1
|
Wu L, Jiao L, Xue D, Li Y, Han Y, Ouyang W, Chen Q. Nanozyme and bifunctional nanobody-based colorimetric-SERS dual-mode Immunosensor for microcystin-LR detection. Food Chem 2025; 464:141574. [PMID: 39396471 DOI: 10.1016/j.foodchem.2024.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Microcystin-LR (MC-LR), a potent cyanotoxin in freshwater, poses a risk of severe liver damage and other health issues, making its detection vital. However, the detection capabilities of conventional antibodies are constrained, which limited their use in immunoassays. In this work, we designed a new bifunctional nanobody, named A2.3-SBP (comprised of nanobody and streptavidin binding peptide), capable of binding with MC-LR and streptavidin. Based on A2.3-SBP and Fe3O4@Au-Pt nanozyme, we introduced an enzyme-free immunosensor that operated in microplate with colorimetric and surface-enhanced Raman scattering (SERS) detection modes. The dual-mode assay showed color changes and SERS intensity directly correlating to MC-LR concentrations with a range from 1.0 to 500 ng/mL and a limit of detection of 0.26 and 0.032 ng/mL, respectively. This strategy eliminated the need for complex enzymatic reactions and realized dual-signal detection of MC-LR in 96 water samples (0.03 μg/kg) within 30 min, suggesting its potential in drinking water detection.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Luyao Jiao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Danni Xue
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Yueqing Li
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Yu Han
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, PR China
| | - Wei Ouyang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Qi Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
2
|
Trindade FCS, de Souza Sobrinha IG, Pereira G, Pereira GAL, Raimundo IM, Pereira CF. A surface-enhanced infrared absorption spectroscopy (SEIRA) multivariate approach for atrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124867. [PMID: 39059263 DOI: 10.1016/j.saa.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
A green, fast and effective multivariate method for the determination of atrazine (ATZ) was developed using conventional infrared equipment furnished with an attenuated total reflectance module (ATR-IR), providing limit of detection (LOD) and limit of quantification (LOQ) in the ranges from 1.9 to 4.6 µg/mL and from 5.6 to 14 µg/mL, respectively. Furthermore, the surface-enhanced infrared absorption (SEIRA) approach was investigated to improve the sensitivity of the measurements and detect ATZ at low concentrations, addressing the compatibility with reference methods. To this end, a substrate formed by silver selenide quantum dots stabilized with mercaptopropionic acid (Ag2Se/MPA), synthesized in aqueous medium by an one-pot synthesis, was used. The spectral data were investigated by univariate and multivariate calibrations, allowing to calculate the enhancement factor (EF) and the multivariate enhancement factor (MEF), respectively. The SEIRA strategy proved to be able to enhance the atrazine signal up to 86-fold, allowing the detection of ATZ at concentrations as low as 0.001 µg/mL.
Collapse
Affiliation(s)
- Felipe C S Trindade
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Izabel G de Souza Sobrinha
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Goreti Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560; Universidade de Aveiro, Departamento de Química & CESAM, Aveiro, Portugal 3810-193
| | - Giovannia A L Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Ivo M Raimundo
- Universidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brazil 13083-970
| | - Claudete F Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560.
| |
Collapse
|
3
|
Latif U, Yaqub S, Dickert FL. Sensitive Coatings Based on Molecular-Imprinted Polymers for Triazine Pesticides' Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5934. [PMID: 39338679 PMCID: PMC11436188 DOI: 10.3390/s24185934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for the detection of chlorotriazine pesticides with gravimetric transducers. Initially, imprinted polymers were developed, using acrylate and methacrylate monomers containing hydrophilic and hydrophobic side chains, specifically for atrazine, which shares a basic heterocyclic triazine structure with its structural analogs. By adjusting the ratio of the acid to the cross-linker and introducing acrylate ester as a copolymer, optimal non-covalent interactions were achieved with the hydrophobic core of triazine molecules and their amino groups. A maximum sensor response of 546 Hz (frequency shift/layer height equal to 87.36) was observed for a sensitive coating composed of 46% methacrylic acid and 54% ethylene glycol dimethacrylate, with a demonstrated layer height of 250 nm (6.25 kHz). The molecularly imprinted copolymer demonstrated fully reversible sensor responses, not only for atrazine but also for its metabolites, like des-ethyl atrazine, and structural analogs, such as propazine and terbuthylazine. The efficiency of modified molecularly imprinted polymers for targeted analytes was tested by combining them with a universally applicable quartz crystal microbalance transducer. The stable selectivity pattern of the developed sensor provides an excellent basis for a pattern recognition procedure.
Collapse
Affiliation(s)
- Usman Latif
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad-Lahore Campus, Lahore 54600, Pakistan
| | - Sadaf Yaqub
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - Franz L. Dickert
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Cao X, Hu Y, Yu H, Sun S, Xu D, Zhang Z, Cong S, She Y. Detection of neonicotinoids in agricultural products using magnetic molecularly imprinted polymers-surface enhanced Raman spectroscopy. Talanta 2024; 266:125000. [PMID: 37524038 DOI: 10.1016/j.talanta.2023.125000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
In this paper, magnetic molecularly imprinted polymers-surface-enhanced Raman spectroscopy (MMIPs-SERS) for rapidly analyzing acetamiprid and thiacloprid in agricultural products has been firstly developed. The magnetic imprinted polymers were obtained by polymerizing the imprinted layers on the surface of magnetic nanoparticles. The polymers were detailed characterized by using series of analytical techniques, and their adsorption and recognition performance were validated by adsorption tests. The results showed that the magnetic molecularly imprinted polymers possessed typically core-shell structure and exhibited class-specific recognition, fast adsorption saturation (only 1 min), and good magnetic separation performance towards targets. The adsorption and desorption conditions for MMIPs-SERS detection system were carefully investigated. Under optimum conditions, the good linear detection range of 1∼20 μg/g with LODs of 23.7-68.8 ng/g for acetamiprid and thiacloprid in peach and pear samples was obtained. Through the reusable and spiked experiments, the developed MMIPs-SERS method based on Au NPs as enhanced substrate was validated to be highly sensitive, accurate, efficient and applicable in analyzing neonicotinoids from pear and peach samples. This study provided a rapid and simple detection method for neonicotinoids with effective separation and detection properties based on the synergistic effect of imprinted polymers and SERS. More importantly, this developed method have good application potential in rapid analyzing field for neonicotinoids due to the amazing rapid adsorption time for extracting targets from complex food matrix (only 1 min).
Collapse
Affiliation(s)
- Xiaolin Cao
- College of Life Science, Yantai University, Yantai, 264005, PR China.
| | - Yexuan Hu
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Huimin Yu
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Shuai Sun
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Dan Xu
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Shuang Cong
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture of China, Beijing, 100081, PR China
| |
Collapse
|
5
|
Zhou J, Liu Y, Du X, Gui Y, He J, Xie F, Cai J. Recent Advances in Design and Application of Nanomaterials-Based Colorimetric Biosensors for Agri-food Safety Analysis. ACS OMEGA 2023; 8:46346-46361. [PMID: 38107919 PMCID: PMC10720297 DOI: 10.1021/acsomega.3c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A colorimetric sensor detects an analyte by utilizing the optical properties of the sensor unit, such as absorption or reflection, to generate a structural color that serves as the output signal to detect an analyte. Detecting the refractive index of an analyte by recording the color change of the sensor structure on its surface has several advantages, including simple operation, low cost, suitability for onsite analysis, and real-time detection. Colorimetric sensors have drawn much attention owing to their rapidity, simplicity, high sensitivity and selectivity. This Review discusses the use of colorimetric sensors in the food industry, including their applications for detecting food contaminants. The Review also provides insight into the scope of future research in this area.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuantao Liu
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoping Du
- Ankang
R&D Center for Se-enriched Products, Key Laboratory of Se-enriched
Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Shaanxi 725000, China
| | - Yue Gui
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
6
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
7
|
Yan M, Wang H, Li M, Zhang W, Du H, Chen Z, Zhu C, She Y. Multicolor aptasensors for pesticide multiresidues detection in agricultural products using bioorthogonal surface-enhanced Raman scattering tags. Talanta 2023; 265:124800. [PMID: 37392707 DOI: 10.1016/j.talanta.2023.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/03/2023]
Abstract
Realizing accurate pesticide multiresidue detection in a complex matrix is still a challenge for point-of-care sensing methods. Herein, we introduced background-free and multicolor aptasensors based on bioorthogonal surface-enhanced Raman scattering (SERS) tags and successfully applied them to analyze multiple pesticide residues. The excellent anti-interference and multiplex capability are due to the application of three bioorthogonal Raman reporters involving 4-ethenylbenzenamine (4-EBZM), Prussian blue (PB) and 2-amino-4-cyanopyridine (AMCP) with alkynyl and cyano groups, which demonstrated apparent Raman shift peaks at 1993 cm-1, 2160 cm-1, and 2264 cm-1 in the biologically Raman-silent region, respectively. Ultimately, a detection range of 1-50 nM for acetamiprid, atrazine and malathion was achieved with detection limits of 0.39, 0.57 and 0.16 nM, respectively. The developed aptasensors were successfully used to determine pesticide residues in real samples. These proposed multicolor aptasensors offer an effective strategy for pesticide multiresidue detection with advantages of anti-interference, high specificity and high sensitivity.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Min Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Wenjun Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongxia Du
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Zilei Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
8
|
Wang S, Xu S, Zhou Q, Liu Z, Xu Z. State-of-the-art molecular imprinted colorimetric sensors and their on-site inspecting applications. J Sep Sci 2023:e2201059. [PMID: 36842066 DOI: 10.1002/jssc.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Molecular imprinted colorimetric sensors can realize visual semi-quantitative analysis without the use of any equipment. With the advantages of low cost, fast response, ease of handling, and excellent recognition ability, the molecular imprinted colorimetric sensor shows great application potential in the field of sample rapid assay. Molecular imprinted colorimetric sensors can be prepared in various forms to meet the needs of different sample determination, such as film, hydrogel, strip, and adsorption coating. In this review, the preparation methods for various types of molecularly imprinted colorimetric sensors are systematically introduced. Their applications in the field of on-site biological sample detection, drug detection, disease treatment, chiral substance detection and separation, environmental analysis, and food safety detection are introduced. The limitations encountered in the practical application are presented, and the future development directions prospect.
Collapse
Affiliation(s)
- Sitao Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| |
Collapse
|
9
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
10
|
Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R. Molecularly imprinted polymers for environmental adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89923-89942. [PMID: 36370309 DOI: 10.1007/s11356-022-24025-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Molecular imprinting polymers (MIPs) are synthetic materials with pores or cavities to specifically retain a molecule of interest or analyte. Their synthesis consists of the generation of three-dimensional polymers with specific shapes, arrangements, orientations, and bonds to selectively retain a particular molecule called target. After target removal from the binding sites, it leaves empty cavities to be re-occupied by the analyte or a highly related compound. MIPs have been used in areas that require high selectivity (e.g., chromatographic methods, sensors, and contaminant removal). However, the most widely used application is their use as a highly selective extraction material because of its low cost, easy preparation, reversible adsorption and desorption, and thermal, mechanical, and chemical stability. Emerging pollutants are traces of substances recently found in wastewater, river waters, and drinking water samples that represent a special concern for human and ecological health. The low concentration in which these pollutants is found in the environment, and the complexity of their chemical structures makes the current wastewater treatment not efficient for complete degradation. Moreover, these substances are not yet regulated or controlled for their discharge into the environment. According to the literature, MIPs, as a highly selective adsorbent material, are a promising approach for the quantification and monitoring of emerging pollutants in complex matrices. Therefore, the main objective of this work was to give an overview of the actual state-of-art of applications of MIPs in the recovery and concentration of emerging pollutants.
Collapse
Affiliation(s)
- Diana Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, S.L.P, México
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Rogelio Flores-Ramíez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México.
| |
Collapse
|
11
|
Sensitive detection of organophosphorus pesticides based on the localized surface plasmon resonance and fluorescence dual-signal readout. Anal Chim Acta 2022; 1235:340536. [DOI: 10.1016/j.aca.2022.340536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
|
12
|
Kang S, Wang W, Rahman A, Nam W, Zhou W, Vikesland PJ. Highly porous gold supraparticles as surface-enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants. RSC Adv 2022; 12:32803-32812. [PMID: 36425178 PMCID: PMC9665105 DOI: 10.1039/d2ra06248h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 09/10/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has great potential as an analytical technique for environmental analyses. In this study, we fabricated highly porous gold (Au) supraparticles (i.e., ∼100 μm diameter agglomerates of primary nano-sized particles) and evaluated their applicability as SERS substrates for the sensitive detection of environmental contaminants. Facile supraparticle fabrication was achieved by evaporating a droplet containing an Au and polystyrene (PS) nanoparticle mixture on a superamphiphobic nanofilament substrate. Porous Au supraparticles were obtained through the removal of the PS phase by calcination at 500 °C. The porosity of the Au supraparticles was readily adjusted by varying the volumetric ratios of Au and PS nanoparticles. Six environmental contaminants (malachite green isothiocyanate, rhodamine B, benzenethiol, atrazine, adenine, and gene segment) were successfully adsorbed to the porous Au supraparticles, and their distinct SERS spectra were obtained. The observed linear dependence of the characteristic Raman peak intensity for each environmental contaminant on its aqueous concentration reveals the quantitative SERS detection capability by porous Au supraparticles. The limit of detection (LOD) for the six environmental contaminants ranged from ∼10 nM to ∼10 μM, which depends on analyte affinity to the porous Au supraparticles and analyte intrinsic Raman cross-sections. The porous Au supraparticles enabled multiplex SERS detection and maintained comparable SERS detection sensitivity in wastewater influent. Overall, we envision that the Au supraparticles can potentially serve as practical and sensitive SERS devices for environmental analysis applications.
Collapse
Affiliation(s)
- Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Department of Electronic Engineering, Pukyong National University Busan Republic of Korea
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| |
Collapse
|
13
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
14
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
15
|
Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
A Critical Review on the Use of Molecular Imprinting for Trace Heavy Metal and Micropollutant Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular recognition has been described as the “ultimate” form of sensing and plays a fundamental role in biological processes. There is a move towards biomimetic recognition elements to overcome inherent problems of natural receptors such as limited stability, high-cost, and variation in response. In recent years, several alternatives have emerged which have found their first commercial applications. In this review, we focus on molecularly imprinted polymers (MIPs) since they present an attractive alternative due to recent breakthroughs in polymer science and nanotechnology. For example, innovative solid-phase synthesis methods can produce MIPs with sometimes greater affinities than natural receptors. Although industry and environmental agencies require sensors for continuous monitoring, the regulatory barrier for employing MIP-based sensors is still low for environmental applications. Despite this, there are currently no sensors in this area, which is likely due to low profitability and the need for new legislation to promote the development of MIP-based sensors for pollutant and heavy metal monitoring. The increased demand for point-of-use devices and home testing kits is driving an exponential growth in biosensor production, leading to an expected market value of over GPB 25 billion by 2023. A key requirement of point-of-use devices is portability, since the test must be conducted at “the time and place” to pinpoint sources of contamination in food and/or water samples. Therefore, this review will focus on MIP-based sensors for monitoring pollutants and heavy metals by critically evaluating relevant literature sources from 1993 to 2022.
Collapse
|
17
|
Dai B, Xu Y, Wang T, Wang S, Tang L, Tang J. Recent Advances in Agglomeration Detection and Dual-Function Application of Surface-Enhanced Raman Scattering (SERS). J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely utilized in early detection of disease biomarkers, cell imaging, and trace contamination detection, owing to its ultra-high sensitivity. However, it is also subject to certain application restrictions in virtue of its expensive
detection equipment and long-term stability of SERS-active substrate. Recently, great progress has been made in SERS technology, represented by agglomeration method. Dual readout signal detection methods are combined with SERS, including electrochemical detection, fluorescence detection, etc.,
establishing a new fantastic viewpoint for application of SERS. In this review, we have made a comprehensive report on development of agglomeration detection and dual-function detection methods based on SERS. The synthesis methods for plasmonic materials and mainstream SERS enhancement mechanism
are also summarized. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Bailin Dai
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Tao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
18
|
Liu Q, Tang P, Xing X, Cheng W, Liu S, Lu X, Zhong L. Colorimetry /SERS dual-sensor of H 2O 2 constructed via TMB-Fe 3O 4@ AuNPs. Talanta 2021; 240:123118. [PMID: 34942473 DOI: 10.1016/j.talanta.2021.123118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Hydrogen peroxide (H2O2) detection with high sensitivity plays an important role in biomedical research and food engineering. By combining colorimetry and surface enhanced Raman spectroscopy (SERS), we synthetize a novel H2O2 dual-sensor constructed via TMB-Fe3O4@AuNPs. In the presence of H2O2, the peroxide model enzyme might catalyze the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB) as blue charge transfer complex (CTC) for colorimetry, and then facilitate the sensitivity improvement of SERS detection. The achieved results show that in colorimetry, the linear range is from 40 μM to 5.5 mM with the detection limit of 11.1 μM; in SERS detection, the linear range is from 2 nM to 1 μM with the detection limit of 0.275 nM. Clearly, this mutual reference strategy improves both the detection limit of colorimetry and the sensitivity of SERS detection. Moreover, this colorimetry/SERS dual-sensor constructed via TMB-Fe3O4@AuNPs is successfully applied to the H2O2 detection in plasma and milk, indicating the excellent performance and flexibility.
Collapse
Affiliation(s)
- Qixin Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Ping Tang
- Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China.
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
20
|
Zhang D, Liang P, Chen W, Tang Z, Li C, Xiao K, Jin S, Ni D, Yu Z. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Mikrochim Acta 2021; 188:370. [PMID: 34622367 DOI: 10.1007/s00604-021-05025-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022]
Abstract
Surface-enhanced Raman spectroscopy is an alternative detection tool for monitoring food security. However, there is still a lack of a conclusion of SERS detection with respect to pesticides and real sample analysis, and the summary of intelligent algorithms in SERS is also a blank. In this review, a comprehensive report of pesticides detection using SERS technology is given. The SERS detection characteristics of different types of pesticides and the influence of substrate on inspection are discussed and compared by the typical ways of classification. The key points, including the progress in real sample analysis and Raman data processing methods with intelligent algorithm, are highlighted. Lastly, major challenges and future research trends of SERS analysis of pesticide residue are also addressed. SERS has been proven to be a powerful technique for rapid test of residue pesticides in complex food matrices, but there still is a tremendous development space for future research.
Collapse
Affiliation(s)
- De Zhang
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Wenwen Chen
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhexiang Tang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330203, China
| | - Kunyue Xiao
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Dejiang Ni
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Yu
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, Kong W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Application of surface-enhanced Raman spectroscopy using silver and gold nanoparticles for the detection of pesticides in fruit and fruit juice. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Jin M, Shan J, Wang X, Ren T, Li X. Determination of Florfenicol in Antibiotic Mixtures by Solid-Phase Extraction (SPE) and Surface-Enhanced Raman Scattering (SERS). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1946075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mengke Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Tao Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Xinjing Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| |
Collapse
|
24
|
Petersen M, Yu Z, Lu X. Application of Raman Spectroscopic Methods in Food Safety: A Review. BIOSENSORS 2021; 11:187. [PMID: 34201167 PMCID: PMC8229164 DOI: 10.3390/bios11060187] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Food detection technologies play a vital role in ensuring food safety in the supply chains. Conventional food detection methods for biological, chemical, and physical contaminants are labor-intensive, expensive, time-consuming, and often alter the food samples. These limitations drive the need of the food industry for developing more practical food detection tools that can detect contaminants of all three classes. Raman spectroscopy can offer widespread food safety assessment in a non-destructive, ease-to-operate, sensitive, and rapid manner. Recent advances of Raman spectroscopic methods further improve the detection capabilities of food contaminants, which largely boosts its applications in food safety. In this review, we introduce the basic principles of Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and micro-Raman spectroscopy and imaging; summarize the recent progress to detect biological, chemical, and physical hazards in foods; and discuss the limitations and future perspectives of Raman spectroscopic methods for food safety surveillance. This review is aimed to emphasize potential opportunities for applying Raman spectroscopic methods as a promising technique for food safety detection.
Collapse
Affiliation(s)
- Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.P.); (Z.Y.)
| | - Zhilong Yu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.P.); (Z.Y.)
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.P.); (Z.Y.)
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
25
|
Jiang L, Hassan MM, Ali S, Li H, Sheng R, Chen Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Koukouvinos G, Karachaliou CE, Raptis I, Petrou P, Livaniou E, Kakabakos S. Fast and Sensitive Determination of the Fungicide Carbendazim in Fruit Juices with an Immunosensor Based on White Light Reflectance Spectroscopy. BIOSENSORS-BASEL 2021; 11:bios11050153. [PMID: 34068345 PMCID: PMC8153324 DOI: 10.3390/bios11050153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any "matrix-effect" on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.
Collapse
Affiliation(s)
- Georgios Koukouvinos
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece; (G.K.); (P.P.); (S.K.)
| | - Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
- Correspondence: or (C.-E.K.); (E.L.)
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece;
- ThetaMetrisis S.A., Polydefkous 14, 12243 Egaleo, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece; (G.K.); (P.P.); (S.K.)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
- Correspondence: or (C.-E.K.); (E.L.)
| | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece; (G.K.); (P.P.); (S.K.)
| |
Collapse
|
27
|
Mikac L, Kovačević E, Ukić Š, Raić M, Jurkin T, Marić I, Gotić M, Ivanda M. Detection of multi-class pesticide residues with surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119478. [PMID: 33524818 DOI: 10.1016/j.saa.2021.119478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 05/25/2023]
Abstract
The excessive use of pesticides disturbs the natural balance in the environment, creates resistance to pesticides and leads to water and food contamination. Therefore, the implementation of fast, robust and cost effective techniques for the monitoring of pesticides is required. In this work surface-enhanced Raman spectroscopy (SERS) was used for the detection of four common pesticides: atrazine, simazin, irgarol, and diuron. SERS is nowadays considered an effective technique for detection of various analytes in low concentration. Sensitivity of the SERS method depends on the type of substrate that can be either a colloidal solution of metal nanoparticles (NPs) or a metal surface with a suitable nanostructured topology. Here, we have investigated the application of silver nanospheres and silver nanoprisms as SERS substrates in pesticides detection. Colloids with spherical NPs were produced by chemical reduction while Ag nanoprisms were prepared by reducing silver nitrate with borohydride (with citrate as a stabilizing agent) and stirring under a UV lamp for 4 and 10 h. The SERS results have shown that, in the presence of synthesized NPs, it was possible to detect millimolar concentrations of aforementioned pesticides with the exception of diuron.
Collapse
Affiliation(s)
- L Mikac
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - E Kovačević
- Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Š Ukić
- Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia
| | - M Raić
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - T Jurkin
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - I Marić
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - M Gotić
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - M Ivanda
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
28
|
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Wang J, Chen Q, Belwal T, Lin X, Luo Z. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Compr Rev Food Sci Food Saf 2021; 20:2476-2507. [DOI: 10.1111/1541-4337.12741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Jingjing Wang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute Zhejiang University Ningbo People's Republic of China
- Fuli Institute of Food Science Hangzhou People's Republic of China
| |
Collapse
|
31
|
Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Ma J, Yan M, Feng G, Ying Y, Chen G, Shao Y, She Y, Wang M, Sun J, Zheng L, Wang J, Abd El-Aty AM. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta 2020; 225:122031. [PMID: 33592760 DOI: 10.1016/j.talanta.2020.122031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful and high-speed detection technology. It provides information on molecular fingerprint recognition with ultrahigh sensitive detection. However, it shows poor anti-interference capacity against complex matrices. Molecularly imprinted polymers (MIPs) can achieve specific recognition of targets from complex matrices. Through introducing the MIP separation system, the MIP-SERS chemical sensor can effectively overcome the limitation of complex matrix interference, and further improve the stability of sensors for detection. Herein, the materials and structures of integrated MIP-SERS sensors are systematically reviewed, and its application as a sensor for chemical detection of hazardous substances in environmental and food samples has been addressed as well. To broaden the prospects of application, we have discussed the current challenges and future perspectives that would accelerate the development of versatile MIP-SERS chemical sensors.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Mengmeng Yan
- Institute of Quality Standard and Test Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, PR China
| | - Gege Feng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ying Ying
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Miao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianchun Sun
- Tibetan Inspection and Testing Center for Agricultural Product Quality and Safety, Lhasa, 850000, PR China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
33
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
34
|
Shan J, Zhang Y, Wang J, Ren T, Jin M, Wang X. Microextraction based on microplastic followed by SERS for on-site detection of hydrophobic organic contaminants, an indicator of seawater pollution. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123202. [PMID: 32580096 DOI: 10.1016/j.jhazmat.2020.123202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) have been proven to concentrate hydrophobic organic contaminants (HOCs) from seawater as the sorbent phase, and the concentration of HOCs in aqueous solutions could be estimated from MPs preloaded with HOCs by equilibrium partition coefficient. This study firstly proposed to in situ quantify fluoranthene (a representative HOCs) pre-concentrated on MPs using surface enhance raman scattering (SERS) in combination with mathematical models, as an efficient monitoring tool for fluoranthene pollution in the aquatic environment. AgNPs-coated quartz (AgNPs@SiO2) substrate was fabricated. The SERS substrate was tested using fluoranthene standard solution with the minimal detectable concentration of 1 ng/mL achieved. Applying SERS for the detection of fluoranthene sorbed on MPs, the detection limit of fluoranthene on MPs was 3.3 ng/g, where the concentration in the corresponding equilibrium seawater was 0.97 ng/mL. Since more than one fluoranthene peak was observed, the quantitative detection was investigated by interval partial least square model. Eight characteristic peak ranges were selected to develop the model for predicting fluoranthene concentration, with R2c and R2v of 0.90 and 0.82, respectively. The study provides a promising solution to monitor trace level of contaminations in aquatic environment, using MPs as the passive sampler.
Collapse
Affiliation(s)
- Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yituo Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Jian Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Tao Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Mengke Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
35
|
Han M, Lu H, Zhang Z. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25204662. [PMID: 33066139 PMCID: PMC7587348 DOI: 10.3390/molecules25204662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
The pesticide residues in agri-foods are threatening people’s health. This study aims to establish a fast and low-cost surface-enhanced Raman scattering (SERS) method for the on-site detection of flumetsulam in wheat. The two-step modified concentrated gold nanoparticles (AuNPs) acted as the SERS substrate with the aid of NaCl and MgSO4. NaCl is served as the activator to modify AuNPs, while MgSO4 is served as the aggregating agent to form high-density hot spots. The activation and aggregation are two essential collaborative procedures to generate remarkable SERS enhancement and achieve the trace-level detection of flumetsulam. This method exhibits good enhancement effect with an enhancement factor of 106 and wide linear range (5–1000 μg/L). With simple pretreatment, the flumetsulam residue in real wheat samples can be successfully detected with the limit of detection (LOD) down to 0.01 μg/g, which is below the maximum residue limit of flumetsulam in wheat (0.05 μg/g) set in China. The recovery of flumetsulam residue in wheat ranges from 88.3% to 95.6%. These results demonstrate that the proposed SERS method is a powerful technique for the detection of flumetsulam in wheat, which implies the great application potential in the rapid detection of other pesticide residues in various agri-foods.
Collapse
|
36
|
Zhang H, Nie P, Xia Z, Feng X, Liu X, He Y. Rapid Quantitative Detection of Deltamethrin in Corydalis yanhusuo by SERS Coupled with Multi-Walled Carbon Nanotubes. Molecules 2020; 25:molecules25184081. [PMID: 32906783 PMCID: PMC7570915 DOI: 10.3390/molecules25184081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
With the increase in demand, artificially planting Chinese medicinal materials (CHMs) has also increased, and the ensuing pesticide residue problems have attracted more and more attention. An optimized quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes as dispersive solid-phase extraction sorbents coupled with surface-enhanced Raman spectroscopy (SERS) was first proposed for the detection of deltamethrin in complex matrix Corydalis yanhusuo. Our results demonstrate that using the optimized QuEChERS method could effectively extract the analyte and reduce background interference from Corydalis. Facile synthesized gold nanoparticles with a large diameter of 75 nm had a strong SERS enhancement for deltamethrin determination. The best prediction model was established with partial least squares regression of the SERS spectra ranges of 545~573 cm−1 and 987~1011 cm−1 with a coefficient of determination (R2) of 0.9306, a detection limit of 0.484 mg/L and a residual predictive deviation of 3.046. In summary, this article provides a new rapid and effective method for the detection of pesticide residues in CHMs.
Collapse
Affiliation(s)
- Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
- West Electronic Business Company Limited, Yinchuan 750000, China
| | - Zhengyan Xia
- School of Medcine, Zhejiang University City College, Hangzhou 310015, China
- Correspondence: ; Tel.: +86-0571-8828-4325
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Xiaoxi Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
37
|
Yang X, Guo Q, Yang J, Chen S, Hu F, Hu Y, Lin H. Synergistic effects of layer-by-layer films for highly selective and sensitive electrochemical detection of trans-resveratrol. Food Chem 2020; 338:127851. [PMID: 32836002 DOI: 10.1016/j.foodchem.2020.127851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Trans-resveratrol (TRA) possesses a variety of pharmacological activities, making important to explore simple, inexpensive, and reliable analytical methods for identification and quantification of it. We report on the synergistic effects originated from layer-by-layer films of graphene (Gr)-gold nanoparticles (Au) and molecularly imprinted polymers (MIPs) modified glassy carbon electrode (GCE) for electrochemical detection of TRA. To construct the TRA electrochemical sensor (GCE|Gr-Au/MIPs), the films of Gr-Au, MIPs were step by step formed onto GCE via in-situ and controllable electrodeposition and polymerization processes. The compositions, morphologies, and electrochemical properties of obtained films were investigated by various methods. Under the optimized experimental conditions, the electrochemical sensor showed superior performance toward selective and sensitive determination of TRA with K3[Fe(CN)6] as electrochemical signal probe. The electrochemical sensor was applied to determine TRA in real samples with good accuracy and recovery, verifying the broad and practical application prospects for foods and medicines analysis.
Collapse
Affiliation(s)
- Xin Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Huaihua University, Huaihua 418000, PR China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua 418000, PR China
| | - Qianjuan Guo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Huaihua University, Huaihua 418000, PR China
| | - Jinhua Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Huaihua University, Huaihua 418000, PR China
| | - Shuli Chen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Feilong Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China.
| | - Yangjian Hu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Huaihua University, Huaihua 418000, PR China
| | - Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Huaihua University, Huaihua 418000, PR China.
| |
Collapse
|
38
|
Ren X, Li X. Flower-like Ag coated with molecularly imprinted polymers as a surface-enhanced Raman scattering substrate for the sensitive and selective detection of glibenclamide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2858-2864. [PMID: 32930209 DOI: 10.1039/d0ay00575d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flower-like Ag was formed by nanosheet self-assembly as a SERS-active substrate and was utilized for the preparation of flower-like Ag@molecularly imprinted polymers (MIPs) as a surface-enhanced Raman scattering (SERS) sensor. Based on the combination of the molecular imprinting technique and SERS technology, the flower-like Ag@MIPs with high sensitivity and excellent selectivity were used as SERS substrates for the detection of glibenclamide. The imprinted layer could effectively protect the flower-like Ag from oxidation and thereby may improve the stability of the SERS substrate. The intensities of the characteristic peaks obtained for the flower-like Ag@MIPs were higher than that of flower-like Ag. By applying the flower-like Ag@MIPs as an efficient and ultra-sensitive SERS platform, glibenclamide was quantitatively detected in trace concentrations as low as 1 ng mL-1. Furthermore, the SERS enhancement for the flower-like Ag@MIPs was due to the synergetic effect between electromagnetic enhancement and chemical enhancement. We believe that this reliable method can open up new opportunities for practical chemosensor or biosensor applications.
Collapse
Affiliation(s)
- Xiaohui Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
39
|
Qin Z, Jiang Y, Piao H, Li J, Tao S, Ma P, Wang X, Song D, Sun Y. MIL-101(Cr)/MWCNTs-functionalized melamine sponges for solid-phase extraction of triazines from corn samples, and their subsequent determination by HPLC-MS/MS. Talanta 2020; 211:120676. [DOI: 10.1016/j.talanta.2019.120676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
|
40
|
Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been reported to be able to quickly and non-destructively identify target analytes. SERS substrate with high sensitivity and selectivity gave SERS technology a broad application prospect. This contribution aims to provide a detailed and systematic review of the current state of research on SERS-based explosive sensors, with particular attention to current research advances. This review mainly focuses on the strategies for improving SERS performance and the SERS substrates with different dimensions including zero-dimensional (0D) nanocolloids, one-dimensional (1D) nanowires and nanorods, two-dimensional (2D) arrays, and three-dimensional (3D) networks. The effects of elemental composition, the shape and size of metal nanoparticles, hot-spot structure and surface modification on the performance of explosive detection are also reviewed. In addition, the future development tendency and application of SERS-based explosive sensors are prospected.
Collapse
Affiliation(s)
- Jingjing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
41
|
Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem 2020; 310:125923. [DOI: 10.1016/j.foodchem.2019.125923] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
|
42
|
Biosorption of Cd2+ and Pb2+ from apple juice by the magnetic nanoparticles functionalized lactic acid bacteria cells. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106916] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Development of paper-based microfluidic device for the determination of nitrite in meat. Food Chem 2020; 316:126396. [PMID: 32066068 DOI: 10.1016/j.foodchem.2020.126396] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
Abstract
This study employed the use of a microfluidic paper-based analytical device (µPAD) to determine the concentration of nitrite in pork and enhanced the limit of detection by analyzing the coffee-ring effect. The µPAD was fabricated by designing and embedding wax channels onto the cellulose-based filter paper through printing and subjecting the paper to heat treatment to allow wax penetration. Nitrite concentration was determined by monitoring the colorimetric reaction that occurred between nitrite and the added Griess reagent. The limit of detection of this device for nitrite in pork was determined to be 19.2 mg kg-1 by analyzing the inner-chamber reaction, while it could be as low as 1.1 mg kg-1 if the coffee-ring region was analyzed. The overall analysis could be completed within 15 min. This µPAD-based method has potential applications to routinely screen the nitrite concentration of meat products and ensure food safety and consumer health.
Collapse
|
44
|
Qu M, Liu G, Zhao J, Li H, Liu W, Yan Y, Feng X, Zhu D. Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113371. [PMID: 31672348 DOI: 10.1016/j.envpol.2019.113371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Atrazine contamination is of great concern due to its widespread occurrence in shallow lakes. Here, the distribution and degradation of atrazine in acidic and alkaline lake systems were investigated. Meanwhile, the bacterial communities in different sediments and the effects of environmental factors on atrazine-degrading bacteria were evaluated. In the lake systems without plants, atrazine levels in sediment interstitial water reached peak concentrations on the 4th d. More than 90% of atrazine was then degraded in all sediment interstitial water by day 30. Meanwhile, the degradation rate of atrazine in alkaline sediments was faster than that in acidic sediments. Values of hydroxylated metabolites in the acidic lake sediments tended to be greater. Moreover, the amounts of Proteobacteria, Actinobacteria, Firmicute, Nitrospinae, Aminicenantes, Ignavibacteriae and Saccharibacteria in acidic Tangxunhu Lake sediments were significantly different from alkaline Honghu Lake sediments, while the amounts of Cyanobacteria and Saccharibacteria in sediments treated with atrazine were significantly greater than those in sediments without atrazine (P < 0.05). Notably, pH was the most relevant environmental factor in the quantitative variation of atrazine-degrading bacteria, including in Clostridium-sensu-stricto, Pseudomonas, Comamonas and Rhodobacter. The Mantel test results indicated that the degradation of atrazine in different sediments was mainly affected by the sediment physicochemical properties rather than by the addition of atrazine and the cultivation of hydrophytes.
Collapse
Affiliation(s)
- Mengjie Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huidong Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Liu
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Yupeng Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Duanwei Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Fu X, Wen J, Li J, Lin H, Liu Y, Zhuang X, Tian C, Chen L. Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. NANOSCALE 2019; 11:15530-15536. [PMID: 31393497 DOI: 10.1039/c9nr04864b] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate analysis of prostate cancer specific biomarkers plays an important role in the early diagnosis of prostate cancer. Traditional colorimetric lateral flow assay (LFA) has the limitations of low detection sensitivity and qualitative or semiquantitative detection. In this study, we developed a novel surface-enhanced Raman scattering (SERS)-based competitive LFA for the rapid and highly sensitive quantitative evaluation of prostate cancer antigen 3 (PCA3) mimic DNA. Herein, the competitive hybridization interaction with capture DNA between target PCA3 mimic DNA and reporter DNA-labeled SERS nanotags results in a change in the amount of SERS nanotags on the test line. The quantitative analysis of target PCA3 mimic DNA was realized by monitoring the Raman peak intensity of SERS nanotags on the test line. The limit of detection of PCA3 mimic DNA was estimated to be 3 fM, which is about three orders of magnitude more sensitive than that of a commercially available kit. By combining the outstanding characteristics of the well-established SERS-based competitive strategy and LFA platform, our design has strong potential for the early diagnosis of prostate cancer and other diseases.
Collapse
Affiliation(s)
- Xiuli Fu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jiahui Wen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jingwen Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Hao Lin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Yongming Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Chunyuan Tian
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
46
|
Cegłowski M, Kurczewska J, Ruszkowski P, Schroeder G. Application of paclitaxel-imprinted microparticles obtained using two different cross-linkers for prolonged drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Tu Q, Yang T, Qu Y, Gao S, Zhang Z, Zhang Q, Wang Y, Wang J, He L. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst 2019; 144:2017-2025. [PMID: 30702090 DOI: 10.1039/c8an02473a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Monitoring the levels of pesticides on plant tissues is important for achieving effective protection of crops after application, as well as ensuring low levels of residues during harvest. In this study, a simple, rapid, and fieldable colorimetric method for detecting the pesticide glyphosate (Gly) on the plant tissues in situ using cysteamine-modified gold nanoparticles (AuNPs-Cys) has been developed. The aggregation of AuNPs-Cys in the presence of Gly results in a consequent color change from red to blue (or purple), which could be observed visually on the surface of plant tissues. With the naked eye, we successfully detected Gly spiked on the surface of spinach, apple, and corn leaves in situ. Further verification and quantification were achieved using surface-enhanced Raman spectroscopy (SERS) which uses AuNPs-Cys as the substrate. Moreover, application of this method was demonstrated through the evaluation of the Gly distribution on plant tissues which could greatly facilitate the development of precision agriculture technology.
Collapse
Affiliation(s)
- Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China and Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Tianxi Yang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Yanqi Qu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Siyue Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Qingmiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yilei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
48
|
Vinci G, Rapa M. Noble Metal Nanoparticles Applications: Recent Trends in Food Control. Bioengineering (Basel) 2019; 6:bioengineering6010010. [PMID: 30669604 PMCID: PMC6466389 DOI: 10.3390/bioengineering6010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 02/01/2023] Open
Abstract
Scientific research in the nanomaterials field is constantly evolving, making it possible to develop new materials and above all to find new applications. Therefore, nanoparticles (NPs) are suitable for different applications: nanomedicine, drug delivery, sensors, optoelectronics and food control. This review explores the recent trend in food control of using noble metallic nanoparticles as determination tools. Two major uses of NPs in food control have been found: the determination of contaminants and bioactive compounds. Applications were found for the determination of mycotoxins, pesticides, drug residues, allergens, probable carcinogenic compounds, bacteria, amino acids, gluten and antioxidants. The new developed methods are competitive for their use in food control, demonstrated by their validation and application to real samples.
Collapse
Affiliation(s)
- Giuliana Vinci
- Laboratory of Commodity Sciences, Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy.
| | - Mattia Rapa
- Laboratory of Commodity Sciences, Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy.
| |
Collapse
|