industries. However, the source of hLYZ is particularly limited. RESULTS To achieve highly efficient expression and secretion of hLYZ in Pichia pastoris, multiple strategies including G418 sulfate screening, signal sequence optimization, vacuolar sorting receptor VPS10 disruption, and chaperones/transcription factors co-expression were applied. The maximal enzyme activity of extracellular hLYZ in a shaking flask was 81,600 ± 5230 U mL-1 , which was about five times of original strain. To further reduce the cost, the optimal medium RDMY was developed and the highest hLYZ activity reached 352,000 ± 16,696.5 U mL-1 in a 5 L fermenter. CONCLUSION This research provides a very useful and cost-effective approach for the hLYZ production in P. pastoris and can also be applied to the production of other recombinant proteins.
Collapse
Affiliation(s)
- Yasen Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Buqing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Guan T, Feng J, Zhu Q, Wang L, Xie P, Wang H, Li J. Effects of abamectin on nonspecific immunity, antioxidation, and apoptosis in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109137. [PMID: 37827246 DOI: 10.1016/j.fsi.2023.109137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Abamectin, a pesticide of 16-member macrocyclic lactones, is widely applied in agriculture. As an important environmental factor, pesticides pose a great threat to defense system in aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the defense mechanism of P. clarkii to abamectin. In this study, P. clarkii were exposed to 0, 0.2, 0.4, 0.6 mg/L abamectin, immune- and antioxidant-related enzymes activities, genes expression levels, and histological observations were used to analyze the defense capacity of P. clarkii to abamectin. With increasing abamectin concentration, reactive oxygen species (ROS) level and malondiadehyde (MDA) content increased significantly. Meanwhiile, acid phosphate (ACP), alkaline phosphatase (AKP) activities, total haemocyte counts (THC), and Crustin expression level decreased significantly, superoxide dismutase (SOD), catalase (CAT) activities, total antioxidant capacity (T-AOC), and GPX expression level also decreased significantly. Hematoxylin & eosin (H&E) observation showed that with increasing abamectin concentration, hepatopancreas were damaged, especially membrane structure. Through TUNEL observation and apoptosis-related genes (PcCTSL, Bcl-2, Bax, BI-1, PcCytc, caspase-3) expression levels, with increasing abamectin concentration, apoptosis rate increased significantly. Results of this study indicated that abamectin caused oxidative damage to P. clarkii, resulting in damage to defense system, suppression of nonspecific immunity and antioxidation, and promotion of apoptosis. It provided theoretical basis for healthy P. clarkii culture, and for further study on defense mechanism of aquatic animals to pesticides.
Collapse
Affiliation(s)
- Tianyu Guan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qianqian Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Long Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Hui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
26
|
Wu Q, Xu C, Shi W, Li L, Zhang H, Liu T, Fan J, Cui L, Li J. Suitable carrier protein and linker peptide significantly increase the secretory expression of human lysozyme in Aspergillus niger. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1677-1680. [PMID: 37661695 PMCID: PMC10577450 DOI: 10.3724/abbs.2023153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/06/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Qi Wu
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Can Xu
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Wei Shi
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Lifang Li
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Hui Zhang
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Tianqi Liu
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Junbo Fan
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Lingmeng Cui
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| | - Jie Li
- />College of Life SciencesNortheast Agricultural UniversityHarbin150030China
| |
Collapse
|
27
|
Wu Y, Cheng B, Ji L, Lv X, Feng Y, Li L, Wu X. Dietary lysozyme improves growth performance and intestinal barrier function of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:249-258. [PMID: 37662115 PMCID: PMC10472418 DOI: 10.1016/j.aninu.2023.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 09/05/2023]
Abstract
Lysozyme (LZ) is a purely natural, nonpolluting and nonspecific immune factor, which has beneficial effects on the healthy development of animals. In this study, the influences of LZ on the growth performance and intestinal barrier of weaned piglets were studied. A total of 48 weaned piglets (Landrace × Yorkshire, 22 d old) were randomly divided into a control group (basal diet) and a LZ group (0.1% LZ diet) for 19 d. The results showed that LZ could significantly improve the average daily gain (ADG, P < 0.05) and average daily feed intake (ADFI, P < 0.05). LZ also improved the intestinal morphology and significantly increased the expression of occludin in the jejunum (P < 0.05). In addition, LZ down-regulated the expression of interleukin-1β (IL-1β, P < 0.05) and tumor necrosis factor-α (TNF-α, P < 0.05), and inhibited the expression of the genes in the nuclear factor-k-gene binding (NF-κB, P < 0.05) signaling pathway. More importantly, the analysis of intestinal flora showed LZ increased the abundance of Firmicutes (P < 0.05) and the ratio of Firmicutes to Bacteroidota (P = 0.09) at the phylum level, and increased the abundance of Clostridium_sensu_stricto_1 (P < 0.05) and reduced the abundance of Olsenella and Prevotella (P < 0.05) at the genus level. In short, this study proved that LZ could effectively improve the growth performance, relieve inflammation and improve the intestinal barrier function of weaned piglets. These findings provided an important theoretical basis for the application of LZ in pig production.
Collapse
Affiliation(s)
- Yuying Wu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Bei Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Longxiang Ji
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian, 463000, China
| | - Xiangyun Lv
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian, 463000, China
| | - Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liu’an Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
28
|
Zhao Y, Li B, Zhang W, Zhang L, Zhao H, Wang S, Huang C. Recent Advances in Sustainable Antimicrobial Food Packaging: Insights into Release Mechanisms, Design Strategies, and Applications in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11806-11833. [PMID: 37467345 DOI: 10.1021/acs.jafc.3c02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenping Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lanyu Zhang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
29
|
Bergamo A, Sava G. Pharmacological Modulation of Host Immunity with Hen Egg White Lysozyme (HEWL)-A Review. Molecules 2023; 28:5027. [PMID: 37446691 DOI: 10.3390/molecules28135027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In the 100 years since its discovery, lysozyme has become an important molecule, both as model for studies in different fields and as a candidate for the therapy of various pathological conditions. Of the dozens of known lysozymes, in this review we focus on one in particular, lysozyme extracted from hen egg white (HEWL), and its interaction with the immune system when it is administered orally. Experimental data show that there is an axis that directs immune system activation from GALT (gut-associated lymphoid tissue) and the intestinal lymphocyte clusters. Although a contribution of peptidoglycans from digestion of the bacterial cell wall in the intestinal lumen cannot be excluded, immune stimulation is not dependent on the enzymatic activity of HEWL. The immune responses suggest that HEWL is able to recover from immunodepression caused by tumor growth or immunosuppressants, and that it also improves the success of chemotherapy. The positive results obtained in a small Phase 2 study in patients, the ease of oral administration of this protein, and the absence of adverse effects suggest that HEWL may play an important role in all diseases where the immune system is weakened or where its enhancement plays a critical role in the resolution of the pathology.
Collapse
Affiliation(s)
- Alberta Bergamo
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gianni Sava
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Italian Society of Pharmacology, 20129 Milano, Italy
| |
Collapse
|
30
|
Li H, Pan Y, Li C, Yang Z, Rao J, Chen B. Lysozyme-phenolics bioconjugates with antioxidant and antibacterial bifunctionalities: Structural basis underlying the dual-function. Food Chem 2023; 406:135070. [PMID: 36462353 DOI: 10.1016/j.foodchem.2022.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
This work aims at adopting an Electron Paramagnetic Resonance (EPR) spectroscopic technique to help understanding protein-phenolic conjugation and final functionalities relationship as well as the underlying structural basis of antioxidant and antibacterial dual functionalities. Specifically, lysozyme (Lys) was conjugated with two natural phenolic acids, i.e. rosmarinic acid (RA) and gentisic acid (GA, our previous work) with obviously different molecular features. Lys-RA displayed 8.6- and 4.0-times enhanced antioxidant stoichiometry compared to the native Lys and ones with GA, respectively, due to the stronger antioxidant activity of RA. However, RA conjugation mitigated both enzymatic and antibacterial activities of Lys-RA conjugates. Such inhibition effect is attributed to the greater structural and surface property changes of Lys upon conjugating with RA. Furthermore, the polyphenol conjugation related structural basis of disturbance, reactivity and selectivity were explored via site-directed spin labeling (SDSL)-EPR. A dynamic picture of reactivity and selectivity of phenolics conjugation on Lys was proposed.
Collapse
Affiliation(s)
- Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, United States
| | - Chun Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, United States.
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
31
|
Zhang J, Matsuura H, Shirakashi R. A method for measuring dielectric relaxation of water by
NIR
spectroscopy: Applicability and application to measurement of water diffusion coefficient. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Junkai Zhang
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba, Meguro City Tokyo 153‐8505 Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba, Meguro City Tokyo 153‐8505 Japan
| | - Ryo Shirakashi
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba, Meguro City Tokyo 153‐8505 Japan
| |
Collapse
|
32
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
33
|
Song J, Yu C, Ma F, Lin R, Gao L, Yan Y, Wu Y. Design of molecularly imprinted nanocomposite membrane for selective separation of lysozyme based on double-faced self-assembly strategy. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Effects of fermented feed on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production and the microbiota community in broilers. Poult Sci 2023; 102:102629. [PMID: 37004289 PMCID: PMC10091030 DOI: 10.1016/j.psj.2023.102629] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The aim of this study was to explore the effects of dietary fermented feed addition on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production, and the bacterial community in broilers. A total of 480 broiler chicks (1-day-old) were randomly assigned to 6 groups, including a basal diet (control group), a basal diet supplemented with 10, 15, 20, and 25% dried fermented feed, and 10% wet fermented feed. Each group contained 8 replicates of 10 chicks each. The results showed that fermentation increased (P < 0.05) the total acid level and the number of Lactobacillus, Yeast, and Bacillus. The 15% dried fermented feed group had an increased (P < 0.05) body weight (BW) than the control, while the 25% dried fermented feed group had the lowest (P < 0.05) BW on 42 d. Compared to the control group, the feed intake (FI) was increased (P < 0.05) in the 10, 15% dried and 10% wet fermented feed groups from 22 to 42 d and from 1 to 42 d. No significant difference (P > 0.05) was observed in feed conversion ratio (FCR) among all groups. Supplementation with fermented feed increased (P < 0.05) the bursa of Fabricius index but not (P > 0.05) the thymus and spleen indices. Compared with the control, the broilers fed fermented feed had increased (P < 0.05) serum total protein, albumin, globulin, IgA, IgG, IgM, lysozyme, complement 3, and complement 4 levels. The cecal concentrations of acetic acid, propionic acid, butyric acid, and lactic acid were increased and the pH values were decreased in the fermented feed groups (P < 0.05). Among the groups, the 15% dried fermented feed group showed the lowest concentrations of skatole and indole in the cecum (P < 0.05). The composition of the cecal microbiota was characterized, in which an increased abundance of Ruminococcaceae, Lactobacillaceae, and unclassified Clostridiales and a decreased abundance of Rikenellaceae, Lachnospiraceae, and Bacteroidaceae were found in the fermented feed groups. Taken together, dietary fermented feed supplementation can improve growth performance, immune organ development, and capacity and decrease cecal odorous compound production, which may be related to the regulation of microbial composition.
Collapse
|
35
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
36
|
Zhong M, Ma L, Liu X, Liu Y, Wei S, Gao Y, Wang Z, Chu S, Dong S, Yang Y, Gao S, Li S. Exploring the influence of ultrasound on the antibacterial emulsification stability of lysozyme-oregano essential oil. ULTRASONICS SONOCHEMISTRY 2023; 94:106348. [PMID: 36871524 PMCID: PMC9988396 DOI: 10.1016/j.ultsonch.2023.106348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.
Collapse
Affiliation(s)
- Mengzhen Zhong
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xin Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shuaishuai Wei
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhan Wang
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shijian Dong
- Anhui Rongda Food Co., Ltd., Xuancheng 242000, China
| | - Yuping Yang
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
37
|
Choi S, Chun SY, Kwak K, Cho M. Micro-Raman spectroscopic analysis of liquid-liquid phase separation. Phys Chem Chem Phys 2023; 25:9051-9060. [PMID: 36843414 DOI: 10.1039/d2cp05115j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Liquid-liquid phase separation (LLPS) plays a significant role in various biological processes, including the formation of membraneless organelles and pathological protein aggregation. Although many studies have found various factors that modulate the LLPS process or the liquid-to-solid phase transition (LSPT) using microscopy or fluorescence-based methods, the molecular mechanistic details underlying LLPS and protein aggregation within liquid droplets remain uncharacterized. Therefore, structural information on proteins inside liquid droplets is required to understand the mechanistic link to amyloid formation. In the present study, we monitored droplet formation related to protein fibrillation using micro-Raman spectroscopy in combination with differential interference contrast (DIC) microscopy to study the conformational change in proteins and the hydrogen-bonding (H-bonding) structure of water during LLPS. Interestingly, we found that the O-D stretching band for water (HOD in H2O) inside the droplets exhibited a distinct Raman spectrum from that of the bulk water, suggesting that the time-dependent change in the hydration environment in the protein droplets during the process of LLPS can be studied. These results demonstrate that the superior spatial resolution of micro-Raman spectroscopy offers significant advantages in investigating the molecular mechanisms of LLPS and following LSPT processes.
Collapse
Affiliation(s)
- Suin Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - So Yeon Chun
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
38
|
Lin YJ, Chang JJ, Huang HT, Lee CP, Hu YF, Wu ML, Huang CY, Nan FH. Improving red-color performance, immune response and resistance to Vibrio parahaemolyticus on white shrimp Penaeus vannamei by an engineered astaxanthin yeast. Sci Rep 2023; 13:2248. [PMID: 36755087 PMCID: PMC9908916 DOI: 10.1038/s41598-023-29225-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Astaxanthin (AST), a super antioxidant with coloring and medical properties, renders it a beneficial feed additive for shrimp. This study conducted a white shrimp feeding trial of 3S, 3'S isoform AST, which was derived from metabolic-engineered Kluyveromyces marxianus fermented broth (TB) and its extract (TE) compared to sources from two chemically synthetic ASTs (Carophyll Pink [CP] and Lucantin Pink [LP]), which contain 3S, 3'S, 3R, 3'S (3S, 3'R) and 3R, 3'R isoforms ratio of 1:2:1. The effects on red coloration, immune parameters and resistance to Vibrio infection were evaluated. Four AST sources were incorporated into the diets at concentrations of 0 (control), 100 mg kg-1 (TB100, TE100, CP100, and LP100), and 200 mg kg-1 (TB200, TE200, CP200, and LP200). Results revealed that in week 4, shrimps that received AST-supplemented feeds, especially TB100, TB200, and TE200, significantly increased redness (a*) values. Immune responses including phagocytosis activity, superoxide-anion production, phenoloxidase activity, and immune-related genes were examined on days 0, 1, 2, 4, 7, 14, 21, and 28. Generally, shrimps that received AST-supplemented feeds exhibited higher immune responses on days 7 and 14 than the control feed. Gene expression levels of superoxide dismutase and glutathione peroxidase were significantly upregulated on days 7 and 14 in shrimps that received AST-supplemented feeds, while genes of penaeidins, antilipopolysaccharide factor, and lysozyme were upregulated on days 4, 7, and 14, especially received TB200 and TE200. Furthermore, shrimps that received TB100, TE100, CP100, and LP100 7 days were then challenged with Vibrio parahaemolyticus and the result demonstrated higher survival rates especially TB100 at 168 h than the control feed. In conclusion, incorporating AST into the diets enhanced shrimp red coloration, immune parameters, and resistance against V. parahaemolyticus infection. The K. marxianus-derived AST exhibited higher performance than did chemical AST to be a potential feed additive in shrimp aquaculture.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40227, Taiwan, ROC
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Chih-Ping Lee
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Mao-Lun Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Chih-Yang Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
39
|
Naveed M, Wang Y, Yin X, Chan MWH, Aslam S, Wang F, Xu B, Ullah A. Purification, Characterization and Bactericidal Action of Lysozyme, Isolated from Bacillus subtillis BSN314: A Disintegrating Effect of Lysozyme on Gram-Positive and Gram-Negative Bacteria. Molecules 2023; 28:1058. [PMID: 36770725 PMCID: PMC9919333 DOI: 10.3390/molecules28031058] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In the present study, lysozyme was purified by the following multi-step methodology: salt (ammonium sulfate) precipitation, dialysis, and ultrafiltration. The lysozyme potential was measured by enzymatic activity after each purification step. However, after ultrafiltration, the resulting material was considered extra purified. It was concentrated in an ultrafiltration centrifuge tube, and the resulting protein/lysozyme was used to determine its bactericidal potential against five bacterial strains, including three gram-positive (Bacillus subtilis 168, Micrococcus luteus, and Bacillus cereus) and two gram-negative (Salmonella typhimurium and Pseudomonas aeruginosa) strains. The results of ZOI and MIC/MBC showed that lysozyme had a higher antimicrobial activity against gram-positive than gram-negative bacterial strains. The results of the antibacterial activity of lysozyme were compared with those of ciprofloxacin (antibiotic). For this purpose, two indices were applied in the present study: antimicrobial index (AMI) and percent activity index (PAI). It was found that the purified lysozyme had a higher antibacterial activity against Bacillus cereus (AMI/PAI; 1.01/101) and Bacillus subtilis 168 (AMI/PAI; 1.03/103), compared to the antibiotic (ciprofloxacin) used in this study. Atomic force microscopy (AFM) was used to determine the bactericidal action of the lysozyme on the bacterial cell. The purified protein was further processed by gel column chromatography and the eluate was collected, its enzymatic activity was 21.93 U/mL, while the eluate was processed by native-PAGE. By this analysis, the un-denatured protein with enzymatic activity of 40.9 U/mL was obtained. This step shows that the protein (lysozyme) has an even higher enzymatic potential. To determine the specific peptides (in lysozyme) that may cause the bactericidal potential and cell lytic/enzymatic activity, the isolated protein (lysozyme) was further processed by the SDS-PAGE technique. SDS-PAGE analysis revealed different bands with sizes of 34 kDa, 24 kDa, and 10 kDa, respectively. To determine the chemical composition of the peptides, the bands (from SDS-PAGE) were cut, enzymatically digested, desalted, and analyzed by LC-MS (liquid chromatography-mass spectrometry). LC-MS analysis showed that the purified lysozyme had the following composition: the number of proteins in the sample was 56, the number of peptides was 124, and the number of PSMs (peptide spectrum matches) was 309. Among them, two peptides related to lysozyme and bactericidal activities were identified as: A0A1Q9G213 (N-acetylmuramoyl-L-alanine amidase) and A0A1Q9FRD3 (D-alanyl-D-alanine carboxypeptidase). The corresponding protein sequence and nucleic acid sequence were determined by comparison with the database.
Collapse
Affiliation(s)
- Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yadong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Malik Wajid Hussain Chan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Campus Gulshan-e-Iqbal, Karachi 75300, Pakistan
| | - Sadar Aslam
- Department of Biological Science, University of Baltistan, Skardu 16400, Pakistan
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baocai Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Asad Ullah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan
| |
Collapse
|
40
|
Esmaeilnejad-Ahranjani P, Maboudi SA, Arpanaei A. Effect of the Structure of Magnetic Nanocomposite Adsorbents on the Lysozyme Separation Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:191-202. [PMID: 36580633 DOI: 10.1021/acsabm.2c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we prepared various anionic magnetic adsorbents through the carboxyl functionalization of core/shell-structured Fe3O4/SiO2 (FS) particles by either succinic anhydride (FSC), low-molecular-weight (MW 1800) polyacrylic acid (PAA) (FSP1), or high-molecular-weight (MW 100,000) PAA (FSP2), and then, investigated the effect of the structure of adsorbents and operational parameters on their performance for the lysozyme separation. The type and size of functional molecules have significant effects on the surface concentration of functional carboxyl groups onto the adsorbent particles (increase in the order of FSP2 > FSP1 > FSC), and consequently on the adsorption efficiency (AE) (∼100, 98, and 62%, respectively) and adsorption capacity (AC) (∼1000, 980, and 621 mg·g-1, respectively) of the adsorbents. However, the loss of the antibacterial activity of separated lysozyme molecules due to the molecular conformational change increased in the order of FSP2 > FSP1 = FSC, as compared to the free lysozyme. The application of basic buffer solutions for the elution of adsorbed enzyme molecules resulted in more adverse effects on the enzyme activity. The obtained results recommend that FSP1 can be used as a suitable anionic adsorbent for the isolation of positively charged proteins, owing to its high adsorption capacity, excellent reusability, and structural stability, as well as the high purity, structural stability, and activity recovery of the isolated proteins.
Collapse
Affiliation(s)
- Parvaneh Esmaeilnejad-Ahranjani
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - Sayed Ali Maboudi
- Iran Food and Drug Administration, P.O. Box 1314715311, Tehran, Iran
| | - Ayyoob Arpanaei
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. Box 1417863171, Tehran, Iran.,Scion, Private Bag 3020, Rotorua3046, New Zealand
| |
Collapse
|
41
|
MOTTA JFG, FREITAS BCBD, ALMEIDA AFD, MARTINS GADS, BORGES SV. Use of enzymes in the food industry: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
42
|
Liu J, Wu J, Lu Y, Zhang H, Hua Q, Bi R, Rojas O, Renneckar S, Fan S, Xiao Z, Saddler J. The pre-addition of "blocking" proteins decreases subsequent cellulase adsorption to lignin and enhances cellulose hydrolysis. BIORESOURCE TECHNOLOGY 2023; 367:128276. [PMID: 36347476 DOI: 10.1016/j.biortech.2022.128276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The pre-adsorption of non-catalytic/blocking proteins onto the lignin component of pretreated biomass has been shown to significantly increase the effectiveness of subsequent enzyme-mediated hydrolysis of the cellulose by limiting non-productive enzyme adsorption. Layer-by-layer adsorption of non-catalytic proteins and enzymes onto lignin was monitored using Quartz Crystal Micro balancing combined with Dissipation monitoring (QCM-D) and conventional protein adsorption. These methods were used to assess the interaction between soft/hardwood lignins, cellulases and the three non-catalytic proteins BSA, lysozyme and ovalbumin. The QCM-D analysis showed higher adsorption rates for all of the non-catalytic proteins onto the lignin films as compared to cellulases. This suggested that the "blocking" proteins would preferentially adsorb to the lignin rather than the enzymes. Pre-incubation of the lignin films with blocking proteins resulted in reduced adsorption of cellulases onto the lignin, significantly enhancing cellulose hydrolysis.
Collapse
Affiliation(s)
- Jingyun Liu
- School of Chemical Engineering, Sichuan University, 610065 Chengdu, China; Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ran Bi
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Orlando Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, 610065 Chengdu, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, 610065 Chengdu, China
| | - Jack Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
43
|
Wang SW, Wang TY. Study on Antibacterial Activity and Structure of Chemically Modified Lysozyme. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010095. [PMID: 36615291 PMCID: PMC9822296 DOI: 10.3390/molecules28010095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Lysozyme is a natural protein with a good bacteriostatic effect, but its poor inhibition of Gram-negative bacteria limits its development potential as a natural preservative. Therefore, the modification of natural lysozyme to expand the antimicrobial spectrum become the focus of lysozyme study. Egg white lysozyme has low cost, rich content in nature, is easy to obtain, strong stability, and high enzyme activity, so it can be applied in the modification of lysozyme. Egg white lysozyme was modified by chemical methods using organic acids. Caffeic acid and p-coumaric acid in organic acids were used as modifiers, and 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide were used as dehydration condensation agents during modification. A certain degree of modified lysozyme was obtained through appropriate modification conditions. The antibacterial properties and structure of the obtained two organic acid-modified lysozymes were compared with natural enzymes. The results showed that compared with the native enzyme, the activity of modified lysozyme decreased, but the inhibitory effect on Gram-negative bacteria was enhanced. The minimum inhibitory concentrations of caffeic acid-modified enzyme and p-coumaric acid-modified enzyme on Escherichia coli and Pseudomonas aeruginosa were 0.5 mg/mL and 0.75 mg/mL, respectively. However, the antibacterial ability of modified lysozyme to Gram-positive bacteria was lower than that of the natural enzyme. The minimum inhibitory concentration of caffeic acid-modified enzyme and p-coumaric acid-modified enzyme to Staphylococcus aureus and Bacillus subtilis was 1.25 mg/mL. The peak fitting results of the amide-I band absorption peak in the infrared spectroscopy showed that the content of the secondary structure of the two modified enzymes obtained after modification was different from that of natural enzymes. In the study, two organic acids were used to modify egg white lysozyme, which enhanced the enzyme's inhibition of Gram-negative bacteria, and analyzed the mechanisms for the change in the enzyme's antibacterial ability from the perspective of the structural change of the modified enzyme, providing a new idea for lysozyme modification.
Collapse
|
44
|
Caccamo MT, Magazù S. Multiscale Spectral Analysis on Lysozyme Aqueous Solutions in the Presence of PolyEthyleneGlycol. Molecules 2022; 27:8760. [PMID: 36557893 PMCID: PMC9781088 DOI: 10.3390/molecules27248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Infrared spectroscopy measurements were performed on Lysozyme aqueous solutions also in the presence of PolyEthylene Glycol (PEG 400) as a function of an increasing temperature from T = 27 °C to 90 °C, and, successively in sequence, by decreasing temperatures from T = 90 °C to 27 °C. Data were analyzed by evaluating the spectral difference with respect to the initial spectrum collected at 27 °C. This procedure allows to quantitatively evaluate the thermal restraint related to the thermal scan from T = 27 °C to 90 °C, as well as to introduce a spectral resilience concerning the entire increasing and decreasing thermal paths which allow to highlight the bioprotectant effectiveness of low molecular weight PEG. In particular, the main purpose of the present work is to highlight the effects of a thermal treatment on a mixture of Lysozyme/water and of Lysozyme/water/PEG 400 during an increasing temperature scan, and then after a successive decreasing temperature scan, in order to highlight the bioprotectant role of PEG 400. On that score, an evaluation of the spectral distances of the registered spectra as a function of increasing and decreasing temperatures has been performed and analyzed.
Collapse
Affiliation(s)
- Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
45
|
New insights into the effects of growth phase and enzymatic treatment on the cell-wall properties of Chlorella vulgaris microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Xiong J, Cao Y, Zhao H, Chen J, Cai X, Li X, Liu Y, Xiao H, Ge J. Cooperative Antibacterial Enzyme-Ag-Polymer Nanocomposites. ACS NANO 2022; 16:19013-19024. [PMID: 36350784 DOI: 10.1021/acsnano.2c07930] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomacromolecules such as enzymes and proteins with bactericidal activity are promising for antibacterial applications in a mild, biocompatible, and environmentally friendly manner. However, low bactericidal efficiency has hindered its applications. Nanobiohybrids, constructed from biomacromolecules and functional nanomaterials, could enhance the function of biomacromolecules. However, the incompatibility between biological components and nanomaterials is still the major challenge of designing nanobiohybrids. Here, we rationally design lysozyme-Ag-polymer nanocomposites, which display high stability and antibacterial activity in a cooperative manner. The sufficient presence of Ag-N coordination between Ag and the polymer/protein contributed to the high stability of the nanocomposites. Compared with lysozyme and commercial silver nanoparticles (AgNPs) alone, the enzyme-Ag-polymer nanocomposites showed dramatically enhanced antibacterial activity. We propose a tightly encapsulated invasion (TEI) mechanism for a greatly improved antibacterial activity. The bacteria closely interacted with nanocomposites, and cell walls were hydrolyzed by lysozyme especially, facilitating the penetration of silver into the bacteria, and then reactive oxygen species (ROS) generated by silver to kill bacteria. In addition, the specific TEI mechanism resulted in high biocompatibility toward mammalian cells.
Collapse
Affiliation(s)
- Jiarong Xiong
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Yufei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Haotian Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Jiaqi Chen
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Xinyi Cai
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Xiaoyang Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Yu Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing100084, P. R. China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen518055, P. R. China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen518107, P. R. China
| |
Collapse
|
47
|
González-Durruthy M, Rial R, Liu Z, Ruso JM. Lysozyme allosteric interactions with β-blocker drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Chen J, Wang J, Xu L, Lv Y, Tang T, Zhang M, Li J, Su Y, Gu L, Yang Y, Chang C. Study on gel properties of lysozyme-free egg white before and after Lactiplantibacillus plantarum fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5618-5627. [PMID: 35340026 DOI: 10.1002/jsfa.11897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Isolation of lysozyme from egg white (EW) using ion exchange resin adsorption method generates large quantities of lysozyme-free egg white (LFEW) with poor gelling property. To maximize the applications of LFEW, the effect of Lactiplantibacillus plantarum fermentation on the gel properties of LFEW was investigated in this study. RESULTS The fermentation efficiency of LFEW with lysozyme removed was significantly improved, and the sugar removal rate (2 g kg-1 Lactiplantibacillus plantarum, 37 °C, 7 h) was more than 90%. Removal of lysozyme resulted in increased stability and surface hydrophobicity of EW. After Lactiplantibacillus plantarum fermentation, the stability of EW decreased, and the average particle size and surface hydrophobicity increased. In addition, by comparing the gel properties of EW and LFEW before and after fermentation at different pH, it was found that the hardness, elasticity, and water holding capacity (WHC) of EW gel increased significantly. The removal of lysozyme effectively improved the WHC and springiness of the EW gel and promoted the formation of a denser network structure with smaller pores. After Lactiplantibacillus plantarum fermentation treatment, LFEW gel hardness decreased, with loose and porous network structure, no browning occurred after autoclaving. CONCLUSION This study provided the direction and theoretical basis for producing a fermented LFEW gel with pleasing texture and appearance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Lilan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yuanqi Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Tingting Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Ming Zhang
- Guangzhou Beile Food Co., Ltd., Guangzhou, P. R. China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
49
|
Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022; 27:molecules27196305. [PMID: 36234848 PMCID: PMC9572377 DOI: 10.3390/molecules27196305] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lysozymes are hydrolytic enzymes characterized by their ability to cleave the β-(1,4)-glycosidic bonds in peptidoglycan, a major structural component of the bacterial cell wall. This hydrolysis action compromises the integrity of the cell wall, causing the lysis of bacteria. For more than 80 years, its role of antibacterial defense in animals has been renowned, and it is also used as a preservative in foods and pharmaceuticals. In order to improve the antimicrobial efficacy of lysozyme, extensive research has been intended for its modifications. This manuscript reviews the natural antibiotic compound lysozyme with reference to its catalytic and non-catalytic mode of antibacterial action, lysozyme types, susceptibility and resistance of bacteria, modification of lysozyme molecules, and its applications in the food industry.
Collapse
|
50
|
Antibacterial activity of lysozyme-loaded cream against MRSA and promotion of scalded wound healing. Int J Pharm 2022; 627:122200. [PMID: 36155893 DOI: 10.1016/j.ijpharm.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus (S. aureus) infection, especially its drug-resistant bacterial infection, is a great challenge often faced by clinicians and patients, and it is also one of the most important threats to public health. Finding a safe and effective antibacterial agent is of great significance for the prevention and treatment of S. aureus infection. Lysozyme is known to have antibacterial effects against Gram-positive bacteria including S. aureus. Here, high-quality lysozyme with a purity of more than 99% and an activity of more than 60, 000 U/mg was prepared from egg white, which showed excellent antibacterial activity against three strains of S. aureus, especially against MRSA. Furthermore, an antibacterial cream loaded with lysozyme was prepared and tested in scald wound healing. The lysozyme-loaded cream exhibited the effect of preventing wound infection and promoting wound healing on scalds, and no toxicity was found in animal organs. Overall, lysozyme showed great application potential in the prevention and treatment of infections caused by S. aureus and scalded wound healing. The most remarkable discovery in this work is the unexpectedly powerful inhibitory effect of lysozyme on the drug-resistant bacterial, especially MRSA, which is usually very difficult to deal with using normal antibacterial drugs.
Collapse
|