1
|
Zhao Y, Jiang X, Huang K, Xiong X, Yang Q. A smartphone-integrated ratiometric fluorescent sensor for ascorbic acid determination using microplasma-enabled carbon dots and rhodamine B. Food Chem 2025; 463:141280. [PMID: 39288466 DOI: 10.1016/j.foodchem.2024.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
A switchable ratiometric fluorescent smartphone-assisted sensing platform based on nitrogen-doped carbon dots (N-CDs) and Rhodamine B was fabricated for the determination of the ascorbic acid (AA) content in fruits by quenching the fluorescence of N-CDs with Hg2+ (turn-off) and recovering with AA (turn-on). The blue-emission N-CDs was synthesized by liquid dielectric barrier discharge microplasma with an average size of 3.65 nm and an absolute quantum yield of 18 % (excited at 345 nm). In addition, the fluorescence color was converted to RGB values, enabling visual and quantitative determination of AA. Under optimal parameters, the linear ranges for detecting AA were found to be 3-170 μM and 5-170 μM for fluorescence spectrometer and smartphone sensing platform. The detection limits were 0.98 μM and 2.90 μM, respectively. Furthermore, the satisfactory recoveries in fruits were obtained by RF probe and smartphone platform. This smartphone-assisted platform will facilitate sensitive and visual determination for AA.
Collapse
Affiliation(s)
- Yilan Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xue Jiang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xiaoli Xiong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Qing Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
2
|
do Nascimento WC, Ramo LB, da Silva FF, C U Araujo M, I E de Andrade S, Bichinho KM. One-step microwave-assisted synthesis of fluorescent carbon quantum dots for determination of ascorbic acid and riboflavin in vitamin supplements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124669. [PMID: 38909560 DOI: 10.1016/j.saa.2024.124669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
The synthesis of carbon quantum dots (CQDs) using chemical precursors with different organic groups is a strategy to improve optical properties and expand applications in several fields of research such as Analytical Chemistry. Ascorbic acid and riboflavin are widely used in human food supplementation, making quality monitoring of these vitamin supplements relevant and necessary. In this work, disodium ethylenediaminetetraacetic, sodium thiosulfate and urea were applied to obtain CQDs through a single-step microwave-assisted synthesis. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared spectroscopy, zeta potential measurements, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The synthesized nanoparticles exhibited satisfactory and stable optical properties with luminescence at 430 nm, water solubility, and fluorescence quantum yield of 8.9 %. They were applied in the quantification of ascorbic acid and riboflavin in vitamin supplements. The fluorescence mechanisms observed were dynamic quenching for the CQDs/Cr(VI) sensor, followed by a return of fluorescence in the presence of ascorbic acid, and static quenching and inner filter effect in the interaction with riboflavin. Factorial designs 23 and 24 were used to optimize the analytical parameters. The CQDs/Cr(VI) sensor used in the determination of ascorbic acid, employing an on-off-on strategy, resulted in a linear range of 0.5 to 50 µg mL-1 and a limit of detection of 0.15 µg mL-1. The ratiometric fluorescence used in the determination of riboflavin resulted in a linear range of 0.1 to 7 µg mL-1 and a limit of detection of 0.09 µg mL-1. The analytical results for ascorbic acid were compared to the reference method of the Brazilian pharmacopeia, showing accuracy and precision according to the Brazilian Health Regulation Agency. Therefore, the synthesized CQDs were used to determine ascorbic acid and riboflavin in vitamin supplements, and the application of this nanomaterial can be expanded to different analytes and matrices, using simple and low-cost analysis techniques.
Collapse
Affiliation(s)
- Wallis C do Nascimento
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Luciano B Ramo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Fausthon F da Silva
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Mario C U Araujo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Stéfani I E de Andrade
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Kátia M Bichinho
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| |
Collapse
|
3
|
Liu Y, Zhang L, Cai H, Qu X, Chang J, Waterhouse GIN, Lu S. Biomass-derived carbon dots with pharmacological activity for biomedicine: Recent advances and future perspectives. Sci Bull (Beijing) 2024; 69:3127-3149. [PMID: 39183109 DOI: 10.1016/j.scib.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Carbon dots (CDs), a type of nanoparticle with excellent optical properties, good biocompatibility, and small size, are finding increasing application across the fields of biology and biomedicine. In recent years, biomass-derived CDs with pharmacological activity (BP-CDs) derived from herbal medicines (HMs), HMs extracts and other natural products with demonstrated pharmaceutical activity have attracted particular attention. Herein, we review recent advances in the development of BP-CDs, covering the selection of biomass precursors, different methods used for the synthesis of BP-CDs from natural sources, and the purification of BP-CDs. Additionally, we summarize the many remarkable properties of BP-CDs including optical properties, biocompatibility and pharmaceutical efficacy. Moreover, the antibacterial, antiviral, anticancer, biosensing, bioimaging, and other applications of BP-CDs are reviewed. Thereafter, we discuss the advantages and disadvantages of BP-CDs and Western drug-derived CDs, highlighting the excellent performance of BP-CDs. Finally, based on the current state of research on BP-CDs, we suggest several aspects of BP-CDs that urgently need to be addressed and identify directions that should be pursued in the future. This comprehensive review on BP-CDs is expected to guide the precise design, preparation, and future development of BP-CDs, thereby advancing the application of BP-CDs in biomedicine.
Collapse
Affiliation(s)
- Yue Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zhang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Cai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoli Qu
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | | | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Sun X, Li M, Mao Y, Dong C, Meng X, Wang D, Zheng C. Efficient smart-phone luminescent sensing detection based on new multifunctional Cd(II) luminescent coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125248. [PMID: 39396422 DOI: 10.1016/j.saa.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Based on the mixed ligand strategy, two new isostructural CdII coordination polymers: {[Cd3(tcpa)2(bima)(DMF)]‧3DMF} (CP 1), {[Cd3(tcpa)2(bmima)(DMF)]‧3DMF} (CP 2) were synthesized by combining two flexible anthracene-based and a triphenylamine-based ligands with large π-electron-rich structure using a solvothermal method (H3tcpa = tris(4-carboxyphenyl)amine; bima = 9,10-bis(1H-imidazole-1-yl)methyl)anthracene and bmima = 9,10-bis((2-methyl-1H-imidazol-1-yl)methyl)anthracene). CP 1 and CP 2 show an unreported new 3D (3,14)-c net structure with the {430·648·813}{43}4 topology. Both CPs could detect Cr2O72-, Nitroaromatic explosives 2,4,6-Trinitrophenol (TNP) and 2,4-dinitrophenol (DNP) through rapid fluorescence quenching response with high quenching efficiency Ksv and low LOD with 0.19 μM (Cr2O72-), 0.54 μM (TNP), 0.76 μM (DNP) for CP 1 and 0.28 μM (Cr2O72-), 0.23 μM (TNP), 0.65 μM (DNP) for CP 2, respectively. In addition, the mechanism of quenching Cr2O72-, TNP and DNP by CPs is proposed through experimental research and theoretical simulation. The quenching of Cr2O72- by CPs is mainly competitive absorption (CA), while the quenching of TNP/DNP is achieved through the coexistence of competitive absorption CA, photo induced electron transfer (PET) and fluorescence resonance energy transfer (FRET). Moreover, we have been developed a portable smartphone-assisted on-site detection platform, which can perform semi-quantitative analysis of Cr2O72- acconding to fluorescence color changes. This work constructed a ratiometric sensing platform for quickly and conveniently detection of Cr2O72-, TNP and DNP pollutants.
Collapse
Affiliation(s)
- Xuancheng Sun
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meiyin Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Yiqing Mao
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chuanzong Dong
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Dunjia Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chunyang Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
5
|
Li YF, Zhang X, Lu Q, Cao JZ, Gao S, Liu QZ, Cai XX, Zhao H. Cellulose-based yellow-green emitting carbon dots with large Stokes shift as effective "turn off-on" fluorescence platforms for Cr (VI) and AA dual efficacy detection. Anal Chim Acta 2024; 1324:343102. [PMID: 39218581 DOI: 10.1016/j.aca.2024.343102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hexavalent chromium (Cr (VI)) is highly carcinogenic to humans. Ascorbic acid (AA) deficiency can be hazardous to health. And the dual-effect fluorescence detection of them is an important research topic. Carbon dots (CDs) based on cellulose are excellent candidates for the fluorescence probes due to their low cost and environmental friendliness. But most of them exhibit shortwave emission, small Stokes shift and poor fluorescence performance, all of which limit their use. Therefore, there is an urgent need for cellulose CDs with longer emission wavelengths and larger Stokes shifts in dual-effect fluorescence detection of Cr (VI) and AA. RESULTS Under optimal conditions (180 °C, 12 h), we prepared cellulose-based nitrogen-doped carbon dots (N-CDs) by a simple one-step hydrothermal process, which display longer emission wavelengths (ex: 370 nm, em: 510 nm), larger Stokes shifts (140 nm) and high fluorescence quantum yield (QY: 19.27 %). The continuous "turn-off" and "turn-off-on" fluorescence detection platforms were constructed based on the internal filtering effect (IFE) between Cr6+ and N-CDs, and Cr6+ reduced to Cr3+ by AA at pH = 6. The platform has been successfully simultaneous detect Cr (VI) and AA with a wide range of 0.01-40 μM and 0.1-100 μM. And the lowest limits of detection (LOD) are 0.0303 μM and 0.072 μM, respectively. In the presence of some other metals, non-metal ions and water-soluble acids in the fruits, this fluorescent platform can demonstrate a high level of interference immunity. SIGNIFICANCE AND NOVELTY This represents the first yellow-green cellulose-based N-CDs with large Stokes shift for dual-effect detection of Cr (VI) and AA in real water samples and fresh fruits. The fluorescence detection platform has the advantage of low volume detection. Less than 2 mL of sample is required for testing and results are available in <5 min. This method is rare and supply a novel idea for the quantitative monitoring of Cr (VI) and AA.
Collapse
Affiliation(s)
- Yan-Feng Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xian Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qian Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Jing-Zhen Cao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Sheng Gao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qin-Ze Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiao-Xia Cai
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hui Zhao
- School of Chemistry Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Fan J, Zheng Z, Liu Y, Wang Y, Wu W, Ji B, Xu H, Zhong Y, Zhang L, Mao Z. Construction of "ant-like tentacle" structure for ultra-sensitive detection of low-concentration ammonia through colorimetric fluorescent dual-signal gas-sensitive cotton fabric. Int J Biol Macromol 2024; 277:134249. [PMID: 39209589 DOI: 10.1016/j.ijbiomac.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Detection and monitoring of ammonia (NH3) are crucial in various industries, including plant safety management, food freshness testing, and water pollution control. Nevertheless, creating portable, low-cost, highly sensitive, and easily regenerated ppm-level NH3 sensors poses a significant challenge. In this investigation, an innovative "ant-like tentacle" fabrication strategy was proposed, and a colorimetric fluorescent dual-signal gas-sensitive cotton fabric (PAH-fabric) for NH3 detection was successfully prepared by conventional dyeing using suitable molecular-level photoacid (PAH) sensitive units. The visual recognition lower detection limit of the ultra-low is 1.09 ppm-level. PAH-fabric is not only straightforward, convenient, and cost-effective to prepare, but it can also be efficiently regenerated and recycled multiple times (maintaining excellent gas-sensitive performance even after 100 cycles) by strategically leveraging volatile acid fumigation. Detailed molecular reaction mechanisms involved in the NH3 response and PAH-fabric regeneration are elucidated. PAH-fabric, available either as a portable kit or an alarm system, offers a promising approach for ultra-low NH3 detection. The demonstrated "ant-like tentacle" fabrication strategy introduces numerous possibilities for designing and developing sensors with adjustable response thresholds, particularly those requiring high sensitivity.
Collapse
Affiliation(s)
- Ji Fan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Zhaofeng Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yitong Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yu Wang
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Wei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bolin Ji
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology of Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China.
| |
Collapse
|
7
|
Mei H, Xu P, Feng M, Wang J, Zhang C, Chen H, Wang H, Guo J, Wang X, Qu S. Development of an "on-off-on" fluoroprobe utilizing an anthrylimidazole-based fluorescent ionic liquid for sensitive Cr(VI) and ascorbic acid detection. Food Chem X 2024; 22:101488. [PMID: 38840721 PMCID: PMC11152695 DOI: 10.1016/j.fochx.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Developing a rapid detection method of Cr(VI) and ascorbic acid (AA) is vital in the food and environmental fields. Herein, an anthrylimidazole-based fluorescent ionic liquid (AI-FIL) with the advantageous fluorescent properties was successfully prepared and used to construct a promising "on-off-on" fluoroprobe for rapid/sensitive Cr(VI) and AA detection. Cr(VI) could effectively quench the fluorescence of AI-FIL owing to the inner-filter effect and photoinduced electron-transfer process. However, the decreased fluorescence could be rapidly recovered by AA owing to the redox reaction between AA and Cr(VI). For Cr(VI) detection, a satisfactorily linear response (0.03-300 μM) was achieved with the corresponding detection limit of 9 nM. For AA detection, a good linearity from 1 to 1000 μM was obtained with the resultant detection limit of 0.3 μM. Moreover, the AI-FIL based fluoroprobe was successfully utilized for Cr(VI) and AA detection in food and water samples with satisfactory accuracy and precision.
Collapse
Affiliation(s)
- He Mei
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325809, China
| | - Ping Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengting Feng
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianping Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenxin Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325035, China
| | - Haibin Chen
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325809, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junyi Guo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shugen Qu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325809, China
| |
Collapse
|
8
|
Lu X, Wang Z, Wang J, Li Y, Hou X. Ultrasensitive Fluorescence Detection of Ascorbic Acid Using Silver Ion-Modulated High-Quality CdSe/CdS/ZnS Quantum Dots. ACS OMEGA 2024; 9:27127-27136. [PMID: 38947783 PMCID: PMC11209877 DOI: 10.1021/acsomega.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
Improving the sensitivity of the fluorescence method for the detection of bioactive molecules is crucial in biochemical analysis. In this work, an ultrasensitive sensing strategy was constructed for the detection of ascorbic acid (AA) using high-quality 3-mercaptopropionic acid-capped CdSe/CdS/ZnS quantum dots (MPA-CdSe/CdS/ZnS QDs) as the fluorescent probe. The prepared water-soluble QDs exhibited a high photoluminescence quantum yield (PL QY) of up to 96%. Further, the fluorescence intensity of the QDs was intensively quenched through the dynamic quenching of Ag+ ions due to an efficient photoinduced electron transfer progress. While the existence of AA before adding Ag+ ions, Ag+ ions were reduced. Thus, the interaction of the QDs and Ag+ ions was destroyed, which led to the fluorescence distinct recovery. The detection limit of AA could be as low as 0.2 nM using this sensing system. Additionally, most relevant small molecules and physiological ions had no influence on the analysis of AA. Satisfactory results were obtained in orange beverages, showing its great potential as a meaningful platform for highly sensitive and selective AA sensing for clinical analysis.
Collapse
Affiliation(s)
- Xingchang Lu
- Hunan
Provincial Key Laboratory of Micro & Nano Materials Interface
Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zheng Wang
- School
of Chemistry and Material Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou, Zhejiang 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxiu Wang
- Hunan
Provincial Key Laboratory of Micro & Nano Materials Interface
Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yang Li
- School
of Physics and Optoelectronic Engineering, Hangzhou Institute for
Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Hou
- School
of Chemistry and Material Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou, Zhejiang 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Sadeghi-Chahnasir F, Amiripour F, Ghasemi S. Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe 3. Anal Chim Acta 2024; 1287:342066. [PMID: 38182373 DOI: 10.1016/j.aca.2023.342066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Recycling and reuse of biomass waste in synthesis of nanomaterials have recently received much attention as an effective solution for environmental protection and sustainable development. Herein, nitrogen-doped carbon dots (N-CDs) with blue emission were synthesized from the orange peels as a precursor through a simple hydrothermal method and then, modified with ethylenediamine tetraacetic acid (N-CD@EDTA). The N-CD@EDTA was embedded as a fluorophore in Cu-based metal-organic framework (MOF-199) structure (N-CD@EDTA/MOF-199) to construct fluorescence sensor toward l-ascorbic acid (L-AA) determination. The N-CD@EDTA/MOF-199 nanohybrid significantly and selectively turned on toward L-AA determination during the fluorimetric experiments. Under optimal conditions, the probe showed a suitable linear response in the concentration range of 10 nM-100 μM with a low limit of detection (LOD) of 8.6 nM and high sensitivity of 0.201 μM-1. The possible mechanism of recognition and adsorption, including the reduction of Cu 2+ nodes in the MOF-199 structure in the presence of L-AA and the release of trapped N-CD@EDTA into the solution, was explored. Moreover, the N-CD@EDTA/MOF-199/L-AA (100 μM) system was further applied as a fluorescent "on-off" sensor for Fe3+ determination with a LOD of 1.15 μM. The proposed probe was successfully used in orange juice and water samples to determine L-AA and Fe3+ with satisfactory recovery, which displays the promising capability of sensor in real samples. The recoveries obtained by suggested method are consistent with that obtained from high performance liquid chromatography (HPLC) and atomic absorption spectroscopy which confirm the favorable characteristic of the sensor for accurate determination of L-AA and Fe3+ in practical applications.
Collapse
Affiliation(s)
| | | | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
11
|
Emam HE. Carbon quantum dots derived from polysaccharides: Chemistry and potential applications. Carbohydr Polym 2024; 324:121503. [PMID: 37985091 DOI: 10.1016/j.carbpol.2023.121503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/22/2023]
Abstract
Since the beginning of 21th century, nanoscience and nanotechnology become the most promising topics in various fields, attributing to the superior characters of nanoscaled structures. The conventional quantum dots are substituted with new family of luminescent nanostructures, owing to their interchanged optical properties, low-cost of fabrication, biocompatibility, non-toxicity, ecofriendly, hydrophilicity and superior chemical stability. Carbon quantum dots (CQDs) were recently investigated for their simple synthesis, bio-consonance, and different revelation applicability. Obeying the green chemistry aspects, this review demonstrates an overview about CQDs generated from polysaccharides in brief, with a background on CQDs discovery, chemical composition, green synthesis via exploitation of different polysaccharides (cellulose, starch, pectin, chitin, etc) as biocompatible/biodegradable abundant biopolymers. Additionally, applications of CQDs originated from polysaccharides in environmental purposes, textiles industry and medical activities were also presented.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
12
|
Bosu S, Rajamohan N, Sagadevan S, Raut N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. CHEMOSPHERE 2023; 345:140471. [PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
Collapse
Affiliation(s)
- Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nitin Raut
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
13
|
Dubey P. An overview on animal/human biomass-derived carbon dots for optical sensing and bioimaging applications. RSC Adv 2023; 13:35088-35126. [PMID: 38046631 PMCID: PMC10690874 DOI: 10.1039/d3ra06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Over the past decade, carbon dots (CDs) have emerged as some of the extremely popular carbon nanostructures for diverse applications. The advantages of sustainable CDs, characterized by their exceptional photoluminescence (PL), high water solubility/dispersibility, non-toxicity, and biocompatibility, substantiate their potential for a wide range of applications in sensing and biology. Moreover, nature offers plant- and animal-derived precursors for the sustainable synthesis of CDs and their doped variants. These sources are not only readily accessible, inexpensive, and renewable but are also environmentally benign green biomass. This review article presents in detail the production of sustainable CDs from various animal and human biomass through bottom-up synthetic methods, including hydrothermal, microwave, microwave-hydrothermal, and pyrolysis methods. The resulting CDs exhibit a uniform size distribution, possibility of heteroatom doping, surface passivation, and remarkable excitation wavelength-dependent/independent emission and up-conversion PL characteristics. Consequently, these CDs have been successfully utilized in multiple applications, such as bioimaging and the detection of various analytes, including heavy metal ions. Finally, a comprehensive assessment is presented, highlighting the prospects and challenges associated with animal/human biomass-derived CDs for multifaceted applications.
Collapse
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
14
|
Sahana S, Gautam A, Singh R, Chandel S. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:51. [PMID: 37953431 PMCID: PMC10641086 DOI: 10.1007/s13659-023-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Natural resources are practically infinitely abundant in nature, which stimulates scientists to create new materials with inventive uses and minimal environmental impact. Due to the various benefits of natural carbon dots (NCDs) from them has received a lot of attention recently. Natural products-derived carbon dots have recently emerged as a highly promising class of nanomaterials, showcasing exceptional properties and eco-friendly nature, which make them appealing for diverse applications in various fields such as biomedical, environmental sensing and monitoring, energy storage and conversion, optoelectronics and photonics, agriculture, quantum computing, nanomedicine and cancer therapy. Characterization techniques such as Photoinduced electron transfer, Aggregation-Induced-Emission (AIE), Absorbance, Fluorescence in UV-Vis and NIR Regions play crucial roles in understanding the structural and optical properties of Carbon dots (CDs). The exceptional photoluminescence properties exhibited by CDs derived from natural products have paved the way for applications in tissue engineering, cancer treatment, bioimaging, sensing, drug delivery, photocatalysis, and promising remarkable advancements in these fields. In this review, we summarized the various synthesis methods, physical and optical properties, applications, challenges, future prospects of natural products-derived carbon dots etc. In this expanding sector, the difficulties and prospects for NCD-based materials research will also be explored.
Collapse
Affiliation(s)
- Soumitra Sahana
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| |
Collapse
|
15
|
Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential Efficacy of Herbal Medicine-Derived Carbon Dots in the Treatment of Diseases: From Mechanism to Clinic. Int J Nanomedicine 2023; 18:6503-6525. [PMID: 37965279 PMCID: PMC10642355 DOI: 10.2147/ijn.s431061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs), a crucial component of nanomaterials, are zero-dimensional nanomaterials with carbon as the backbone structure and smaller than 10 nm. Due to their beneficial characteristics, they are widely used in biomedical fields such as biosensors, drug delivery, bio-imaging, and interactions with DNA. Interestingly, a novel type of carbon dot, generated by using herbal medicines as synthetic raw materials, has emerged as the most recent incomer in the family of CDs with the extensive growth in the number of materials selected for carbon dots synthesis. Herbal medicine-derived carbon dots (HM-CDs) have been employed in the biomedical industry, and are rapidly emerging as "modern nanomaterials" due to their unique structures and exceptional capabilities. Emerging trends suggest that their specific properties can be used in bleeding disorders, gastrointestinal disorders, inflammation-related diseases, and other common intractable diseases including cancer, menopausal syndrome, central nervous system disorders, and pain of various forms and causes. In addition, HM-CDs have been found to have organ-protective and antioxidant properties, as evidenced by extensive studies. This research provides a more comprehensive understanding of the biomedical applications of HM-CDs for the aforementioned disorders and investigates the intrinsic pharmacological activities and mechanisms of these HM-CDs to further advance their clinical applications.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yuxun Wei
- Department of Pharmacy, Zhongjiang County People’s Hospital, Deyang, 618000, People’s Republic of China
| | - Jie Wen
- Department of Pharmacy, Shehong Municipal Hospital of Traditional Chinese Medicine, Shehong, 629600, People’s Republic of China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Nianyu He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
16
|
Singh P, Arpita, Kumar S, Kumar P, Kataria N, Bhankar V, Kumar K, Kumar R, Hsieh CT, Khoo KS. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions. NANOSCALE 2023; 15:16241-16267. [PMID: 37439261 DOI: 10.1039/d3nr01966g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Access to safe drinking water and a hygienic living environment are the basic necessities that encourage healthy living. However, the presence of various pollutants (especially toxic heavy metal ions) at high concentrations in water renders water unfit for drinking and domestic use. The presence of high concentrations of heavy-metal ions (e.g., Pb2+, Hg2+, Cr6+, Cd2+, or Cu2+) greater than their permissible limits adversely affects human health, and increases the risk of cancer of the kidneys, liver, skin, and central nervous system. Therefore, their detection in water is crucial. Due to the various benefits of "green"-synthesized carbon-dots (C-dots) over other materials, these materials are potential candidates for sensing of toxic heavy-metal ions in water sources. C-dots are very small carbon-based nanomaterials that show chemical stability, magnificent biocompatibility, excitation wavelength-dependent photoluminescence (PL), water solubility, simple preparation strategies, photoinduced electron transfer, and the opportunity for functionalization. A new family of C-dots called "carbon quantum dots" (CQDs) are fluorescent zero-dimensional carbon nanoparticles of size < 10 nm. The green synthesis of C-dots has numerous advantages over conventional chemical routes, such as utilization of inexpensive and non-poisonous materials, straightforward operations, rapid reactions, and renewable precursors. Natural sources, such as biomass and biomass wastes, are broadly accepted as green precursors for fabricating C-dots because these sources are economical, ecological, and readily/extensively accessible. Two main methods are available for C-dots production: top-down and bottom-up. Herein, this review article discusses the recent advancements in the green fabrication of C-dots: photostability; surface structure and functionalization; potential applications for the sensing of hazardous anions and toxic heavy-metal ions; binding of toxic ions with C-dots; probable mechanistic routes of PL-based sensing of toxic heavy-metal ions. The green production of C-dots and their promising applications in the sensing of hazardous ions discussed herein provides deep insights into the safety of human health and the environment. Nonetheless, this review article provides a resource for the conversion of low-value biomass and biomass waste into valuable materials (i.e., C-dots) for promising sensing applications.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat-131039, Haryana, India.
| | - Arpita
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Sandeep Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Parmod Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Navish Kataria
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat-131039, Haryana, India.
| | - Ravi Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| |
Collapse
|
17
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Sun Y, Ma S, Wang H, Wang H, Gao M, Wang X. Construction of an "ON-OFF" fluoroprobe using ionic liquids-modified orange peel-based carbon quantum dots for selective/sensitive permanganate assay in waters and the underlying quenching mechanisms. Anal Bioanal Chem 2023:10.1007/s00216-023-04768-7. [PMID: 37286905 DOI: 10.1007/s00216-023-04768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Herein, we fabricated blue-fluorescence carbon quantum dots modified by ionic liquids (ILs-CQDs) with a quantum yield of 18.13% by employing orange peel as a carbon source and [BMIM][H2PO4] as a dopant. The fluorescence intensities (FIs) of ILs-CQDs were significantly quenched upon the addition of MnO4- with excellent selectivity and sensitivity in waters, and this phenomenon provided a feasibility for constructing a sensitive "ON-OFF" fluoroprobe. The prominent overlapping between the maximum excitation/emission of ILs-CQDs and the UV-Vis absorption of MnO4- implied an inner filter effect (IFE). The higher Kq value demonstrated that the fluorescence-quenching phenomenon was a static-quenching process (SQE). Coordination between MnO4- and oxygen/amino-rich groups in ILs-CQDs resulted in the alteration of zeta potential in the fluorescence system. Consequently, the interactions between MnO4- and ILs-CQDs belong to a joint mechanism of IFE and SQE. When plotting the FIs of ILs-CQDs vs. the concentrations of MnO4-, a satisfactorily linear correlation was obtained across the range of 0.3-100 μM with a detectable limit of 0.09 μM. This fluoroprobe was successfully applied to detect MnO4- in environmental waters with satisfactory recoveries of 98.05-103.75% and relative standard deviations (RSDs) of 1.57-2.68%. Also, it gave more excellent performance metrics as compared to the Chinese standard indirect iodometry method and other previous approaches for MnO4- assay. Overall, these findings offer a new avenue to engineer/develop a highly efficient fluoroprobe based on the combination of ILs and biomass-derived CQDs for the rapid/sensitive detection of metal ions in environmental waters.
Collapse
Affiliation(s)
- Yue Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Su Ma
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hanyu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
19
|
Hao Y, Li R, Liu Y, Zhang X, Geng L, Chen S. The on-off-on Fluorescence Sensor of Hollow Carbon Dots for Detecting Hg 2+ and Ascorbic Acid. J Fluoresc 2023; 33:459-469. [PMID: 36441340 DOI: 10.1007/s10895-022-03057-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
Abstract
Carbon dots (CDs) have excellent fluorescence properties and can be used in many research fields. In this paper, carbon dots were prepared by microwave-assisted pyrolysis of citric acid and urea, characterized by transmission electron microscope (TEM), X-ray diffractometer (XRD), 13C-NMR spectrum, zeta potential, Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) absorption and fluorescence spectra, and detected the Hg2+ and ascorbic acid (AA) sequentially. It showed that carbon dots were hollow, spherical particles and less than 10 nm, photoluminescence quantum yield of carbon dots was about 15%. The CDs were selective and sensitive to Hg2+ and AA based on the "on-off-on" fluorescence behavior. The detection limits of CDs for Hg2+ and AA were 0.138 μM and 0.212 μM, respectively. Fluorescence response mechanism of CDs was also discussed.
Collapse
Affiliation(s)
- Yunping Hao
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ronghui Li
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanxu Liu
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xuhong Zhang
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Shenna Chen
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
20
|
Xu JJ, Lu YN, Tao FF, Liang PF, Zhang PA. ZnO Nanoparticles Modified by Carbon Quantum Dots for the Photocatalytic Removal of Synthetic Pigment Pollutants. ACS OMEGA 2023; 8:7845-7857. [PMID: 36872993 PMCID: PMC9979235 DOI: 10.1021/acsomega.2c07591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Synthetic pigment pollutants caused by the rapid development of the modern food industry have become a serious threat to people's health and quality of life. Environmentally friendly ZnO-based photocatalytic degradation exhibits satisfactory efficiency, but some shortcomings of large band gap and rapid charge recombination reduce the removal of synthetic pigment pollutants. Here, carbon quantum dots (CQDs) with unique up-conversion luminescence were applied to decorate ZnO nanoparticles to effectively construct the CQDs/ZnO composites via a facile and efficient route. The ZnO nanoparticles with a spherical-like shape obtained from a zinc-based metal organic framework (zeolitic imidazolate framework-8, ZIF-8) were coated by uniformly dispersive quantum dots. Compared with single ZnO particles, the obtained CQDs/ZnO composites exhibit enhanced light absorption capacity, decreased photoluminescence (PL) intensity, and improved visible-light degradation for rhodamine B (RhB) with the large apparent rate constant (k app). The largest k app value in the CQDs/ZnO composite obtained from 75 mg of ZnO nanoparticles and 12.5 mL of the CQDs solution (∼1 mg·mL-1) was 2.6 times that in ZnO nanoparticles. This phenomenon may be attributed to the introduction of CQDs, leading to the narrowed band gap, an extended lifetime, and the charge separation. This work provides an economical and clean strategy to design visible-light-responsive ZnO-based photocatalysts, which is expected to be used for the removal of synthetic pigment pollutants in food industry.
Collapse
|
21
|
Mishra S, das K, Chatterjee S, Sahoo P, Kundu S, Pal M, Bhaumik A, Ghosh CK. Facile and Green Synthesis of Novel Fluorescent Carbon Quantum Dots and Their Silver Heterostructure: An In Vitro Anticancer Activity and Imaging on Colorectal Carcinoma. ACS OMEGA 2023; 8:4566-4577. [PMID: 36777585 PMCID: PMC9909815 DOI: 10.1021/acsomega.2c04964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Carbon dots (CQDs) have been widely investigated as prime candidates for developing a tumor theranostic platform due to their tunable fluorescence emission and excitation, high water solubility, good photostability, and biocompatibility. Among the CQDs, natural CQDs are an emerging class of nanomaterials in the carbon family. Herein, highly fluorescent carbon quantum dots (CQDs) were synthesized from orange juice using a one-step hydrothermal method and characterized by different techniques. After that, CQD/Ag heterostructures were synthesized by the reduction of silver salt, in particular silver nitrate (AgNO3) solution using sodium borohydride (NaBH4) in different ratios. The photostability and characterization of CQD/Ag heterostructures were investigated. At last, a comparative cellular toxicity measurement was done to select the superior CQD/Ag heterostructure in the human colorectal carcinoma (HCT 116) cell line along with the imaging property. The detailed cell death signaling was also observed in the HCT 116 cell line via the ROS-dependent mitochondrial-mediated pathway, where Akt (RAC-α serine/threonine-protein kinase) played a important role.
Collapse
Affiliation(s)
- Snehasis Mishra
- School
of Material Science and Nanotechnology, Jadavpur University, Kolkata700032, India
| | - Kaustav das
- School
of Material Science and Nanotechnology, Jadavpur University, Kolkata700032, India
| | - Sujan Chatterjee
- Molecular
Biology and Tissue Culture Laboratory, Post Graduate Department of
Zoology, Vidyasagar College, Kolkata700006, India
| | - Panchanan Sahoo
- School
of Material Science and Nanotechnology, Jadavpur University, Kolkata700032, India
| | - Sudip Kundu
- School
of Material Science and Nanotechnology, Jadavpur University, Kolkata700032, India
| | - Mrinal Pal
- CSIR-Central
Glass & Ceramic Research Institute, Council of Scientific & Industrial Research, Kolkata700032, India
| | - Asim Bhaumik
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Chandan Kumar Ghosh
- School
of Material Science and Nanotechnology, Jadavpur University, Kolkata700032, India
| |
Collapse
|
22
|
Venugopalan P, Vidya N. Microwave-assisted green synthesis of carbon dots derived from wild lemon (Citrus pennivesiculata) leaves as a fluorescent probe for tetracycline sensing in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122024. [PMID: 36308831 DOI: 10.1016/j.saa.2022.122024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report an eco-friendly biomass based completely greener microwave assisted synthesis of carbon dots from wild lemon leaves having superior photo-luminescent properties with moderately good quantum yield. The carbon dots synthesized (LLCDs) were characterized by high resolution transmission electron microscopy, fluorescent, UV-vis absorption, Fourier transform infrared and Raman spectroscopic techniques. The quenching of native fluorescence of LLCDs observed with tetracycline antibiotic was made use to make it as a fluorescent probe. Tetracycline is widely used as a drug to treat various bacterial infections and as a growth promoter in variety of farming fields like aquaculture and feedstock's. The excessive usage of this antibiotic in farming fields caused severe water pollution and micro level detection of tetracycline in water system is highly demanded for the protection of health and environment. Based on the selective interaction of tetracycline with LLCDs, a simple and cost effective analytical method was proposed to detect tetracycline in water with satisfactory parameters. The limit of detection is 0.42 µM with a linear range of 0 to 27. 27 µM. The mechanism of quenching was investigated through various experiments and finally accredited to static quenching. Furthermore, the same method has been practically applied for tetracycline detection in natural water resources with acceptable recoveries ranging from 95.56 % to 101.93 %.
Collapse
Affiliation(s)
- P Venugopalan
- Department of Chemistry, Sree Neelakanta Government Sanskrit College (Affiliated to University of Calicut), Pattambi, Kerala 679306, India.
| | - N Vidya
- Department of Chemistry, Sree Neelakanta Government Sanskrit College (Affiliated to University of Calicut), Pattambi, Kerala 679306, India
| |
Collapse
|
23
|
Venugopalan P, Vidya N. Microwave assisted green synthesis of carbon dots from sweet flag (Acorus calamus) for fluorescent sensing of 4-nitrophenol. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Qin F, Bai J, Zhu Y, He P, Wang X, Wu S, Yu X, Ren L. Searching for the true origin of the red fluorescence of leaf-derived carbon dots. Phys Chem Chem Phys 2023; 25:2762-2769. [PMID: 36645185 DOI: 10.1039/d2cp05130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report for the first time that the red fluorescence of leaf-derived carbon dots is derived from chlorophyll, and a possible formation structure is proposed. By controlling the solvothermal reaction temperature, the new luminescence center of CDs can be adjusted. This work provides unprecedented insights into the luminescence mechanism of biomass-derived CDs.
Collapse
Affiliation(s)
- Fu Qin
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jianliang Bai
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Yaqing Zhu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Pinyi He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xinyu Wang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shuang Wu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xu Yu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
25
|
Baig MS, Suryawanshi RM, Zehravi M, Mahajan HS, Rana R, Banu A, Subramanian M, Kaundal AK, Puri S, Siddiqui FA, Sharma R, Khan SL, Chen KT, Emran TB. Surface decorated quantum dots: Synthesis, properties and role in herbal therapy. Front Cell Dev Biol 2023; 11:1139671. [PMID: 37025169 PMCID: PMC10070951 DOI: 10.3389/fcell.2023.1139671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Quantum dots are the serendipitous outcome of materials research. It is the tiny carbonaceous nanoparticles with diameters ranging from 1 to 10 nm. This review is a brief discussion of the synthesis, properties, and biomedical applicability of quantum dots, especially in herbal therapy. As quantum dots are highly polar, they can be surface decorated with several kinds of polar functionalities, such as polymeric molecules, small functional molecules, and so on. The review also consists of the basic physical and optical properties of quantum dots and their excitation-dependent properties in the application section. We focus on therapeutics, where quantum dots are used as drugs or imaging probes. Nanoprobes for several diagnostics are quite new in the biomedical research domain. Quantum dot-based nanoprobes are in high demand due to their excellent fluorescence, non-bleaching nature, biocompatibility, anchoring feasibility for several analytes, and fast point-of-care sensibility. Lastly, we also included a discussion on quantum dot-based drug delivery as phytomedicine.
Collapse
Affiliation(s)
- Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad, India
| | | | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Hitendra S. Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur, Himachal Pradesh, India
| | - Ahemadi Banu
- Department of Pharmacology, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | | | - Amit Kumar Kaundal
- Department of Pharmaceutical Analysis and Quality Assurance, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur, Himachal Pradesh, India
| | - Sachin Puri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, India
- *Correspondence: Sharuk L. Khan, ; Kow-Tong Cheng,
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital, managed by Show Chwan Medical Care Corporation, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Sharuk L. Khan, ; Kow-Tong Cheng,
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
26
|
Transformation of bulk MnO2 to fluorescent quantum dots for selective and sensitive detection of ferric ions and ascorbic acid by turn-off-on strategy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Chen J, Xia X, Li P, Yu H, Xie Y, Guo Y, Yao W, Qian H, Cheng Y. A facile “off-on” fluorescence sensor for pentachlorophenol detection based on natural N and S co-doped carbon dots from crawfish shells. Food Chem 2022; 405:134802. [DOI: 10.1016/j.foodchem.2022.134802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
28
|
Jia Y, Wu S, Duan Z, Song S, Shuang S, Gong X, Dong C. A facile fluorescence platform for chromium and ascorbic acid detection based on "on-off-on" strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121343. [PMID: 35567825 DOI: 10.1016/j.saa.2022.121343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/03/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
In this paper, a facile and rapid fluorescence "on-off-on" strategy for the detection of chromium (Cr(VI)) and ascorbic acid (AA) was developed, which was based on the water-soluble carbon dots (CDs). The CDs was synthesized by a microwave-assisted treatment of L-tartaric acid, citric acid, and urea. The CDs have many advantages, such as high fluorescence quantum yield (20.5%) and good fluorescence stability. Based on inner filter effect (IFE) and static quenching, the fluorescence of the CDs can be quenched by Cr(VI) quickly; while the reduction of IFE and reducing action can make the fluorescence of the CDs recover by AA efficiently. Moreover, under the optimal experimental conditions, the CDs had a good detection performance for Cr(VI) in the range of 0.8 ∼ 189 µM with the limit of detection (LOD) of 0.16 µM. The linear detection for AA was ranged from 0.43 to 25.7 µM with a LOD of 0.1 µM. More importantly, the as-constructed fluorescence detecting platform was successfully applied for Cr(VI) and AA detection in the environmental samples and fruit samples, respectively. In addition, the application potential of the CDs in fluorescent films and anti-counterfeiting materials was further discussed in detail. This work will provide a novel idea for designing a portable sensor based on the CDs to quickly and sensitively detect Cr(VI) and AA.
Collapse
Affiliation(s)
- Yanchun Jia
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China; School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, PR China
| | - Suling Wu
- Integrated Center for Inspection and Testing of Changzhi City, Changzhi 047199, PR China
| | - Zhengyi Duan
- Integrated Center for Inspection and Testing of Changzhi City, Changzhi 047199, PR China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
29
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
30
|
Liu ZA, Zuo YN, Xia Y, Sun J, Zhu S. Enhanced detection of ascorbic acid with cascaded fluorescence recovery of a dual-nanoquencher system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3632-3637. [PMID: 36052693 DOI: 10.1039/d2ay01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An innovative strategy with target-triggered cascade fluorescence recovery of a dual-nanoquencher system was developed to detect ascorbic acid (AA). Herein, manganese dioxide (MnO2) nanosheets and gold nanoparticles (AuNPs) were used as nanoquenchers simultaneously. Owing to their synergistic effects, the fluorescence of 2,3-diaminophenazine (DAP) was decreased efficiently, thus minimizing the background fluorescence. The introduction of AA triggered the decomposition of MnO2 into Mn2+, which induced the aggregation of AuNPs. Both the decomposed MnO2 and aggregated AuNPs possess weak quenching abilities towards DAP. Such a cascade amplification strategy enhanced the detection sensitivity for AA with a LOD as low as 6.7 nM, which was two orders of magnitude lower than that of MnO2-based fluorescence assay. Furthermore, this amplification strategy was successfully applied to detect AA in food samples.
Collapse
Affiliation(s)
- Zhi-Ang Liu
- TEM Laboratory, Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu City, 273165, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Ya-Nan Zuo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City, 810001, Qinghai, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| |
Collapse
|
31
|
Tang S, Chen D, Li X, Wang C, Li T, Ma J, Guo G, Guo Q. Promising energy transfer system between fuorine and nitrogen Co-doped graphene quantum dots and Rhodamine B for ratiometric and visual detection of doxycycline in food. Food Chem 2022; 388:132936. [PMID: 35439715 DOI: 10.1016/j.foodchem.2022.132936] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022]
Abstract
A novel sensor based on dual emissive fluorescent graphene quantum dots is developed for a rapid, selective, sensitive and visual detection of doxycycline (DOX). The ratiometric fluorescent probe is designed by grafting fluorescent group (Rhodamine B, RhB) on F, N-doped graphene quantum dots (FNGQDs). In the presence of DOX, the fluorescence at 466 nm is remarkably quenched due to inner filter effect and fluorescence resonance energy transfer, whereas the peak at 592 nm is attenuated slightly due to the energy transfer in the emission peaks of FNGQDs and RhB functional group. The sensor shows good linear relationship from 0.04 to 100 µM with a low detection limit of 40 nM. Furthermore, the flexible solid-state fluorescent sensing platform is used for detecting DOX in milk, pork and water samples. Therefore, this dual-emission FGQD-RhB can be used as a high-performance fluorescent and visual sensor for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Siyuan Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| | - Xiameng Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Changxing Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Jiaxing Ma
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, PR China
| |
Collapse
|
32
|
Goswami J, Saikia L, Hazarika P. Carbon Dots‐Decorated g‐C
3
N
4
as Peroxidase Nanozyme for Colorimetric Detection of Cr(VI) in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202201963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juri Goswami
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| | - Lakshi Saikia
- Advanced Materials Group Materials Sciences and Technology Division CSIR- North-East Institute of Science and Technology Jorhat 785006 Assam India
| | - Parasa Hazarika
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| |
Collapse
|
33
|
Li F, Duan X, Li H, Zou L, Liu G, Liu F, Zhang G, Xu J. Dual effect of aminobutyric acid group and “molecular wire effect” of conjugated polymer enables ultra-trace detection of Cr2O72− in fruits. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Jariah A, Shiddiq M, Armynah B, Tahir D. Sensor Heavy Metal from Natural Resources for a Green Environment: A Review Relation Between Synthesis Method and Luminescence Properties of Carbon Dots. LUMINESCENCE 2022; 37:1246-1258. [PMID: 35671060 DOI: 10.1002/bio.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/10/2022]
Abstract
Carbon dots are 10-nm nanomaterial classes as excellent candidates in various applications: physics, biology, chemistry, and food science due to high stable biocompatibility and high surface expansive. Carbon dots (CDs) produced from natural materials have received wide attention due to their unique benefits, easy availabilities, sufficient costs, and harmless to the ecosystem. The various properties of CDs can be obtained from various synthesis methods: hydrothermal, microwave-assisted, and pyrolysis. The CDs have shown enormous potential in metal particle detection, colorimetric sensors, electrochemical sensors, and pesticide sensor. This review provides systematic information on a synthesis method based on natural resources and the application to the environmental sensors for supporting the clean environment. We hopefully this review, useful as a reference source in providing the guidance or roadmap of new researchers to develop new strategy in increasing luminescence properties CDs for multi detection of heavy metal in the environment.
Collapse
Affiliation(s)
- Ainun Jariah
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| | - Muhandis Shiddiq
- Research Centre for Physics, Indonesian Institute of Science, Pupiptek Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
35
|
Durrani S, Zhang J, Yang Z, Pang AP, Zeng J, Sayed SM, Khan A, Zhang Y, Wu FG, Lin F. Plant-derived Ca, N, S-Doped carbon dots for fast universal cell imaging and intracellular Congo red detection. Anal Chim Acta 2022; 1202:339672. [DOI: 10.1016/j.aca.2022.339672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022]
|
36
|
Glutathione capped gold nanoclusters-based fluorescence probe for highly sensitive and selective detection of transferrin in serum. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
N, P Co-Doped Carbon Dots as Multifunctional Fluorescence Nano-Sensor for Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Wang P, Wang J, Liu T, Sun Z, Gao M, Huang K, Wang X. Loquat fruit-based carbon quantum dots as an “ON-OFF” probe for fluorescent assay of MnO4- in waters based on the joint action of inner filter effect and static quenching. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Qi H, Huang D, Jing J, Ran M, Jing T, Zhao M, Zhang C, Sun X, Sami R, Benajiba N. Transforming waste into value: pomelo-peel-based nitrogen-doped carbon dots for the highly selective detection of tetracycline. RSC Adv 2022; 12:7574-7583. [PMID: 35424683 PMCID: PMC8982453 DOI: 10.1039/d2ra00134a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Tetracycline (TC) is widely used as a veterinary drug, and its residue in livestock products could enter the human body and cause damage. In this study, we developed an eco-friendly approach that utilized pomelo peel as a carbon source to synthesize new water-soluble N-doped carbon dots (P-NCDs) with blue fluorescence, obtaining a high quantum yield of up to 76.47% and achieving the goal of turning waste into value. Our prepared P-NCDs can selectively recognized TC, and their fluorescence was quenched based on the IFE. P-NCDs could measure the TC concentration in the linear range of 0-100 μmol L-1 with a detection limit (LOD, S/N = 3) as low as 0.045 μmol L-1. Furthermore, we have successfully applied our P-NCDs to the detection of TC in milk samples with convincing results within 90 s. Overall, our newly synthesized fluorescent sensor, P-NCDs, demonstrated huge potential to become an alternative way to detect TC in a simple, efficient, sensitive way without using any special instruments.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Demin Huang
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Jing Jing
- School of Medicine and Health, Harbin Institute of Technology No. 92, West Dazhi Street Harbin 150000 P. R.China
| | - Maoxia Ran
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Ming Zhao
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Chenqi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Xiaona Sun
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang Province 161006 China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University P.O. 11099 Taif-21944 Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|
40
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
41
|
Zhang J, Jing C, Wang B. A Label-Free Fluorescent Sensor Based on Si,N-Codoped Carbon Quantum Dots with Enhanced Sensitivity for the Determination of Cr(VI). MATERIALS 2022; 15:ma15051733. [PMID: 35268962 PMCID: PMC8911264 DOI: 10.3390/ma15051733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
A signal shut-off probe of Si, N-codoped carbon quantum dots (Si, N-CQDs) was exploited to detect Cr(VI) by fluorescence quenching without the aid of any biomolecules or labeling materials. The sensing system prepared the precursor of diacetone acrylamide and the silane coupling agent 3-aminopropyltriethoxysilane (KH-550) by a simple hydrothermal method, and the quantum yield is as high as 75% Si, N-CQDs. The fluorescence stability and microstructure of the Si, N-CQDs were studied. The Si, N-CQDs has a high sensitivity for detecting Cr(VI) with the linear range of 0–200 μM and the detection limit of 0.995 μM. The quenching mechanism of Si, N-CQDs is attributed to FRET.
Collapse
|
42
|
Liu Z, Chen L, Wang Q, Yang R, Hu X, Liu H, Li J, Liu Y. Novel fluorescent recoverable probe based on carbon quantum dots/polypyrrole composite for the simultaneous determination of chromium(VI) and sulfite. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Fan P, Liu C, Hu C, Li F, Lin X, Yang S, Xiao F. Green and facile synthesis of iron-doped biomass carbon dots as a dual-signal colorimetric and fluorometric probe for the detection of ascorbic acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj05047h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new method based on biomass Fe-CDs with fluorescence properties and simulated oxidase activity colorimetric and fluorometric dual-readout assay for highly effective detection of AA was established.
Collapse
Affiliation(s)
- Pengfei Fan
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Can Liu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Congcong Hu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Feifei Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xi Lin
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shengyuan Yang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Fubing Xiao
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
44
|
Bilge S, Karadurmus L, Sınağ A, Ozkan SA. Green synthesis and characterization of carbon-based materials for sensitive detection of heavy metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Anil AG, Ramachandran S, Kumar V, Subramanian S, Ramamurthy PC. Chromium (VI) detection by microbial carbon dots: Microwave synthesis and mechanistic study. J Basic Microbiol 2021; 62:455-464. [PMID: 34730846 DOI: 10.1002/jobm.202100394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Functionalized carbon dots (CDs) derived from Citrobacter freundii bacterial cells were used for selective detection of Cr(VI). A microwave-heating-based green synthesis approach is adopted to produce functionalized CDs from C. freundii bacterial cells (CF-CDs). The reaction was carried out in a 500 W microwave digester at 200°C for 20 min. The supernatant was filtered with a 0.2 µm filter and highly monodisperse CDs were obtained. Inherent functionalization of CF-CDs with nitrogen and oxygen-containing functional groups made them extremely selective toward Cr(VI) with a lower limit of detection of ~1.7 ppm. More importantly, CF-CDs could distinguish between Cr(VI) and Cr(III), which is highly desirable for practical applications. The fabricated sensor had a dual linear response range between 0 and 50 µM and 50-250 µM. The synthesized CDs were inherently functionalized which made them highly selective for Cr(VI) detection. CF-CDs also possess high stability over long storage period. This study reports the facile synthesis and characterization of a highly selective sensor for Cr(VI). As opposed to similar CDs sensors reported for Cr(VI), based on inner-filter effect, CF-CDs exhibit a strong, specific interaction toward Cr(VI), indicated by the large binding constant.
Collapse
Affiliation(s)
- Amith G Anil
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Sukanya Ramachandran
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Vineet Kumar
- Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sankaran Subramanian
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Praveen C Ramamurthy
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
46
|
Zhao XY, Wang J, Yang QS. Highly sensitive and selective sensing of ascorbic acid in water with a three-dimensional terbium(III)-based coordination polymer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
48
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
49
|
Cheng S, Zhang J, Liu Y, Wang Y, Xiao Y, Zhang Y. One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging. Mikrochim Acta 2021; 188:325. [PMID: 34490491 DOI: 10.1007/s00604-021-04969-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023]
Abstract
Water soluble N, S-doped carbon dots (N, S-CDs) with orange emission were synthesized from basic fuchsin and sulfosalicylic acid by the typical hydrothermal route. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for sensitive determination of tetracycline antibiotics (for example, chlortetracycline (CTC)) and quercetin. The proposed sensor was utilized to realize the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm) with satisfactory recoveries and relative standard deviations (RSD). The linear range and detection limit (LOD) of CTC is 1.24-165 μM and 32.36 nM, respectively. For quercetin, the linear ranges are 0.98-34 μM and 34-165 μΜ, and the LOD is 6.87 nM (3σ/m). By virtue of the good biocompatibility and long-wavelength emission, N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bio-imaging and sensing. In this paper, N, S-doped carbon dots (N, S-CDs) with orange emission (λem = 605 nm) were synthesized from basic fuchsin and sulfosalicylic acid. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for the sensing of tetracycline antibiotics (for example: chlortetracycline (CTC)) and quercetin. The sensor has been successfully applied to the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm). The linear range and detection limit (LOD) of CTC is 1.24-165 μM and 32.36 nM respectively. For quercetin, the linear ranges are 0.98-34 μM and 34-165 μΜ, and the LOD is 6.87 nM (3σ/m). In addition, due to the characteristics of good biocompatibility and long-wavelength emission, the N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bioimaging and sensing.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Junqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yaoming Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
50
|
Shi L, Dong X, Zhang G, Zhang Y, Zhang C, Dong C, Shuang S. Lysosome targeting, Cr(vi) and l-AA sensing, and cell imaging based on N-doped blue-fluorescence carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3561-3568. [PMID: 34313265 DOI: 10.1039/d1ay00977j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-doped blue-fluorescence carbon dots (N-CDs) were fabricated via a one-pot hydrothermal method using folic acid and p-phenylenediamine. The obtained N-CDs exhibited strong fluorescence (FL) with a considerable quantum yield (QY) of 21.8% and exceptional optical stability under different conditions. Upon introducing Cr(vi), blue FL of N-CDs was distinctly quenched. On subsequent addition of l-AA, the FL of N-CDs could be partially recovered. The fluorescence changes of N-CDs have been utilized to detect Cr(vi) and l-AA in aqueous solutions with linear ranges of 0.10-150 μM and 0.75-2.25 mM, respectively, as well as limit of detection values of 9.4 nM and 25 μM, respectively. Furthermore, as-obtained N-CDs can be extended to monitor the fluctuation of intracellular Cr(vi) and l-AA. More intriguingly, N-CDs can target lysosomes with a satisfactory Pearson correction coefficient of 0.87, which indicates a promising application prospect in the biomedical field.
Collapse
Affiliation(s)
- Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|