1
|
Hambidge T, Nash R, Corless S, Sanatcumar P, Bowdery P, Griffin J, Sears P, Hopley CJ. Validated LC-MS/MS methodology for the quantification of CBD, trace level THCA and UK controlled cannabinoids (Δ 9-THC, Δ 8-THC, CBN and THCV) in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39832132 DOI: 10.1039/d4ay01946f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Products containing cannabidiol (CBD) have become increasingly popular due to consumer-perceived benefits of improving health and well-being. More specifically in the United Kingdom (UK), CBD food products are categorised as novel foods. For these products to remain on the market, they must have authorisation from the Food Standards Agency on the basis that they are safe, correctly labelled, and do not contain substances classified under controlled drugs legislation in accordance with any existing or future Home Office guidance. This demands for analytical laboratories to be able to accurately measure the CBD concentration using validated methods to confirm correct labelling, as well as the controlled cannabinoid content to ensure the products comply with legislation. To address some of these challenges, this work describes two similar liquid chromatography tandem mass spectrometry (LC-MS/MS) methods which were developed and validated for measuring CBD and trace level controlled cannabinoids in CBD containing foods. The accuracy of the methods developed were tested for the first time through an interlaboratory comparison involving expert laboratories. The methods were applied to a comprehensive study of 148 CBD edible products. In 13 of the products tested (9% of the total) CBD was found below the limit of quantification. Of the remaining 135 products (91% of the total), 66% were found to have detectable amounts of one or more controlled cannabinoids. Of the 13 samples that did not contain detectable levels of CBD, two did contain quantifiable levels of controlled cannabinoids. The validation and sample analysis results reveal intriguing sets of data which help gauge the ongoing narrative surrounding CBD analysis and CBD products available in the UK. The research contributes to the global effort to keep unsafe products off the market.
Collapse
Affiliation(s)
- T Hambidge
- LGC, Queens Road, Teddington, TW11 0LY, UK.
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - R Nash
- LGC, Queens Road, Teddington, TW11 0LY, UK.
| | - S Corless
- LGC, Queens Road, Teddington, TW11 0LY, UK.
| | - P Sanatcumar
- Kent Scientific Services, Abbey Wood Road, Kings Hill, West Malling, Kent, ME19 4YT, UK
| | - P Bowdery
- Kent Scientific Services, Abbey Wood Road, Kings Hill, West Malling, Kent, ME19 4YT, UK
| | - J Griffin
- Kent Scientific Services, Abbey Wood Road, Kings Hill, West Malling, Kent, ME19 4YT, UK
| | - P Sears
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - C J Hopley
- LGC, Queens Road, Teddington, TW11 0LY, UK.
| |
Collapse
|
2
|
Tanase Apetroaei V, Istrati DI, Vizireanu C. Plant-Derived Compounds in Hemp Seeds ( Cannabis sativa L.): Extraction, Identification and Bioactivity-A Review. Molecules 2024; 30:124. [PMID: 39795183 PMCID: PMC11722424 DOI: 10.3390/molecules30010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The growing demand for plant-based protein and natural food ingredients has further fueled interest in exploring hemp seeds (Cannabis sativa L.) as a sustainable source of and nutrition. In addition to the content of proteins and healthy fats (linoleic acid and alpha-linolenic acid), hemp seeds are rich in phytochemical compounds, especially terpenoids, polyphenols, and phytosterols, which contribute to their bioactive properties. Scientific studies have shown that these compounds possess significant antioxidant, antimicrobial, and anti-inflammatory effects, making hemp seeds a promising ingredient for promoting health. Since THC (tetrahydrocannabinol) and CBD (cannabidiol) are found only in traces, hemp seeds can be used in food applications because the psychoactive effects associated with cannabis are avoided. Therefore, the present article reviews the scientific literature on traditional and modern extraction methods for obtaining active substances that meet food safety standards, enabling the transformation of conventional foods into functional foods that provide additional health benefits and promote a balanced and sustainable diet. Also, the identification methods of biologically active compounds extracted from hemp seeds and their bioactivity were evaluated. Mechanical pressing extraction, steam distillation, solvent-based methods (Soxhlet, maceration), and advanced techniques such as microwave-assisted and supercritical fluid extraction were evaluated. Identification methods such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) allowed for detailed chemical profiling of cannabinoids, terpenes, and phenolic substances. Optimizing extraction parameters, including solvent type, temperature, and time, is crucial for maximizing yield and purity, offering the potential for developing value-added foods with health benefits.
Collapse
Affiliation(s)
| | - Daniela Ionela Istrati
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (V.T.A.); (C.V.)
| | | |
Collapse
|
3
|
Moya-Utrera F, Fuentes-Ríos D, Romero-Carrasco A, Doña-Flores M, Cheng-Sánchez I, Díaz-Morilla A, Soledad Pino-González M, Martínez-Ferez A, Moreno J, Mesas C, Melguizo C, Prados J, Sarabia F, López-Romero JM. Synthesis of (-)-Cannabidiol (CBD), (-)-Δ 9- and (-)-Δ 8-Tetrahydrocannabinols, Encapsulation of CBD with Nanoparticles for Controlled Delivery and Biological Evaluation. Chemistry 2024; 30:e202402496. [PMID: 39307687 DOI: 10.1002/chem.202402496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Cannabidiol (CBD) is garnering increasing interest due to its significant biological activity. This natural compound is one of the major cannabinoids in Cannabis sativa L. In this work, we describe the encapsulation of CBD in solid and hollow pH-sensitive poly(4-vinylpyridine) (solid@p4VP and hollow@p4VP) nanoparticles, and temperature-sensitive poly(N-isopropylacrylamide) (solid@pNIPAM and hollow@pNIPAM) nanoparticles for transport and release CBD in a controlled manner. The CBD loading into these smart polymeric systems was effective and their release profiles, solubility and resistance to stomach and intestinal conditions were evaluated, showing satisfactory properties and improved bioavailability with respect to free CBD. Finally, the A549 human lung cancer cell line was used as lung adenocarcinoma epithelial cellular model to carry out preliminary assays of the in vitro activity of the vehiculized CBD. For all these studies, synthetic CBD was employed, for which a new efficient and scalable synthesis of cannabinoids has been developed.
Collapse
Affiliation(s)
- Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - David Fuentes-Ríos
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Antonio Romero-Carrasco
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Manuel Doña-Flores
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amelia Díaz-Morilla
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - María Soledad Pino-González
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | | | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - J Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| |
Collapse
|
4
|
Fries A, Moldes CA, Mazzaferro LS. Cost-efficient analysis of cannabinoids in therapeutic oils using HPLC with UV and mass spectrometry detection. Nat Prod Res 2024:1-9. [PMID: 39671430 DOI: 10.1080/14786419.2024.2439024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Cannabis oil, derived from Cannabis sativa plants, is increasingly used for therapeutic purposes across a wide range of diseases. Accurate quantification of cannabinoids is essential, especially for cannabis products sourced from informal markets where supply origins are uncertain. This study aimed to develop a cost-effective, robust analytical methodology using liquid chromatography in combination with UV- and mass detectors for the quantification of key cannabinoids (THC, CBD and CBN) and the identification of THCA and CBDA. Utilising an isocratic flow, the method achieved effective separation within 17 min, ensuring simplicity and reproducibility. The methodology validation was aligned with ICH guidelines' requirements for selectivity, linearity, precision, accuracy, and matrix effects. Successful application of this method to both homemade and commercial cannabis oil samples underscores its relevance for adjusting therapeutic doses and optimising CBD:THC ratios for specific disease treatments.
Collapse
Affiliation(s)
- Alexander Fries
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Carlos Alberto Moldes
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Laura S Mazzaferro
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| |
Collapse
|
5
|
Pawar RS, Coppin JP, Khanna S, Parker CH. A Survey of Melatonin in Dietary Supplement Products Sold in the United States. Drug Test Anal 2024. [PMID: 39482109 DOI: 10.1002/dta.3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
In the United States, melatonin products are widely available as dietary supplements. During the past few decades, melatonin products have gained popularity primarily as a sleep aid, with a variety of product forms available for different age groups of consumers. Recent reports have highlighted a rise in melatonin ingestion among children reported to poison control centers. The increased use of melatonin-containing products, the diversity in product forms, and reported label discrepancies has emphasized the need for additional research to better understand the marketplace. This work aims to measure melatonin content in products sold as dietary supplements and marketed for children, evaluate method performance across different product categories, and determine if product form has an impact on melatonin stability. One hundred ten (110) dietary supplement products labeled to contain melatonin and marketed towards children were purchased and analyzed using a targeted LC-MS/MS method validated for the qualitative determination of serotonin and quantification of melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), and N1-acetyl-5-methoxykynuramine (AMK). Melatonin was identified in 108 of 110 products (98%) with a median concentration of 1.2 mg/g (range: 0.017-130 mg/g) or 1.7 mg/serving (range: 0.042-50 mg/serving). Further, in the tested products, melatonin content ranged from 0% to 667% of the label declaration. This study provides evidence to inform safety assessments and investigate potential factors that may influence reported concentrations, such as product stability and matrix influences.
Collapse
Affiliation(s)
- Rahul S Pawar
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Julia P Coppin
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Saara Khanna
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland, USA
| | - Christine H Parker
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| |
Collapse
|
6
|
Minamoto K, Takayama T, Katehashi H, Katagi M, Inoue K. Development and validation of a sensitive and simultaneous liquid chromatography tandem mass spectrometry method for the determination of eight phytocannabinoids in various CBD products. J Pharm Biomed Anal 2024; 249:116341. [PMID: 38972177 DOI: 10.1016/j.jpba.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
In this study, we developed and validated a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of eight phytocannabinoids in various cannabidiol (CBD) products from Japanese market. This method was combined with electrospray ionization in positive mode and sample preparation with QuEChERS. Three types of commercial products such as honey, chocolate, and gummies were used to perform accurate quantification with unified protocol of LC-MS/MS and QuEChERS. The limit of detection and quantification were 5-20 µg g-1 and 10-40 µg g-1, respectively. Reproducibility was ensured using matrices free of target foods, resulting in an accuracy within ±10 % and a precision with a relative standard deviation of less than 5 % for all targets. Finally, this analytical method was applied to 8 series of commercial samples from the Japanese market. This unified protocol will serve as a reference as an official method in Japan.
Collapse
Affiliation(s)
- Kyosuke Minamoto
- Laboratory of Clinical & Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Takayama
- Laboratory of Clinical & Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hidenao Katehashi
- Forensic Science Laboratory, Osaka Prefectural Police Headquarters, 1-3-18 Hommachi, Chuo-Ku, Osaka 541-0053, Japan
| | - Munehiro Katagi
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Koichi Inoue
- Laboratory of Clinical & Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
7
|
Desmedt B, Van Campenhout P, Deconinck E. A systematic review of analytical methodologies capable of analysing phytocannabinoids in cosmetics. Drug Test Anal 2024; 16:1195-1202. [PMID: 38229238 DOI: 10.1002/dta.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
As cannabidiol (CBD) is not considered to be a drug and because of its potential health claims, it is an interesting compound that is often found in cosmetics. However, the safety of CBD, as well as the presence of trace amounts of other phytocannabinoids, including the psychoactive substance ∆9-tetrahydrocannabinol (THC), is still being debated. A robust analytical technique capable of analysing cosmetic products and determining their phytocannabinoid content will be crucial in assessing the safety of these products. This systematic review aims to highlight the current analytical tools that could be used to analyse phytocannabinoids in cosmetics. The ideal method would be able to analyse high levels of CBD in combination with trace levels of THC and their acids. The method should provide good recoveries and accuracies in a variety of matrices while providing information on up-coming phytocannabinoids such as cannabichromene (CBC), cannabigerol (CBG) and cannabinol (CBN). The systematic review approach was based on the Preferred Reporting Items for Systematic review and Meta-Analyses method. The research focused on studies published from January 2010 to December 2022 in PubMed and Scopus. A total of 15 datasets met the inclusion and exclusion criteria and were tabulated to allow easy comparison. Although some of the reviewed methods can handle multiple matrices and provide satisfactory recoveries, this review process did not identify an ideal method. The most suitable methods either could not quantify phytocannabinoid acids or were not sensitive enough to quantify trace levels of psychoactive phytocannabinoids.
Collapse
Affiliation(s)
- Bart Desmedt
- Medicines and Health Products, Scientific Direction Physical and Chemical Health risks, Sciensano, Brussels, Belgium
| | - Peter Van Campenhout
- Medicines and Health Products, Scientific Direction Physical and Chemical Health risks, Sciensano, Brussels, Belgium
| | - Eric Deconinck
- Medicines and Health Products, Scientific Direction Physical and Chemical Health risks, Sciensano, Brussels, Belgium
| |
Collapse
|
8
|
Nguyen LAM, Pham TH, Ganeshalingam M, Thomas R. A multimodal analytical approach is important in accurately assessing terpene composition in edible essential oils. Food Chem 2024; 454:139792. [PMID: 38810452 DOI: 10.1016/j.foodchem.2024.139792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Terpenes in essential oils (EOs) have recently received significant attention due to their potential to improve brain and whole-body health. A deeper understanding of the terpene composition of edible EOs is important for fully exploring their possible applications. In our study, we employed a comprehensive study using four different methods to analyze EO samples, including GC-MS with solid phase microextraction (SPME), liquid injection (LI), derivatization to trimethylsilyl ethers (TMSE), and LC-MS. Our findings revealed that relying on a single analytical method may be insufficient for detecting all terpenes in EOs. Despite identifying a total of 156 terpenes in the samples, only 58 were detectable across all 4 methods. To obtain a more accurate terpene profile of EOs, we advocate for the combined use of LI-GC and TMSE-GC. The terpenes detected by these two methods are complementary, enabling the detection of all terpenes with high VIP in the samples.
Collapse
Affiliation(s)
- Le Anh Minh Nguyen
- School of Science and the Environment/Environmental Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador A2H 5G4, Canada; Department of Biology/Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, Ontario, Canada.
| | - Thu Huong Pham
- School of Science and the Environment/Environmental Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador A2H 5G4, Canada
| | - Moganatharsa Ganeshalingam
- Department of Biology/Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, Ontario, Canada
| | - Raymond Thomas
- Department of Biology/Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
9
|
Irawan A, Muchiri RN, Parker NB, van Breemen RB, Ates S, Bionaz M. Cannabinoid residuals in tissues of lambs fed spent hemp biomass and consumer's exposure assessment. Food Chem Toxicol 2024; 191:114848. [PMID: 38971552 DOI: 10.1016/j.fct.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Spent hemp biomass (SHB) contains trace amounts of cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), that may accumulate in the tissues of animals consuming SHB. We measured cannabinoid residues in the liver, adipose tissue, and muscle of finishing lambs fed either 10% or 20% SHB for 8 weeks, or 4 weeks followed by 4 weeks SHB withdrawal. We detected multiple cannabinoids in the liver at a similar proportion to the SHB. However, CBD and Δ9-THC were enriched >20-fold in the adipose and muscle, compared to their proportion in SHB. The highest concentration of Δ9-THC was detected in adipose tissue and was 7.4-times higher than in muscle. Most cannabinoids were undetectable in tissues after 4 weeks of clearance. The consumers' exposure assessment on Δ9-THC revealed tissue levels of total THC (THCA+Δ9-THC) that exceed the acute reference dose of 1 μg/kg BW across population groups. When consuming meat from the lambs fed 10% and 20% SHB, the maximum total THC exposure was 2.03 and 7.32 μg/kg BW, respectively, equal to or below the Lowest Observed Adverse Effect Level of 36 μg/kg BW, the No Observed Adverse Effect Level of 12 μg/kg BW or a tolerable dose intake of 7 μg/kg BW.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA; Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Ruth N Muchiri
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, 97331, USA
| | - Nathan B Parker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, 97331, USA
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA.
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331, USA.
| |
Collapse
|
10
|
Gao BC, Sun YF, Tian Y, Shi Y, Zhang ZG, Mao GL. Direct de/carboxylation of cannabidiolic acid (CBDA) and cannabidiol (CBD) from hemp plant material under supercritical CO 2. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1087-1093. [PMID: 38676379 DOI: 10.1080/10286020.2024.2345825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Many organic reactions rely on CO2 sources to generate important structural units and valuable chemicals. In this study, we compared the effects of cannabidiol (CBD) and cannabidiolic acid (CBDA) on the supercritical CO2 (scCO2)-induced de/carboxylation reaction. The results showed that CBD was directly carboxylated in the ortho-position to form CBDA with up to 62% conversion. Meanwhile, CBDA decarboxylation occurred on hemp plant material via varying composition. Mechanistic studies revealed that CBD carboxylation was influenced not only by the physical properties of scCO2, but also by the vegetable matrix.
Collapse
Affiliation(s)
- Bao-Chang Gao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163316, China
- Institute of Phytochemistry, Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163316, China
| | - Yu-Feng Sun
- Institute of Phytochemistry, Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163316, China
| | - Yuan Tian
- Institute of Phytochemistry, Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163316, China
| | - Yu Shi
- Institute of Phytochemistry, Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163316, China
| | - Zhi-Guo Zhang
- Institute of Phytochemistry, Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163316, China
| | - Guo-Liang Mao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163316, China
| |
Collapse
|
11
|
Thiebot P, Magny R, Langrand J, Dufayet L, Houze P, Labat L. Analysis of homemade cannabis edibles by UHPLC-HRMS after standard addition method. J Anal Toxicol 2024; 48:372-379. [PMID: 38407251 DOI: 10.1093/jat/bkae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/01/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
With recent evolution of cannabis legalization around the world, cannabis edibles are booming, and determining their concentration in Δ9-tetrahydrocannabinol (Δ9-THC), the regulated psychoactive substance, remains a challenge for toxicology laboratories, which must prove whether the product has legal status or not. Cannabinoids are a large family of structurally similar and lipophilic molecules, requiring dedicated pre-analytical methods, as well as efficient chromatographic separation to differentiate cannabinoid isomers which are distinguished by their psychoactive properties and their legal status. Here, we present two independent cases of cannabis edibles, for which we performed analysis of homemade cannabis chocolate cakes and of the resins and herbs used for cooking. Quantitation was carried out with a new developed standard addition method, to avoid matrix effects and matrix-dependent calibration. Extraction by QuEChERs method, followed by targeted and non-targeted analysis by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry (UHPLC-HRMS) allowed the identification of several phytocannabinoids, mainly Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and their acid precursors Δ9-THC acid (THCA) and CBD acid (CBDA). Δ9-THC was identified in significant concentrations (mg/g) in both edibles, even though one was prepared with CBD herb. This work highlights the need to analyze cannabis edibles, as well as the resins and herbs used in their preparation if it is homemade, and it proposes a reliable analytical method for toxicology laboratories.
Collapse
Affiliation(s)
- Pauline Thiebot
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, APHP, 2 rue Ambroise Paré, Paris 75010, France
- INSERM UMRS-1144, Université Paris Cité, 4 avenue de l'Observatoire, Paris 75006, France
| | - Romain Magny
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, APHP, 2 rue Ambroise Paré, Paris 75010, France
- INSERM UMRS-1144, Université Paris Cité, 4 avenue de l'Observatoire, Paris 75006, France
| | - Jérôme Langrand
- INSERM UMRS-1144, Université Paris Cité, 4 avenue de l'Observatoire, Paris 75006, France
- Centre Antipoison, Fédération de Toxicologie, Hôpital Fernand Widal, APHP, 200 rue du Faubourg Saint-Denis, Paris 75010, France
| | - Laurène Dufayet
- INSERM UMRS-1144, Université Paris Cité, 4 avenue de l'Observatoire, Paris 75006, France
- Unité Médico-Judiciaire, Hôpital Hôtel-Dieu AP-HP, 5 rue de la Cité, Paris 75004, France
| | - Pascal Houze
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, APHP, 2 rue Ambroise Paré, Paris 75010, France
- INSERM UMRS-1144, Université Paris Cité, 4 avenue de l'Observatoire, Paris 75006, France
| | - Laurence Labat
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, APHP, 2 rue Ambroise Paré, Paris 75010, France
- INSERM UMRS-1144, Université Paris Cité, 4 avenue de l'Observatoire, Paris 75006, France
| |
Collapse
|
12
|
Yang S, Sun M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013-2023): A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857901 DOI: 10.1021/acs.jafc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cannabis-infused edibles are food products infused with a cannabis extract. These edibles include baked goods, candies, and beverages, offering an alternative way to consume cannabis instead of smoking or vaporizing it. Ensuring the accurate detection of cannabis-infused edibles and identification of any contaminants is crucial for public health and safety. This is particularly important for compliance with legal regulations as these substances can have significant psychoactive effects, especially on unsuspecting consumers such as children or individuals with certain medical conditions. Using efficient extraction methods can greatly improve detection accuracy, ensuring that the concentration of cannabinoids in edibles is measured correctly and adheres to dosage guidelines and legal limits. This review comprehensively examines the preparation and extraction techniques for cannabinoid edibles. It covers methods such as solid-phase extraction, enhanced matrix removal-lipid, QuEChERS, dissolution and dispersion techniques, liquid-phase extraction, and other emerging methodologies along with analytical techniques for cannabinoid analysis. The main analytical techniques employed for the determination of cannabinoids include liquid chromatography (LC), gas chromatography (GC), direct analysis in real time (DART), and mass spectrometry (MS). The application of these extraction and analytical techniques is further demonstrated through their use in analyzing specific edible samples, including oils, candies, beverages, solid coffee and tea, snacks, pet food, and contaminated products.
Collapse
Affiliation(s)
- Siyun Yang
- Department of Biology, Kean University, Union, New Jersey 07083, United States
| | - Mingjing Sun
- Department of Chemistry and Physics, Kean University, Union, New Jersey 07083, United States
| |
Collapse
|
13
|
Huang S, van Beek TA, Claassen FW, Janssen HG, Ma M, Chen B, Zuilhof H, Salentijn GI. Comprehensive cannabinoid profiling of acid-treated CBD samples and Δ 8-THC-infused edibles. Food Chem 2024; 440:138187. [PMID: 38134831 DOI: 10.1016/j.foodchem.2023.138187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Δ8-Tetrahydrocannabinol (Δ8-THC) is increasingly popular as a controversial substitute for Δ9-tetrahydrocannabinol (Δ9-THC) in cannabinoid-infused edibles. Δ8-THC is prepared from cannabidiol (CBD) by treatment with acids. Side products including Δ9-THC and other isomers that might end up in Δ8-THC edibles are less studied. In this paper, three orthogonal methods, namely reversed-phase (RP)-UHPLC-DAD/HRMS, normal-phase/argentation (silica-Ag(I))-HPLC-DAD/MS, and GC-FID/MS were developed for analysis of cannabinoid isomers, namely Δ8-THC, Δ9-THC, CBD, Δ8-iso-THC, Δ(4)8-iso-THC, and hydrated THC isomers. Eight acid-treated CBD mixtures contained various amounts of Δ8-THC (0-89%, w/w%), high levels of Δ9-THC (up to 49%), Δ8-isoTHC (up to 55%), Δ(4)8-iso-THC (up to 17%), and three hydrated THC isomers. Commercial Δ8-THC gummies were also analyzed, and issues like overclaimed Δ8-THC, excessive Δ9-THC, undeclared Δ8-iso-THC, and Δ(4)8-iso-THC were found. These findings highlight the urgency of improving regulations towards converting CBD to Δ8-THC for use as food ingredients.
Collapse
Affiliation(s)
- Si Huang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Teris A van Beek
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frank W Claassen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Hans-Gerd Janssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH Wageningen, The Netherlands
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China.
| | - Han Zuilhof
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - G Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| |
Collapse
|
14
|
Lindekamp N, Triesch N, Rohn S, Weigel S. Quantification of sixteen cannabinoids in hemp seed edible oils and the influence of thermal processing on cannabinoid contents and profiles. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:550-562. [PMID: 38588664 DOI: 10.1080/19440049.2024.2319270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/11/2024] [Indexed: 04/10/2024]
Abstract
To investigate cannabinoid content and profiles, 16 cannabinoids were quantified in 30 commercial hemp seed edible oils. In addition, one hemp seed oil was subjected to thermal processing up to 200 °C for up to 60 min. UHPLC-MS/MS was used for analysis. The content of cannabinoids in the samples ranged from 9 to 279 mg kg-1 (sum) and for Δ9-tetrahydrocannabinol (Δ9-THC) from 0.2 to 6.7 mg kg-1. Three samples exceeded the EU Δ9-THC equivalent maximum levels of 7.5 mg kg-1 for hemp seed oils. Cannabinoid profiles can provide indications of different product characteristics (e.g. degree of processing, variety of plant material). Furthermore, intense thermal processing (200 °C, 60 min) led to 38% decrease in sum cannabinoid content (sum of all analysed cannabinoids in this study), 99% decrease in cannabinoid acids, and 22% increase in Δ9-THC.
Collapse
Affiliation(s)
- Niklas Lindekamp
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Nadja Triesch
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Stefan Weigel
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
15
|
Zhang W, Yu J, Wang D, Han X, Wang T, Yu D. Ultrasonic-ethanol pretreatment assisted aqueous enzymatic extraction of hemp seed oil with low Δ 9-THC. ULTRASONICS SONOCHEMISTRY 2024; 103:106766. [PMID: 38271781 PMCID: PMC10818077 DOI: 10.1016/j.ultsonch.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In this study, ultrasonic-ethanol pretreatment combined with AEE was developed for oil extraction from hemp seeds. The oil yield reached a maximum of 23.32 % at 200 W ultrasonic power and 30 min ultrasonic time, at this point, the degradation rate of Δ9-THC was 83.11 %. By determining the composition of hemp seed before and after pretreatment, it was shown that ultrasonic-ethanol pretreatment reduced the protein content of the raw material. An enzyme mixture consisting of pectinase and hemicellulase (1/1/1, w/w/w) was experimentally determined to be used, and the AEE extraction conditions were optimized using the Plackett-Burman design and the Box-Behnken. The optimal conditions were determined to be pH 5, total enzyme activity of 37,800 U/g, liquid-solid ratio of 10.4 mL/g, enzyme digestion temperature of 32 °C, enzymatic time of 189 min, and oil recovery of 88.38 %. The results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the emulsion formed during ultrasonic ethanol pretreatment was not uniformly distributed, and the droplets appeared to be aggregated; and the irregular pores of hemp seed increased after pretreatment. The contents of Δ9-THC and CBN in the extracted oil samples were 9.58 mg/kg and 52.45 mg/kg, respectively. Compared with the oil extracted by Soxhlet extraction (SE), the oil extracted by this experimental method was of better quality and similar in fatty acid composition.
Collapse
Affiliation(s)
- Wang Zhang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaye Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield, S10 2TNc, United Kingdom
| | - Xiaoyu Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Meyer G, Adisa M, Dodson Z, Adejumo E, Jovanovich E, Song L. A liquid chromatography electrospray ionization tandem mass spectrometry method for quantification of up to eighteen cannabinoids in hemp-derived products. J Pharm Biomed Anal 2024; 238:115847. [PMID: 37976987 DOI: 10.1016/j.jpba.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A LC-ESI/MS/MS method was developed for quantification of up to eighteen cannabinoids, the maximum number published so far. A thorough study of published LC-ESI/MS/MS methods using triple quadrupole mass spectrometers revealed a possible misconception that multiple reaction monitoring (MRM) was able to definitively differentiate structural isomers of cannabinoids, especially Δ8-/Δ9-tetrahydrocannabinol (THC), which explained why many of those methods were developed for a limited number of cannabinoids, as small as two, and did not include Δ8-THC. In this study, the use of a quadrupole time-of-flight (QTOF) mass spectrometer for targeted analysis indicated that MRM could not definitively distinguish structural isomers of Δ9-THC, with a possible exception of cannabicyclol (CBL) for less accurate quantification, so their baseline separation was essential for their accurate quantification. After the developed method was successfully validated according to the ISO 17025 guidelines, it was further applied for the analysis of eighteen hemp-derived products, including drinks, water-soluble oils, topical serum, body lotion, face cream, lip balm, gummies, hard candy, coffee, snacks, and pet treats. The LOQ was 0.00008% (w/w) for drinks with the analysis of 12.5 mg/mL extracts, while the LOQ was 0.008% (w/w) for other samples because 125 μg/mL extracts were analyzed due to higher content of cannabinoids in non-drink samples. For the first-time, extraction recovery and matrix effect were tracked in real-time for each sample being analyzed, obtaining 92.9-106.3% and 91.3-120.2% in triplicate measurements, respectively, by spiking abnormal cannabidiol (ACBD), a cannabinoid not naturally present in hemp, into each sample before extraction and ACBD-d3 into each sample after extraction.
Collapse
Affiliation(s)
- Grant Meyer
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Mojisola Adisa
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Zachary Dodson
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Emmanuel Adejumo
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Emily Jovanovich
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Liguo Song
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| |
Collapse
|
17
|
Bartončíková M, Lapčíková B, Lapčík L, Valenta T. Hemp-Derived CBD Used in Food and Food Supplements. Molecules 2023; 28:8047. [PMID: 38138537 PMCID: PMC10745805 DOI: 10.3390/molecules28248047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabis sativa L., a plant historically utilized for textile fibers, oil, and animal feed, is progressively being recognized as a potential food source. This review elucidates the nutritional and functional attributes of hemp and cannabidiol (CBD) within the context of food science. Hemp is characterized by the presence of approximately 545 secondary metabolites, among which around 144 are bioactive cannabinoids of primary importance. The study looks in detail at the nutritional components of cannabis and the potential health benefits of CBD, encompassing anti-inflammatory, anxiolytic, and antipsychotic effects. The review deals with the legislation and potential applications of hemp in the food industry and with the future directions of cannabis applications as well. The paper emphasizes the need for more scientific investigation to validate the safety and efficacy of hemp components in food products, as current research suggests that CBD may have great benefits for a wide range of consumers.
Collapse
Affiliation(s)
- Michaela Bartončíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| | - Barbora Lapčíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Tomáš Valenta
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| |
Collapse
|
18
|
Kanabus J, Bryła M, Roszko M. The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material. Molecules 2023; 28:8008. [PMID: 38138498 PMCID: PMC10746033 DOI: 10.3390/molecules28248008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabinoids are an important group of secondary metabolites found in the plant Cannabis sativa L. The growing interest in the use of hemp in food production (e.g., hemp teas, hemp cookies) makes it necessary to develop a method for determining these compounds in the plant, both fresh and dried. The selection of a suitable extraction liquid for the extraction of cannabinoids and the development of a method for the determination of 17 cannabinoids is a prelude to the development of an effective method for the extraction of these compounds. In the present study, a novel, simple, and efficient method was developed and validated for the determination of up to 17 cannabinoids in fresh plant parts (inflorescences and leaves) of Cannabis sativa L. and in dried material, including hemp teas. Analyses were performed using ultra-high-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry setup operating with a heated electrospray interface (UHPLC-HESI-MS). Based on the comparison, methanol was selected as the best for the extraction of cannabinoids from fresh and dried material. The efficiency and validity of the method were assessed using certified reference material (dried Cannabis) and confirmed by z-score from participation in an international proficiency test conducted by ASTM International for dried hemp.
Collapse
Affiliation(s)
- Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | | | | |
Collapse
|
19
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
20
|
da Silveira PHPM, dos Santos MCC, Chaves YS, Ribeiro MP, Marchi BZ, Monteiro SN, Gomes AV, Tapanes NDLCO, Pereira PSDC, Bastos DC. Characterization of Thermo-Mechanical and Chemical Properties of Polypropylene/Hemp Fiber Biocomposites: Impact of Maleic Anhydride Compatibilizer and Fiber Content. Polymers (Basel) 2023; 15:3271. [PMID: 37571165 PMCID: PMC10422450 DOI: 10.3390/polym15153271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
This article presents a comprehensive study on the physical, mechanical, thermal, and chemical properties of polypropylene (PP) composites reinforced with hemp fibers (HF) and compatibilized with maleic anhydride (MAPP). The composites were processed using a twin-screw extruder, followed by hot compression at 190 °C. Subsequently, the composites were analyzed using Izod impact and Shore D hardness tests to evaluate their mechanical properties. Thermal properties were investigated through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), while X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) were employed to study their chemical properties. Additionally, a statistical analysis was conducted to compare the average results of the impact and hardness tests. XRD analysis revealed that the addition of HF and MAPP led to the disappearance of peaks corresponding to the beta phase in pure PP. Hemp fibers exhibited an impressive crystallinity of 82.10%, surpassing other natural fibers, and had a significant molecular orientation angle (MFA) of 6.06°, making them highly desirable for engineering applications. The crystallite size was observed to be relatively large, at 32.49 nm. FTIR analysis demonstrated strong interactions between the fiber, compatibilizing agent, and polymer matrix. TGA tests showed that the addition of 5 and 10 wt.% MAPP resulted in complete degradation of the composites, similar to pure PP. DSC analyses indicated a reduction in crystallinity (Xc) due to the incorporation of HF and MAPP. Shore D hardness tests revealed an increase in hardness with the addition of 5 wt.% MAPP, while a steep decline in this property was observed with 10 wt.% MAPP. In terms of impact resistance, fractions of 3 and 5 wt.% MAPP in the composites exhibited improved performance compared to the pure polymer. Analysis of variance (ANOVA) was employed to ensure the statistical reliability of the mechanical test results. This comprehensive study sheds light on the diverse properties of PP composites reinforced with hemp fibers and compatibilized with MAPP, emphasizing their potential as sustainable materials for engineering applications. The results contribute to the understanding of the structural and functional aspects of these composites, guiding future research and developments in the field.
Collapse
Affiliation(s)
- Pedro Henrique Poubel Mendonça da Silveira
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, Brazil; (Y.S.C.); (M.P.R.); (B.Z.M.); (S.N.M.); (A.V.G.)
| | - Mônica Cristina Celestino dos Santos
- Department of Materials, Rio de Janeiro State University, West Zone Campus —UERJ-ZO, Avenida, Manuel Caldeira de Alvarenga, 1203—Campo Grande, Rio de Janeiro 23070-200, Brazil; (M.C.C.d.S.); (N.d.L.C.O.T.); (P.S.d.C.P.); (D.C.B.)
| | - Yago Soares Chaves
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, Brazil; (Y.S.C.); (M.P.R.); (B.Z.M.); (S.N.M.); (A.V.G.)
| | - Matheus Pereira Ribeiro
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, Brazil; (Y.S.C.); (M.P.R.); (B.Z.M.); (S.N.M.); (A.V.G.)
| | - Belayne Zanini Marchi
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, Brazil; (Y.S.C.); (M.P.R.); (B.Z.M.); (S.N.M.); (A.V.G.)
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, Brazil; (Y.S.C.); (M.P.R.); (B.Z.M.); (S.N.M.); (A.V.G.)
| | - Alaelson Vieira Gomes
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro 22290-270, Brazil; (Y.S.C.); (M.P.R.); (B.Z.M.); (S.N.M.); (A.V.G.)
| | - Neyda de La Caridad Om Tapanes
- Department of Materials, Rio de Janeiro State University, West Zone Campus —UERJ-ZO, Avenida, Manuel Caldeira de Alvarenga, 1203—Campo Grande, Rio de Janeiro 23070-200, Brazil; (M.C.C.d.S.); (N.d.L.C.O.T.); (P.S.d.C.P.); (D.C.B.)
| | - Patricia Soares da Costa Pereira
- Department of Materials, Rio de Janeiro State University, West Zone Campus —UERJ-ZO, Avenida, Manuel Caldeira de Alvarenga, 1203—Campo Grande, Rio de Janeiro 23070-200, Brazil; (M.C.C.d.S.); (N.d.L.C.O.T.); (P.S.d.C.P.); (D.C.B.)
| | - Daniele Cruz Bastos
- Department of Materials, Rio de Janeiro State University, West Zone Campus —UERJ-ZO, Avenida, Manuel Caldeira de Alvarenga, 1203—Campo Grande, Rio de Janeiro 23070-200, Brazil; (M.C.C.d.S.); (N.d.L.C.O.T.); (P.S.d.C.P.); (D.C.B.)
| |
Collapse
|
21
|
Song L, Meyer G, Adejumo E, Jovanovich E, LeBlanc L, Provis J. Potency testing of up to sixteen cannabinoids in hemp-infused edibles using liquid chromatography diode array detector with optional confirmation of identity by electrospray ionization time-of-flight mass spectrometry. Food Chem 2023; 417:135819. [PMID: 36917906 DOI: 10.1016/j.foodchem.2023.135819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/28/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
A LC-DAD method for potency testing of up to sixteen cannabinoids has been developed, validated, and applied for analysis of twenty hemp-infused edibles encompassing a broad range of complex matrices. The method was validated according to ISO 17025 guidelines and met requirements. Samples or their uniform water-dispersions were extracted by methanol under homogenization through pulverization and/or ultrasonication. By spiking abnormal cannabidiol, a cannabinoid not naturally present in hemp, into each sample, extraction recovery was tracked in real time, obtaining 90 to 108% in triplicates with relative standard deviations of 0.5 to 6.5%. The linear calibration range was between 0.008 and 10% (w/w) for each cannabinoid using a 250 µg/mL solution of hemp-infused edibles, except for drinks (sparkling water and tea), where it was between 0.0008 and 1% (w/w) using a 2.5 mg/mL solution. ESI/TOFMS confirmed a good method specificity, i.e., without any false positive identification of individual cannabinoid.
Collapse
Affiliation(s)
- Liguo Song
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Grant Meyer
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Emmanuel Adejumo
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Emily Jovanovich
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Lindsey LeBlanc
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Jake Provis
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| |
Collapse
|
22
|
Zhao Y, Sepehr E, Vaught C, Yourick J, Sprando RL. Development and validation of a fit-for-purpose UHPLC-ESI-MS/MS method for the quantitation of cannabinoids in different matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1218:123629. [PMID: 36854205 DOI: 10.1016/j.jchromb.2023.123629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Several cannabinoids (cannabidivarin (CBDV), cannabigerol (CBG), cannabidiol (CBD), cannabinol (CBN) and cannabichromene (CBC)) and ethanol hemp extract are being used in primary human hepatocytes (PHH), Caenorhabditis elegans (C. elegans) and in vitro buccal membrane absorption models to elucidate their potential toxicological mechanisms, evaluate their oromucosal absorption, and to identify their metabolites. William's E medium, C. elegans habitation medium (CeHM), and HEPES-buffered hanks' balanced salt solution (HHBSS) are matrices used with these predictive test systems. Therefore, we developed and validated a sensitive fit-for-purpose ultra-high performance liquid chromatography-electrospray-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantitation of CBDV, CBG, CBD, CBN, and CBC in extracellular matrices used with these models for the first time. The separation of the analytes was performed on a Waters ACQUITY UPLC BEH C18 column (130 Å, 1.7 μm, 2.1 × 100 mm) protected with a Waters ACQUITY UPLC BEH C18 guard column (130 Å, 1.7 μm, 2.1 × 5 mm). Positive electrospray ionization and multiple reaction monitoring (MRM) modes were used. Under the developed experimental conditions, good linearities were obtained over the concentration range of 0.025-40 µg/ml with coefficients of determination (R2) varying from 0.9953 to 0.9998. The intra-day precisions were between 0.5 and 9.6% with accuracies within ± 16.7%, and the inter-day precisions ranged from 0.6 to 13.1 % with accuracies within ± 13.7%. The method recoveries were between 85.8 and 105.1%. In addition, time-consuming sample preparation was avoided by applying a simple and efficient extraction procedure, which meets the need for potential large-scale routine analysis. The described method was successfully applied to quantitate the analytes in samples produced with different models as well as in ethanolic hemp extract.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA.
| | - Estatira Sepehr
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Cory Vaught
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
23
|
Development and Validation of the LC-MS/MS Method for Determination of 130 Natural and Synthetic Cannabinoids in Cannabis Oil. Molecules 2022; 27:molecules27238601. [PMID: 36500694 PMCID: PMC9736437 DOI: 10.3390/molecules27238601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary supplements are widely available products used by millions of people around the world. Unfortunately, the procedure of adding pharmaceutical and psychoactive substances has recently been observed, in order to increase the effectiveness of supplements in the form of hemp oils. For this reason, it is extremely important to develop analytical methods for the detection of substances prohibited in dietary supplements and food products. In the present study, using the LC-MS/MS technique, an innovative method for the detection and quantification of 117 synthetic cannabinoids and 13 natural cannabinoids in dietary supplements and food products in the form of oils during one 13-min chromatographic run was developed. Each method was fully validated by characterization of the following parameters: The limit of detection was set to 0.1 ng/mL (100 µg/g, 0.01%). The limit of quantification ranged from 0.05 ng/mL to 50 ng/mL. The criteria assumed for systematic error caused by methodological bias (±20%) resulting from the recovery of analytes after the extraction process, as well as the coefficient of variation (CV) (≤20%), were met for all 130 tested compounds. The positive results of the validation confirmed that the developed methods met the requirements related to the adequacy of their application in a given scope. Additionally, methods developed using the LC-MS/MS technique were verified via proficiency tests. The developed analytical procedure was successfully used in the analysis of hemp oils and capsules containing them in the studied dietary supplements.
Collapse
|
24
|
La Maida N, Di Giorgi A, Pichini S, Busardò FP, Huestis MA. Recent challenges and trends in forensic analysis: Δ9-THC isomers pharmacology, toxicology and analysis. J Pharm Biomed Anal 2022; 220:114987. [PMID: 35985136 DOI: 10.1016/j.jpba.2022.114987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) isomers, especially Δ8-tetrahydrocannabinol (Δ8-THC), are increasing in foods, beverages, and e-cigarettes liquids. A major factor is passage of the Agriculture Improvement Act (AIA) that removed hemp containing less than 0.3 % Δ9-THC from the definition of "marijuana" or cannabis. CBD-rich hemp flooded the market resulting in excess product that could be subjected to CBD cyclization to produce Δ8-THC. This process utilizes strong acid and yields toxic byproducts that frequently are not removed prior to sale and are currently inadequately studied. Pharmacological activity is qualitatively similar for Δ8-THC and Δ9-THC, but most preclinical studies in mice, rats, and monkeys documented greater ∆9-THC potency. Both isomers caused graded dose-response effects on euphoria, blurred vision, mental confusion and lethargy, although Δ8-THC was at least 25 % less potent. The most common analytical methodologies providing baseline resolution of ∆8-THC and ∆9-THC in non-biological matrices are liquid-chromatography coupled to diode-array detection (LC-DAD or LC-PDA), while liquid chromatography coupled to mass spectrometry is preferred for biological matrices. Other available analytical methods are gas-chromatography-mass spectrometry (GC-MS) and quantitative nuclear magnetic resonance (QNMR). Current knowledge on the pharmacology of ∆8-THC and other ∆9-THC isomers are reviewed to raise awareness of the activity of these isomers in cannabis products, as well as analytical methods to discriminate ∆9-THC qualitatively, and quantitatively and ∆8-THC in biological and non-biological matrices.
Collapse
Affiliation(s)
- Nunzia La Maida
- Unit of Forensic Toxicology, Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Università la Sapienza, V. Le Regina Elena 366, 00161 Rome, Italy
| | - Alessandro Di Giorgi
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 10/a, 60124, Ancona, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V. Le Regina Elena 299, 00161 Rome, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 10/a, 60124, Ancona, Italy.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Ogrinc N, Schneider S, Bourmaud A, Gengler N, Salzet M, Fournier I. Direct In Vivo Analysis of CBD- and THC-Acid Cannabinoids and Classification of Cannabis Cultivars Using SpiderMass. Metabolites 2022; 12:metabo12060480. [PMID: 35736414 PMCID: PMC9227750 DOI: 10.3390/metabo12060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, cannabis and hemp-based products have become increasingly popular for recreational use, edibles, beverages, health care products, and medicines. The rapid detection and differentiation of phytocannabinoids is, therefore, essential to assess the potency and the therapeutic and nutritional values of cannabis cultivars. Here, we implemented SpiderMass technology for in vivo detection of cannabidiolic acid (CBDA) and ∆9-tetrahydrocannabinolicacid (∆9-THCA), and other endogenous organic plant compounds, to access distribution gradients within the plants and differentiate between cultivars. The SpiderMass system is composed of an IR-laser handheld microsampling probe connected to a mass spectrometer through a transfer tube. The analysis was performed on different plant organs from freshly cultivated cannabis plants in only a few seconds. SpiderMass analysis easily discriminated the two acid phytocannabinoid isomers via MS/MS, and the built statistical models differentiated between four cannabis cultivars. Different abundancies of the two acid phytocannabinoids were found along the plant as well as between different cultivars. Overall, these results introduce direct analysis by SpiderMass as a compelling analytical alternative for rapid hemp analysis.
Collapse
Affiliation(s)
- Nina Ogrinc
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (N.O.); (M.S.)
| | - Serge Schneider
- Service de Toxicologie Analytique–Chimie Pharmaceutique, Laboratoire National de Santé (LNS), Dudelange, L-3555 Luxembourg, Luxembourg; (S.S.); (A.B.); (N.G.)
| | - Adèle Bourmaud
- Service de Toxicologie Analytique–Chimie Pharmaceutique, Laboratoire National de Santé (LNS), Dudelange, L-3555 Luxembourg, Luxembourg; (S.S.); (A.B.); (N.G.)
| | - Nicolas Gengler
- Service de Toxicologie Analytique–Chimie Pharmaceutique, Laboratoire National de Santé (LNS), Dudelange, L-3555 Luxembourg, Luxembourg; (S.S.); (A.B.); (N.G.)
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (N.O.); (M.S.)
- Institut Universitaire de France (IUF), F-75000 Paris, France
| | - Isabelle Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (N.O.); (M.S.)
- Institut Universitaire de France (IUF), F-75000 Paris, France
- Correspondence:
| |
Collapse
|
26
|
Deidda R, Dispas A, De Bleye C, Hubert P, Ziemons É. Critical review on recent trends in cannabinoid determination on cannabis herbal samples: From chromatographic to vibrational spectroscopic techniques. Anal Chim Acta 2022; 1209:339184. [DOI: 10.1016/j.aca.2021.339184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
|
27
|
Nigro E, Pecoraro MT, Formato M, Piccolella S, Ragucci S, Mallardo M, Russo R, Di Maro A, Daniele A, Pacifico S. Cannabidiolic acid in Hemp Seed Oil Table Spoon and Beyond. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082566. [PMID: 35458762 PMCID: PMC9029873 DOI: 10.3390/molecules27082566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Cannabidiolic acid (CBDA) is the main precannabinoid in industrial hemp. It represents a common constituent of hemp seed oil, but mainly abundant in the aerial parts of the plant (including their processing waste). Thus, the optimization of fast and low-cost purification strategies is mandatory, as well as a deep investigation on its nutraceutical and cosmeceutical properties. To this purpose, CBDA content in hemp seed oil is evaluated, and its recovery from wasted leaves is favorably achieved. The cytotoxicity screening towards HaCaT cells, by means of MTT, SRB and LDH release assays, suggested it was not able to decrease cell viability or perturb cell integrity up to 10 μM concentration. Thus, the ability of CBDA to differentially modulate the release of proinflammatory cytokines and chemokines mediators has been evaluated, finding that CBDA decreased IFN-γ, CXCL8, CXCL10, CCL2, CCL4 and CCL5, mostly in a dose-dependent manner, with 10 μM tested concentration exerting the highest activity. These data, together with those from assessing antimicrobial activity against Gram(+) and Gram(−) bacteria and the antibiofilm formation, suggest that CBDA is able to counteract the inflammatory response, also preventing bacteria colonization.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
- CEINGE, Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Tommasina Pecoraro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Ragucci
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
- CEINGE, Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Aurora Daniele
- CEINGE, Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" Università degli Studi di Napoli, 80131 Naples, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
28
|
Ye L, Budge SM. Sample preparation for the analysis of key metabolites from cannabinoids biosynthesis in phytoplankton using gas chromatography–mass spectrometry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liyun Ye
- Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada
| | - Suzanne M. Budge
- Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
29
|
Stefkov G, Cvetkovikj Karanfilova I, Stoilkovska Gjorgievska V, Trajkovska A, Geskovski N, Karapandzova M, Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products-A Comprehensive Review. Molecules 2022; 27:975. [PMID: 35164240 PMCID: PMC8838193 DOI: 10.3390/molecules27030975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Collapse
Affiliation(s)
- Gjoshe Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia;
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| |
Collapse
|
30
|
Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Astray G, Mejuto JC, Xiao J, Simal-Gandara J. Benefits, toxicity and current market of cannabidiol in edibles. Crit Rev Food Sci Nutr 2022; 63:5800-5812. [PMID: 34989307 DOI: 10.1080/10408398.2021.2024493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The commercialization of products with cannabidiol (CBD) has undergone a significant increase. These products can be presented in different forms such as baked goods, gummies or beverages (such as kombucha, beer or teas, among others) using wide concentrations ranges. The use of CBD in edibles favors its consumption, for medicinal users, during the work week, avoid its possible social stigma and facilitates its transport. These products can be purchased on store shelves and online. There is a large number of specialized studies, in which the possible advantages of CBD consumption are described in the preclinical and clinical trials. It is also necessary to recognize the existence of other works revealing that the excessive consumption of CBD could have some repercussions on health. In this review, it is analyzed the composition and properties of Cannabis sativa L., the health benefits of cannabinoids (focusing on CBD), its consumption, its possible toxicological effects, a brief exposition of the extraction process, and a collection of different products that contain CBD in its composition.
Collapse
Affiliation(s)
- Gonzalo Astray
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense, España
| | - Juan C Mejuto
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense, España
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| |
Collapse
|
32
|
Kanabus J, Bryła M, Roszko M, Modrzewska M, Pierzgalski A. Cannabinoids-Characteristics and Potential for Use in Food Production. Molecules 2021; 26:6723. [PMID: 34771132 PMCID: PMC8588477 DOI: 10.3390/molecules26216723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Scientific demonstrations of the beneficial effects of non-psychoactive cannabinoids on the human body have increased the interest in foods containing hemp components. This review systematizes the latest discoveries relating to the characteristics of cannabinoids from Cannabis sativa L. var. sativa, it also presents a characterization of the mentioned plant. In this review, we present data on the opportunities and limitations of cannabinoids in food production. This article systematizes the data on the legal aspects, mainly the limits of Δ9-THC in food, the most popular analytical techniques (LC-MS and GC-MS) applied to assay cannabinoids in finished products, and the available data on the stability of cannabinoids during heating, storage, and access to light and oxygen. This may constitute a major challenge to their common use in food processing, as well as the potential formation of undesirable degradation products. Hemp-containing foods have great potential to become commercially popular among functional foods, provided that our understanding of cannabinoid stability in different food matrices and cannabinoid interactions with particular food ingredients are expanded. There remains a need for more data on the effects of technological processes and storage on cannabinoid degradation.
Collapse
Affiliation(s)
- Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.); (M.M.); (A.P.)
| | | | | | | | | |
Collapse
|
33
|
Kladar N, Čonić BS, Božin B, Torović L. European hemp-based food products – Health concerning cannabinoids exposure assessment. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Capriotti AL, Cannazza G, Catani M, Cavaliere C, Cavazzini A, Cerrato A, Citti C, Felletti S, Montone CM, Piovesana S, Laganà A. Recent applications of mass spectrometry for the characterization of cannabis and hemp phytocannabinoids: From targeted to untargeted analysis. J Chromatogr A 2021; 1655:462492. [PMID: 34507140 DOI: 10.1016/j.chroma.2021.462492] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
This review is a collection of recent applications of mass spectrometry studies for the characterization of phytocannabinoids in cannabis and hemp plant material and related products. The focus is mostly on recent applications using mass spectrometry as detector, in hyphenation to typical separation techniques (i.e., liquid chromatography or gas chromatography), but also with less common couplings or by simple direct analysis. The papers are described starting from the most common approach for targeted quantitative analysis, with applications using low-resolution mass spectrometry equipment, but also with the introduction of high-resolution mass analyzers as the detectors. This reflects a common trend in this field, and introduces the most recent applications using high-resolution mass spectrometry for untargeted analysis. The different approaches used for untargeted analysis are then described, from simple retrospective analysis of compounds without pure standards, through untargeted metabolomics strategies, and suspect screening methods, which are the ones currently allowing to achieve the most detailed qualitative characterization of the entire phytocannabinoid composition, including minor compounds which are usually overlooked in targeted studies and in potency evaluation. These approaches also represent powerful strategies to answer questions on biological and pharmacological activity of cannabis, and provide a sound technology for improved classification of cannabis varieties. Finally, open challenges are discussed for future directions in the detailed study of complex phytocannabinoid mixtures.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, Modena 41125, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Cinzia Citti
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, Modena 41125, Italy
| | - Simona Felletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
35
|
Innovative and emerging applications of cannabis in food and beverage products: From an illicit drug to a potential ingredient for health promotion. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Madden O, Walshe J, Kishore Patnala P, Barron J, Meaney C, Murray P. Phytocannabinoids - An Overview of the Analytical Methodologies for Detection and Quantification of Therapeutically and Recreationally Relevant Cannabis Compounds. Crit Rev Anal Chem 2021; 53:211-231. [PMID: 34328047 DOI: 10.1080/10408347.2021.1949694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The legalization of the cultivation of low Δ9-tetrahydrocannabinol (Δ9-THC) and high cannabidiol (CBD) Cannabis Sativa plants is gaining momentum around the world due to increasing demand for CBD-containing products. In many countries where CBD oils, extracts and CBD-infused foods and beverages are being sold in health shops and supermarkets, appropriate testing of these products is a legal requirement. Normally this involves determining the total Δ9-THC and CBD and their precursor tetrahydrocannabinolic acids (THCA) and cannabidiolic acid (CBDA). As our knowledge of the other relevant cannabinoids expands, it is likely so too will the demand for them as additives in many consumer products ensuring a necessity for quantification methods and protocols for their identification. This paper discusses therapeutically relevant cannabinoids found in Cannabis plant, the applicability and efficiency of existing extraction and analytical techniques as well as the legal requirements for these analyses.
Collapse
Affiliation(s)
- Olena Madden
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Jessica Walshe
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland.,Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Prem Kishore Patnala
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | | | - Claire Meaney
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Patrick Murray
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| |
Collapse
|
37
|
Michlig N, Lehotay SJ, Lightfield AR, Beldoménico H, Repetti MR. Validation of a high-throughput method for analysis of pesticide residues in hemp and hemp products. J Chromatogr A 2021; 1645:462097. [PMID: 33848664 DOI: 10.1016/j.chroma.2021.462097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023]
Abstract
Hemp has been an agricultural commodity for millennia, and it has been undergoing a resurgence in interest and production due to its high content of cannabinoids, protein, fiber and other ingredients. For legal possession and use throughout the USA, hemp and hemp products must have delta-9-tetrahydrocannabinol (THC) concentration < 0.3%. As with most crops, pesticides may be applied when farming hemp, which need to be monitored in food, feed, and medicinal products. The aim of this work was to evaluate and validate the recently developed "quick, easy, cheap, effective, rugged, safe, efficient, and robust" (QuEChERSER) sample preparation mega-method to determine pesticide residues in hemp plants, flowers, powders, oils, and pellets. High-throughput analysis of final extracts for 106 targeted pesticides and metabolites from North American monitoring lists entailed: 1) ultrahigh-performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) with column back-flushing, and 2) instrument-top sample preparation + low-pressure gas chromatography (ITSP+LPGC-MS/MS). In QuEChERSER, 2 g sample is extracted with 10 mL 4/1 (v/v) acetonitrile/water by mechanical shaking for 10 min, followed by 3 min centrifugation. For LC, 0.2 mL of extract is taken and solvent exchanged into initial mobile phase followed by 5 min ultra-centrifugation prior to the 10 min analysis. For GC-amenable pesticides, the remaining initial extract is partitioned with 4/1 (w/w) anh. MgSO4/NaCl, and 1 mL is taken for automated ITSP cleanup in parallel with 10 min LPGC analysis. In the former case, the UHPLC column is back-flushed with 1/1 (v/v) methanol/acetonitrile for 3 min between each injection to keep the system clean and avoid ghost peaks. Multi-level, multi-day validation results achieved 70-120% recoveries with RSDs < 20% for more than 80% of the analytes in hemp protein powder, oil, pellets, and fresh plant (dried hemp plant and flower were too complex). Limits of quantification (LOQs) were < 10 ng/g were achieved for nearly all pesticides, yielding 2.8% false negatives among >13,000 analyte results in the spiked samples. The QuEChERSER method was demonstrated to meet the challenge for several complex hemp matrices.
Collapse
Affiliation(s)
- Nicolás Michlig
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Steven J Lehotay
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Alan R Lightfield
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Horacio Beldoménico
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
38
|
Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. PLANTS 2021; 10:plants10030566. [PMID: 33802757 PMCID: PMC8002592 DOI: 10.3390/plants10030566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
Cannabis sativa is one of the oldest medicinal plants used by humans, containing hundreds of bioactive compounds. The biological effects and interplay of these compounds are far from fully understood, although the plant’s therapeutic effects are beyond doubt. Extraction methods for these compounds are becoming an integral part of modern Cannabis-based medicine. Still, little is known about how different methods affect the final composition of Cannabis extracts and thus, their therapeutic effects. In this study, different extraction methods were tested, namely maceration, Soxhlet, ultrasound-assisted extraction (UAE), and supercritical CO2 extraction methods. The obtained extracts were evaluated for their cannabinoid content, antioxidant properties, and in vitro bioactivity on human colon cancer and healthy colon cells. Our data suggest that Cannabis extracts, when properly prepared, can significantly decrease cancer cell viability while protecting healthy cells from cytotoxic effects. However, post-processing of extracts poses a significant limitation in predicting therapeutic response based on the composition of the crude extract, as it affects not only the actual amounts of the respective cannabinoids but also their relative ratio to the primary extracts. These effects must be carefully considered in the future preparations of new therapeutic extracts.
Collapse
|
39
|
A survey of Δ 9-THC and relevant cannabinoids in products from the Italian market: A study by LC-MS/MS of food, beverages and feed. Food Chem 2020; 346:128898. [PMID: 33453579 DOI: 10.1016/j.foodchem.2020.128898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022]
Abstract
In 2016, the European Commission recommended the Member States to monitor the content of Δ9-tetrahydrocannabinol and other cannabinoids in food and feed derived from hemp and in food of animal origin for possible transfer from feed. Thus, the Italian Ministry of Health implemented a monitoring plan. To this aim, nine cannabinoids in beverages and food for human consumption and in feed were determined. The method applied, based on rapid clean-up and LC-MS/MS determination, was previously developed and in-house validated, evaluating the analytical performance in the concentration ranges 2-50 µg/L for beverages, 0.020-0.500 mg/kg for food and 0.100-10.0 mg/kg for feed. Then, it was applied to determine the cannabinoids in 78 food, 16 beverage and 6 feed samples, collected from the Italian market since 2017. The results are herein reported, for evaluation of both product characteristics and compliance to national maximum limits. Some study cases are also described.
Collapse
|
40
|
Faraone N, Hillier NK, McSweeney MB. A preliminary investigation into participants' reactions to a sensory trial investigating a cannabis edible. J SENS STUD 2020. [DOI: 10.1111/joss.12624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicoletta Faraone
- Department of Chemistry Acadia University Wolfville Nova Scotia Canada
| | - Neil Kirk Hillier
- Department of Biology Acadia University Wolfville Nova Scotia Canada
| | - Matthew B. McSweeney
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| |
Collapse
|
41
|
Sartore DM, Vargas Medina DA, Costa JL, Lanças FM, Santos-Neto ÁJ. Automated microextraction by packed sorbent of cannabinoids from human urine using a lab-made device packed with molecularly imprinted polymer. Talanta 2020; 219:121185. [DOI: 10.1016/j.talanta.2020.121185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
|
42
|
Shen Q, Zhu X, Zhao Q, Li S, Wang Y, Xue J, Wang P. QuEChERS and 96-well plate solid phase extraction for determination of vancomycin and norvancomycin in fish meat by UPLC-MS/MS. Food Chem 2020; 342:128326. [PMID: 33069533 DOI: 10.1016/j.foodchem.2020.128326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Vancomycin and norvancomycin are glycopeptide antibiotics for gram-positive bacteria infection, but indiscriminately used in aquaculture. In this study, a QuEChERS (quick, easy, cheap, effective, rugged, and safe)/96-well solid-phase extraction (SPE) plate method was used to extract vancomycin and norvancomycin in fish meat samples, and the drugs were further analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The parameters, such as the sorbent of cation exchange resin, the proportion of acetonitrile (15%) in extractant, the mobile phase of water (0.1% formic acid)/acetonitrile, were optimized. The method was validated in terms of linearity (0.9990-0.9994), LOD (0.51 μg·kg-1), LOQ (1.73 μg·kg-1), intra-dayprecision (<5.19%), inter-day precision (<6.30%), and recovery (86.7-98.6%). Finally, the method was successfully applied to contaminated and randomly collected samples. The results indicated that the proposed method meet the daily monitoring requirements for vancomycin and norvancomycin.
Collapse
Affiliation(s)
- Qing Shen
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China; Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaofang Zhu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Shiyan Li
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou, PR China
| | - Yang Wang
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou, PR China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China.
| |
Collapse
|
43
|
Commercial Hemp Seed Oils: A Multimethodological Characterization. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nine commercial hemp seed oils from different countries were studied using a multimethodological approach to obtain information about their quality and chemical composition. Due to the lack of a specific regulation for hemp seed oils, quality parameters used in the case of olive oils (free acidity, peroxides number, spectrophotometer parameters) and anisidine number were measured and compared with those reported for extra virgin olive oil (EVOO). Free acidity and peroxides number showed a great variability, ranging from 0.4 to 17.24% and from 4.32 to 22.14 meqO2/kg, respectively, whereas the anisidine number ranged from 0.11 to 3.58. K232 value turned out to be generally below the limit reported for EVOO, whereas K270 and ΔK values were higher, with respect to EVOO limits, due to the high amount of tri-unsaturated fatty chains. Colorimetric analysis showed a peculiar curve trend that could represent the fingerprint of this product. Untargeted nuclear magnetic resonance methodology allowed to measure the amount of fatty chains, ω-6:ω-3 ratio, β-sitosterol, and aldehydes. The ω-6:ω-3 ratio turned out to be, in some cases, different from that reported on the bottle labels. Finally, lipoperoxidation assays were also carried out under different storage (light and temperature) and time exposure conditions, confirming that the exposure to direct light is the condition that interferes more with the product quality.
Collapse
|
44
|
Brighenti V, Protti M, Anceschi L, Zanardi C, Mercolini L, Pellati F. Emerging challenges in the extraction, analysis and bioanalysis of cannabidiol and related compounds. J Pharm Biomed Anal 2020; 192:113633. [PMID: 33039911 DOI: 10.1016/j.jpba.2020.113633] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Cannabidiol (CBD) is a bioactive terpenophenolic compound isolated from Cannabis sativa L. It is known to possess several properties of pharmaceutical interest, such as antioxidant, anti-inflammatory, anti-microbial, neuroprotective and anti-convulsant, being it active as a multi-target compound. From a therapeutic point of view, CBD is most commonly used for seizure disorder in children. CBD is present in both medical and fiber-type C. sativa plants, but, unlike Δ9-tetrahydrocannabinol (THC), it is a non-psychoactive compound. Non-psychoactive or fiber-type C. sativa (also known as hemp) differs from the medical one, since it contains only low levels of THC and high levels of CBD and related non-psychoactive cannabinoids. In addition to medical Cannabis, which is used for many different therapeutic purposes, a great expansion of the market of hemp plant material and related products has been observed in recent years, due to its usage in many fields, including food, cosmetics and electronic cigarettes liquids (commonly known as e-liquids). In this view, this work is focused on recent advances on sample preparation strategies and analytical methods for the chemical analysis of CBD and related compounds in both C. sativa plant material, its derived products and biological samples. Since sample preparation is considered to be a crucial step in the development of reliable analytical methods for the determination of natural compounds in complex matrices, different extraction methods are discussed. As regards the analysis of CBD and related compounds, the application of both separation and non-separation methods is discussed in detail. The advantages, disadvantages and applicability of the different methodologies currently available are evaluated. The scientific interest in the development of portable devices for the reliable analysis of CBD in vegetable and biological samples is also highlighted.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy
| | - Chiara Zanardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
45
|
McRae G, Melanson JE. Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 412:7381-7393. [PMID: 32833075 PMCID: PMC7533253 DOI: 10.1007/s00216-020-02862-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
The increase in production of cannabis for medical and recreational purposes in recent years has led to a corresponding increase in laboratories performing cannabinoid analysis of cannabis and hemp. We have developed and validated a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that is simple, reliable, specific, and accurate for the analysis of 17 cannabinoids in cannabis and hemp. Liquid-solid sample extraction coupled with dilution into a calibration range from 10 to 10,000 ng/mL and LC-MS/MS analysis provides quantification of samples ranging from 0.002 to 200 mg/g (0.0002 to 20.0%) in matrix. Linearity of calibration curves in methanol was demonstrated with regression r2 ≥ 0.99. Within-batch precision (0.5 to 6.5%) and accuracy (91.4 to 108.0%) and between-batch precision (0.9 to 5.1%) and accuracy (91.5 to 107.5%) were demonstrated for quality control (QC) samples in methanol. Within-batch precision (0.2 to 3.6%) and accuracy (85.4 to 111.6%) and between-batch precision (1.4 to 6.1 %) and accuracy (90.2 to 110.3%) were also evaluated with a candidate cannabis certified reference material (CRM). Repeatability (1.5 to 12.4% RSD) and intermediate precision (2.2 to 12.8% RSD) were demonstrated via analysis of seven cannabis samples with HorRat values ranging from 0.3 to 3.1. The method provides enhanced detection limits coupled with a large quantitative range for 17 cannabinoids in plant material. It is suitable for a wide range of applications including routine analysis for delta-9-tetrahydrocannabinol (Δ9-THC), delta-9-tetrahydrocannabinolic acid (Δ9-THCA), cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabinol (CBN) as well as more advanced interrogation of samples for both major and minor cannabinoids.
Collapse
Affiliation(s)
- Garnet McRae
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jeremy E Melanson
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
46
|
Farinon B, Molinari R, Costantini L, Merendino N. The seed of industrial hemp ( Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020; 12:nu12071935. [PMID: 32610691 PMCID: PMC7400098 DOI: 10.3390/nu12071935] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hempseeds, the edible fruits of the Cannabis sativa L. plant, were initially considered a by-product of the hemp technical fibre industry. Nowadays, following the restorationing of the cultivation of C. sativa L. plants containing an amount of delta-9-tetrahydrocannabinol (THC) <0.3% or 0.2% (industrial hemp) there is a growing interest for the hempseeds production due to their high nutritional value and functional features. The goal of this review is to examine the scientific literature concerning the nutritional and functional properties of hempseeds. Furthermore, we revised the scientific literature regarding the potential use of hempseeds and their derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic-degenerative diseases on animal models and humans too. In the first part of the work, we provide information regarding the genetic, biochemical, and legislative aspects of this plant that are, in our opinion essential to understand the difference between “industrial” and “drug-type” hemp. In the final part of the review, the employment of hempseeds by the food industry as livestock feed supplement and as ingredient to enrich or fortify daily foods has also revised. Overall, this review intends to encourage further and comprehensive investigations about the adoption of hempseeds in the functional foods field.
Collapse
|