1
|
Qiu Y, Ma Z, Cai Y, Ren L, Yue A, Lyu F, Ding Y, Zhang J. Tea polyphenol-loaded chitosan/pectin nanoparticle as a nucleating agent for slurry ice production and its application in preservation of large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2025; 297:139837. [PMID: 39809405 DOI: 10.1016/j.ijbiomac.2025.139837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.4 μm to approximately 500 nm and improved the dispersion of NPs. Optimal encapsulation efficiency was achieved with a CH/PE ratio of 1:5 (v/v), pH 5.0 and a TP concentration of 0.8 mg/mL. FTIR analysis indicated CH and PE encapsulated TP through electrostatic interaction between amino and carboxyl groups. Furthermore, the spherical shape of NPs was captured by electron microscopy. The addition of CH/PE-TP NPs (simulated seawater/NPs 4:6, v/v) for slurry ice production led to a reduction in supercooling by 8.3 °C and decreased energy consumption by 24.8 %. Notably, the CH/PE-TP NPs could be reused by refreezing the melted water of slurry ice. Total volatile basic nitrogen, pH, thiobarbituric acid reactive substances and total viable bacteria count demonstrated that CH/PE-TP NPs-based slurry ice was more effective than flake ice and conventional slurry ice in preserving large yellow croaker. In summary, CH/PE-TP NPs as nucleating agent effectively reduce energy consumption and extend the shelf life of aquatic products.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yanping Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luyao Ren
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China.
| |
Collapse
|
2
|
Dai W, Liu S, Wang Y, Ding Y, Zhou X. Improving flavor quality in bighead carp (Aristichthys nobilis) fillets during chilled storage with chitosan-EGCG coating: Insights into its underlying regulatory mechanisms. Food Chem 2025; 478:143536. [PMID: 40037220 DOI: 10.1016/j.foodchem.2025.143536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Maintaining the flavor quality of aquatic products during storage is crucial for their market value and consumer acceptance. This study evaluated the effects of a chitosan-epigallocatechin gallate coating on the flavor profile of bighead carp fillets and explored its underlying regulatory mechanisms. Sensory evaluation, electronic nose, and analysis of volatile and ATP-related compounds revealed that the coating significantly reduced off-flavor compounds, improving flavor quality. The coating suppressed free amino acid and free fatty acid levels, inhibited flavor-converting enzyme activities, and slowed lipid metabolism. Correlation analysis highlighted positive links between key flavor compounds and flavor precursors, enzymes, and metabolites. High-throughput sequencing identified Lactococcus, Serratia, and Aeromonas as key microorganisms affecting flavor characteristics. These findings advance the understanding of flavor deterioration mechanisms and suggest potential strategies for preserving the flavor quality of bighead carp fillets during chilled storage.
Collapse
Affiliation(s)
- Wangli Dai
- Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Shulai Liu
- Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yuting Ding
- Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xuxia Zhou
- Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
3
|
Zhu S, Wang X, Jin Y, Peng N, Wei Z, Lian J, Liu S, Ding Y, Zhou X. Dual cryoprotection of gelatin-tea polyphenol microgels on surimi by targeting for ice inhibition and component stabilization. Food Chem 2025; 464:141684. [PMID: 39432946 DOI: 10.1016/j.foodchem.2024.141684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In this study, the gelatine-polyphenol microgels with dual cryoprotective roles were constructed by regulating the ratio of gelatin to tea polyphenols (1:50-1:250). The physicochemical attributes, ice recrystallization inhibition ability of microgels, and their dosage effects (1 %, 2.5 % and 4 %, w/w) on surimi were investigated. The results indicated that increased gelatin caused the reduced size and enhanced viscosity of microgels. Except for high viscosity and antioxidant activity, the GP-5 group also showed great IRI ability with minimum size distribution (125-214 μm2) of ice crystals. Furthermore, 2.5 G group and S group had a comparable TVB-N (3.81, 4.34 mg/100 g), TBARS (1.18, 1.32 mg/kg), sulfhydryl contents (29.52, 25.48 μmol/g) and Ca2+-ATPase activity (0.44, 0.36 μmolPi/gprot/h). Compared to uneven free water distribution of control group, S and 2.5 G group show more even immobilized-water distribution. Thereafter, the dual cryoprotective functions of microgels in surimi offer valuable insights for the development of effective antifreeze agents.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Xuan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ningning Peng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Zhengpeng Wei
- Ministry of Agriculture Key Laboratory of Frozen Prepared Marine Foods Processing, Qingdao, China
| | - Jing Lian
- Comprehensive Service Center of Market Supervision and Management of Rongcheng, Shandong, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
4
|
Wang W, Liu K, Liu C, Yang B, Dong H, Liao W, Yang X, He Q. A modern scientific perspective on the flavor and functional properties of diverse teas in traditional cuisine "tea-flavored fish": From macroscopic quality to microscopic variations. Food Chem X 2025; 25:102122. [PMID: 39830003 PMCID: PMC11741052 DOI: 10.1016/j.fochx.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The historical appreciation of tea dates back to ancient times, while technological limitations have long hindered in-depth exploration of its flavor complexity and functional attributes. This study investigated the effects of various teas on a traditional delicacy, "tea-flavored fish", using teas processed via traditional methods. Analysis of functional components revealed that processing and fermentation reduced catechin levels (186.3 mg/g to 58.8 mg/g) while increasing theaflavins (16.6 mg/g to 39.6 mg/g), leading to decreased antioxidant and antimicrobial activities. Tea flavored fish was prepared following traditional techniques. The results indicated that the teas preserved their sensory qualities such as texture and color, inhibited metabolic activity and microbial growth, delayed lipid oxidation and protein degradation, and inhibited biogenic amine accumulation. Furthermore, minor compositional variations were observed in the final product. These findings offer novel insights into the application of modern scientific concepts to elucidate the principles underlying traditional craftsmanship.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510006, China
| | - Kun Liu
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chunlong Liu
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bei Yang
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Wenzhen Liao
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xingfen Yang
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
5
|
Yang L, Chen S, Ma N, Chen W, Zhang Z, Zhang H. Effect of gelatin edible coating with Aronia melanocarpa pomace polyphenols on the cold storage of chilled pork. Meat Sci 2025; 219:109677. [PMID: 39357111 DOI: 10.1016/j.meatsci.2024.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
In this research, the Aronia melanocarpa pomace polyphenols (AMPPs) were extracted and purified. The purified AMPPs contained the most abundant chlorogenic acid (CGA) at 36.91 mg/100 mg, followed by chrysin at 8.61 mg/100 mg. At a concentration of 60 μg/mL, the purified AMPPs exhibited stronger scavenging activity against: DPPH radical, hydroxyl radical, ABTS∙+, and also showed greater Fe3+ reducing activity than the VC control group. To solve the problem of easy spoilage of chilled meat during storage, gelatin edible coatings containing Aronia melanocarpa pomace polyphenols, referred to as G/AMPPs, were investigated for their effect on the chilled storage of pork. At a 1:1 volume ratio of 1 % polyphenol solution to 3 % gelatin solution, the G/AMPPs coating effectively curbed pH, TVB-N, TVC, drip loss, and b* value increases in chilled pork, while delaying declines in hardness, adhesion, a* value and L* value; The TVB-N content and TVC values demonstrated that the G/AMPPs coating significantly extended the shelf life of chilled pork by up to 15 days. The results showed that G/AMPPs had good preservative, antibacterial and antioxidant effects on chilled pork and thus development of G/AMPPs based coating shows appeared to offer promise for meat preservation.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Sheng Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Ning Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Wenwen Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhenyuan Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyuan Zhang
- Chemistry College, Baicheng Nomal University, Baicheng 137000, China.
| |
Collapse
|
6
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
7
|
Qiu D, Zhou J, Feng Q, Ren K, Zhang H, He Y, Li C, Liu J, Mai NTT. Functionality, physicochemical properties, and applications of chitosan/nano-hydroxyapatite-tea polyphenol films. Food Chem X 2024; 24:101762. [PMID: 39314538 PMCID: PMC11417202 DOI: 10.1016/j.fochx.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
An active chitosan (CS) film containing a nano-hydroxyapatite-tea polyphenol (HAP-TP) complex was designed and prepared. The effects of HAP-TP loading on the structural and physicochemical properties of the CS-based film were evaluated. The mechanical and thermal properties of the film were significantly improved by the resulting intermolecular interactions and formation of hydrogen bonds between HAP-TP and CS, which reduced the water vapor and oxygen permeabilities of the film by 29.78 and 35.59 %, respectively. The CS-HAP-TP film exhibited excellent slow-release behavior and antioxidant activity, with a cumulative release rate at 700 h 6.79 % lower than that of CS-TP films. The CS-HAP-TP film significantly inhibited the deterioration of semi-dried golden pompano, and thus helped to retain the taste of umami and sweet amino acids in fish samples, while reducing off-flavor generation. The film therefore shows considerable potential as an active packaging material for the preservation of semi-dried fish products.
Collapse
Affiliation(s)
- Dan Qiu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Jingxuan Zhou
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Kun Ren
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Hongying Zhang
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Jing Liu
- School of Public Health, Hainan Medical University, Haikou 571199, Hainan, China
| | - Nga Thi Tuyet Mai
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu St., Nha Trang City, Viet Nam
| |
Collapse
|
8
|
Zhao S, Li M, Hei M, Zhao Y, Li J, Kang Z, Ma H, Xiong G. An Evaluation of the Effects of Pepper ( Zanthoxylum bungeanum Maxim.) Leaf Extract on the Physiochemical Properties and Water Distribution of Chinese Cured Meat (Larou) During Storage. Foods 2024; 13:3972. [PMID: 39683044 DOI: 10.3390/foods13233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, pepper (Zanthoxylum bungeanum Maxim.) leaf (ZL) extract was added to larou to investigate the improvement in the quality of physicochemical properties, texture, water distribution, and microorganism growth during storage for 20 days. Based on the results, the addition of ZL extract significantly retarded the increase in cooking loss, TBARS value, hardness, and microorganism growth. Moreover, the addition of ZL extract decreased the pH value, lightness, and microorganism counts, and increased the moisture content, total soluble protein content, a* value, b* value, and chewiness. The LF-NMR results showed that the addition of ZL extract shortened the T2 relaxation time and boosted the proportion of immobilized water, facilitating the validation of the improvement in water retention of larou during storage. The FT-IR results indicated that the addition of ZL extract influenced the protein secondary structure by inducing the conversion of α-helices to β-sheet structures. Accordingly, ZL extract has the potential to serve as a natural antioxidant, effectively helping to ameliorate the quality properties of cured meat products during storage.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Mengke Li
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
| | - Yanyan Zhao
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Jingjun Li
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, China
| | - Guoyuan Xiong
- School of Food Engineering, Anhui Science and Technology University, No.9 Donghua Road, Fengyang 233100, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| |
Collapse
|
9
|
Qian YF, Sun L, Zhang JJ, Shi CJ, Yang SP. Effects of Ozone Gas and Slightly Acidic Electrolyzed Water on the Quality of Salmon ( Salmo salar) Fillets from the Perspective of Muscle Protein. Foods 2024; 13:3833. [PMID: 39682905 DOI: 10.3390/foods13233833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
To elucidate the mechanisms of ozone gas (OG) and slight acid electrolyzed water (SA) on the quality changes in texture, water-holding capacity, and softening of salmon, the bacterial growth, total volatile basic nitrogen, thiobarbituric acid reactive substance, a* value, texture properties, carbonyl content and free sulfhydryl content, myofibrillar fragmentation index, and proteolytic activities of salmon treated by OG (1 mg/m3 for 10 min) and SA (ACC 30 mg/L, 5 min) individually and in combination were studied. The results showed that total viable counts of SA + OG (dipped in SAEW for 5 min, followed by exposure to ozone for 10 min) was about 3.36 log CFU/g lower than the control (CK) (dipped in distilled water for 5 min) on day 10. Further studies indicate that at the end of storage, the hardness of SA + OG fillets only decreased by 33.95%, while the drip loss and myofibrillar fragmentation index (MFI) were the lowest (i.e., 14.76% and 101.07). The activity of cathepsin D was extensively inhibited by SA + OG, which was only 2.063 U/g meat at the end. In addition, the carbonyl content was 1.90 μmol/g protein, and the free sulfhydryl content was 39.70 mg/mL in the SA + OG group, indicating that protein oxidation was also effectively inhibited. Correlation analysis shows that bacteria and endogenous proteases are the main causes of protein degradation. Overall, the combination of OG and SAEW is an effective way to maintain the muscle quality of salmon by inhibiting bacterial growth and endogenous enzymes.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
| | - Lu Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing-Jing Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cheng-Jian Shi
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Sheng-Ping Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
10
|
Zhu Z, Zhang H, Liu X, Zeng Q, Sun DW, Wang Z. In situ investigation of ice fractions and water states during partial freezing of pork loins and shrimps. Food Chem 2024; 457:140089. [PMID: 38955122 DOI: 10.1016/j.foodchem.2024.140089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Ice fractions and water states in partially frozen muscle foods greatly affect their quality. In the study, a variable temperature nuclear magnetic resonance (VT-NMR) with a liquid nitrogen temperature control system was employed to in situ investigate the relationship between ice fractions and temperatures and changes in water states during partial freezing and thawing of pork and shrimp. Results indicated that changes in ice fractions ranging from -2 ∼ -20 °C could be divided into 3 stages including slow increase, random leap and remarkable leap. More serious damages to the structures related to immobile water occurred in shrimp than in pork, and partial freezing also caused deterioration in muscle fibres related to free water. Additionally, -2 ∼ -3 °C and - 3.5 °C were the appropriate partial freezing temperatures for pork and shrimp, respectively. Therefore, the VT-NMR method possessed great potential for fundamental studies and applications of partial freezing of muscle foods.
Collapse
Affiliation(s)
- Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Han Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | | | | | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Zhe Wang
- Hefei Hualing Co., Ltd, Hefei 230000, China
| |
Collapse
|
11
|
Pan C, Shi S, Yang X, Xiang H, Wang D, Zhao Y, Ouyang Q. Effect of water migration on changes of quality and volatile compounds in frozen Penaeus monodon. Food Chem 2024; 457:140425. [PMID: 39043069 DOI: 10.1016/j.foodchem.2024.140425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The purpose of this study was to clarify effects of water changes on the quality and volatile compounds of Penaeus monodon during frozen storage. The content of immobilized water decreased significantly while the bound water and free water increased significantly. Total sulfhydryl content, and Ca2+-ATPase activity decreased significantly to 68.31 μmol/g and 0.127 U/mg, meantime, carbonyl content and MFI value increased significantly to 2.04 μmol/g prot and 55.10. Total of 50 volatile compounds were identified. Nonanal (M & D), 2-nonanone and octanal were only detected in fresh samples, while 3-hydroxy-2-butanone and 1-hydroxy-2-propanone were only found in the samples after 20 days of storage. Correlation analysis revealed that 6 of the volatile compounds were associated with the change of free water. Total of 28 and 17 volatile compounds showed significant correlations with the immobilized water and bound water, respectively. Four volatile compounds have the potential to be used as the flavor marker.
Collapse
Affiliation(s)
- Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shuo Shi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
| | - Qianqian Ouyang
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
12
|
Qiao J, Zhang M, Shen D, Liu Y. A new strategy to improve the quality of frozen chicken wings: High voltage electrostatic field combined with phosphorus-free water retaining agent. Food Res Int 2024; 188:114479. [PMID: 38823840 DOI: 10.1016/j.foodres.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Freezing is a commonly used method for long-term storage of chicken wing products, of which disadvantages are mainly the product damage caused in the process. The aim of this study was to improve the freezing quality of chicken wings with a combination of phosphorus-free water retaining agent (WRA) and high-voltage electrostatic field (HVEF). The effect of WRA acting at different HVEF intensities (0, 1, 3, and 5 kV/cm) on the quality attributes of frozen chicken wings was investigated in 0, 7, 14, 21, 28 and 35 days of frozen storage. The results showed that WRA had functional properties of significantly improving the water holding capacity (WHC), color and texture properties, and fat stability of frozen chicken wing samples. The application of HVEF on this basis helped to promote the absorption of WRA and inhibit oxidative deterioration of chicken wing samples during frozen storage. Meanwhile, the combination of HVEF at 3 kV/cm was more prominent in terms of improvement in WHC, moisture content, color, protein secondary structure and microstructure integrity. This advantage had been consistently maintained with the extension of storage time. Overall, WRA combined with HVEF of 3 kV/cm can be used as an effective strategy to improve the freezing quality of chicken wing samples and has the potential to maintain the frozen chicken wing samples quality for a long time.
Collapse
Affiliation(s)
- Jiangshan Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Dongbei Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Yaping Liu
- Guangdong Galore Food Co., Ltd., 528447 Zhongshan, Guangdong, China
| |
Collapse
|
13
|
Huang Y, Luo B, Shan S, Wu Y, Lin H, Wang F, Li C, Zhu R, Zhao C. Application of Ulva lactuca polysaccharide in the preservation of refrigerated of Lateolabrax maculatus fillets. Food Chem X 2024; 22:101494. [PMID: 38846800 PMCID: PMC11154192 DOI: 10.1016/j.fochx.2024.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to explore the use of Ulva lactuca polysaccharide (ULP) as a preservative for perch (Lateolabrax maculatus) fillets stored under refrigeration at 4 °C. Fresh perch fillets were treated with ULP (7-10 kDa) and potassium sorbate, respectively, to evaluate their effectiveness in inhibiting bacterial growth and maintain freshness. A 0.5% ULP solution significantly decreased the pH value, total volatile basic nitrogen value, thiobarbituric acid value, and total bacterial count of perch fillets. ULP solution delayed the changes in whiteness and texture of fillets, as well as protein degradation. The acute toxicity experiment further evaluates the safety and reliability of ULP. Simultaneously, utilizing 16S rRNA techniques, the ULP solution inhibited microorganisms known for their strong spoilage capabilities, such as Pseudomonas, Actinetobacter, and Shewanella. Microorganisms with a weaker ability to cause corruption became the dominant bacteria, such as Acetobacter, Lactobacillus, and Faecalibacterium, thereby exerting a degree of inhibition against spoilage.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biying Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijing Wu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Haiyan Lin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feifei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
15
|
Zhang B, Lan W, Wang Z, Shao Z, Xie J. Modified chitosan with different phenolic acids: Characterization, physicochemical properties, and biological activity. Food Chem 2024; 441:138337. [PMID: 38199114 DOI: 10.1016/j.foodchem.2023.138337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
This study synthesized five phenolic acid-chitosan copolymers utilizing the carbodiimide-mediated chemical crosslinking reaction. Comprehensive evaluations were conducted on their structural attributes, physicochemical properties, and biological activities. Fourier transform infrared confirmed successful grafting of phenolic acids onto chitosan via amide linkages. Additionally, ultraviolet-visible absorption spectroscopy and proton nuclear magnetic resonance analyses revealed novel absorption peaks between 200 and 400 nm and 6.0-8.0 ppm, respectively, attributable to the incorporated phenolic acids. Notably, the chitosan-gentisate acid copolymer exhibited significantly enhanced biological activity (p < 0.05) compared to pure chitosan and the other four conjugates, attributed to its highest grafting degree of approximately 295.93 mg/g. These modified chitosan derivatives effectively preserved the quality of sea bass (Lateolabrax japonicus) during refrigerated storage, extending its shelf-life by up to 9 days, 7 days, and 4 days relative to control, chitosan, and gentisate acid groups.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Zhicheng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhe Shao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
16
|
Wu P, Yang J, Meng X, Weng Y, Lin Y, Li R, Lv X, Ni L, Han JZ, Fu C. The inhibitory action of lactocin 63 on deterioration of seabass (Lateolabrax japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4015-4027. [PMID: 38294304 DOI: 10.1002/jsfa.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The bacteriocins, particularly derived from lactic acid bacteria, currently exhibit potential as a promising food preservative owing to their low toxicity and potent antimicrobial activity. This study aimed to evaluate the efficacy of lactocin 63, produced by Lactobacillus coryniformis, in inhibiting the deterioration of Lateolabrax japonicas during chilled storage, while also investigating its underlying inhibitory mechanism. The measurement of total viable count, biogenic amines, and volatile organic compounds were conducted, along with high-throughput sequencing and sensory evaluation. RESULTS The findings demonstrated that treatment with lactocin 63 resulted in a notable retardation of bacterial growth in L. japonicas fish fillet during refrigerated storage compared with the water-treated and nisin-treated groups. Moreover, lactocin 63 effectively maintained the microbial flora balance in the fish fillet and inhibited the proliferation and metabolic activity of specific spoilage microorganisms, particularly Shewanella, Pseudomonas, and Acinetobacter. Furthermore, the production of unacceptable volatile organic compounds (e.g. 1-octen-3-ol, hexanal, nonanal), as well as the biogenic amines derived from the bacterial metabolism, could be hindered, thus preventing the degradation in the quality of fish fillets and sustaining relatively high sensory quality. CONCLUSION The results of this study provide valuable theoretical support for the development and application of lactocin 63, or other bacteriocins derived from lactic acid bacteria, as potential bio-preservatives in aquatic food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xiaojie Meng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruili Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Caili Fu
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Palanisamy S, Singh A, Zhang B, Zhao Q, Benjakul S. Effects of Different Phenolic Compounds on the Redox State of Myoglobin and Prevention of Discoloration, Lipid and Protein Oxidation of Refrigerated Longtail Tuna ( Thunnus tonggol) Slices. Foods 2024; 13:1238. [PMID: 38672909 PMCID: PMC11048871 DOI: 10.3390/foods13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Effects of different phenolic compounds on the redox state of myoglobin and their potential for preserving the color and chemical quality of refrigerated longtail tuna (Thunnus tonggol) slices were studied. Purified myoglobin from dark muscle (15.83 kDa) was prepared. Catechin, EGCG, quercetin, and hyperoside affected the absorption spectra and redox state of metmyoglobin (metMb) at 4 °C for up to 72 h differently. Reduction of metMb to oxymyoglobin (oxyMb) was notably observed for two flavonols (EGCG and quercetin) at 50 and 100 ppm. Based on the reducing ability of metMb, EGCG and quercetin were selected for further study. Longtail tuna slices were treated with EGCG and quercetin at 200 and 400 mg/kg. Color (a* and a*/b*), proportion of myoglobin content, and quality changes were monitored over 72 h at 4 °C. Tuna slices treated with 200 mg/kg EGCG showed better maintenance of oxyMb and color as well as lower lipid oxidation (PV and TBARS) and protein oxidation (carbonyl content) than the remaining samples. Nevertheless, EGCG at 400 mg/kg exhibited lower efficacy in retaining the quality of tuna slices. Thus, EGCG at 200 mg/kg could be used to maintain the color and prolong the shelf life of refrigerated longtail tuna slices.
Collapse
Affiliation(s)
- Suguna Palanisamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (S.P.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (S.P.); (A.S.)
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (S.P.); (A.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Fei L, Ma Z, Yue A, Cui P, Qiu Y, Lyu F, Zhang J. Effect of low-voltage electrostatic field-assisted partial freezing on large yellow croaker protein properties and metabolomic analysis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2359-2371. [PMID: 37985177 DOI: 10.1002/jsfa.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
19
|
Fan Q, Yan X, Jia H, Li M, Yuan Y, Yue T. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 °C. Int J Biol Macromol 2024; 257:128614. [PMID: 38061528 DOI: 10.1016/j.ijbiomac.2023.128614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
20
|
Liu Z, Zhao M, Zhang Z, Li C, Xia G, Shi H, Liu Z. Chitosan-based edible film incorporated with wampee (Clausena lansium) seed essential oil: Preparation, characterization and biological activities. Int J Biol Macromol 2023; 253:127683. [PMID: 37890311 DOI: 10.1016/j.ijbiomac.2023.127683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Chitosan (Ch)-based edible composite films were prepared by incorporating blending wampee seed essential oil (WSEO) into a Ch matrix, using the incorporation ratio as a variable. The physical, mechanical properties, structure morphology and rheological properties were determined using tensile strength (TS), elongation at break (EB), water vapor permeability (WVP) tests together with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) observations and apparent viscosity and shear rate. In addition, the antimicrobial, antioxidant activities were investigated by the DPPH & ABTS radicals scavenging and inhibition zone assays, respectively. Compared with Ch, the incorporation of WSEO significantly decreased (P < 0.05) the TS, EB, and WVP values, especially when the WSEO ratio reached 1.0 % or higher. Meanwhile, the films exhibited greatly improved visible light barrier performance after WSEO incorporation. Both FTIR spectroscopy and SEM observations reflected the crosslinking between WSEO and Ch. Meanwhile, the composite films demonstrated smaller particle size and weaker rheological viscosities, which enhanced the antimicrobial and antioxidant capabilities when compared with those of Ch. Therefore, this study suggested that WSEO incorporated with Ch is an effective ingredient for the preparation of edible films with enhanced physicochemical and biological properties.
Collapse
Affiliation(s)
- Zhiqing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Zhiman Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Haohao Shi
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China.
| |
Collapse
|
21
|
Yang L, Li Z, Xie T, Feng J, Xu X, Zhao Y, Gao X. Effects of Sous-Vide on Quality, Structure and Flavor Characteristics of Tilapia Fillets. Molecules 2023; 28:8075. [PMID: 38138565 PMCID: PMC10745649 DOI: 10.3390/molecules28248075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
To investigate the effects of traditional high-temperature cooking and sous-vide cooking on the quality of tilapia fillets, muscle microstructure, texture, lipid oxidation, protein structure, and volatile compounds were analyzed. In comparison with samples subjected to traditional high-temperature cooking, sous-vide-treated samples exhibited less protein denaturation, a secondary structure dominated by α-helices, a stable and compact structure, a significantly higher moisture content, and fewer gaps in muscle fibers. The hardness of the sous-vide-treated samples was higher than that of control samples, and the extent of lipid oxidation was significantly reduced. The sous-vide cooking technique resulted in notable changes in the composition and relative content of volatile compounds, notably leading to an increase in the presence of 1-octen-3-ol, α-pinene, and dimethyl sulfide, and a decrease in the levels of hexanal, D-limonene, and methanethiol. Sous-vide treatment significantly enhanced the structural stability, hardness, and springiness of muscle fibers in tilapia fillets and reduced nutrient loss, enriched flavor, and mitigated effects on taste and fishy odor.
Collapse
Affiliation(s)
- Luqian Yang
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (L.Y.); (T.X.); (J.F.); (Y.Z.)
| | - Zhaoyong Li
- Qingdao Institute of Measurement Technology, Qingdao 266000, China
| | - Tianxiang Xie
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (L.Y.); (T.X.); (J.F.); (Y.Z.)
| | - Jun Feng
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (L.Y.); (T.X.); (J.F.); (Y.Z.)
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
| | - Yuanhui Zhao
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (L.Y.); (T.X.); (J.F.); (Y.Z.)
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
| | - Xin Gao
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (L.Y.); (T.X.); (J.F.); (Y.Z.)
| |
Collapse
|
22
|
Chen HM, Zhou Q, Huang LJ, Lin J, Liu JF, Huang ZY, Zhang RL, Wang JJ, Zhao Y, Wu YN, Yang XF, Wu WL. Curcumin-mediated photodynamic treatment extends the shelf life of salmon (Salmo salar) sashimi during chilled storage: Comparisons of preservation effects with five natural preservatives. Food Res Int 2023; 173:113325. [PMID: 37803636 DOI: 10.1016/j.foodres.2023.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Quan Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Jun Huang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Lin
- Huadu District Center for Disease Control and Prevention, Guangzhou 510803, PR China
| | - Jia-Fei Liu
- Waters Technologies (Shanghai) Limited, Shanghai 200080, PR China
| | - Zi-Yong Huang
- Waters Technologies (Shanghai) Limited, Shanghai 200080, PR China
| | - Rong-Lin Zhang
- Guangxi-Asean Food Inspection Center, Nanning 530007, PR China
| | - Jing-Jing Wang
- School of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yong Zhao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yong-Ning Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| | - Wei-Liang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
23
|
Tan L, Ni Y, Xie Y, Zhang W, Zhao J, Xiao Q, Lu J, Pan Q, Li C, Xu B. Next-generation meat preservation: integrating nano-natural substances to tackle hurdles and opportunities. Crit Rev Food Sci Nutr 2023; 64:12720-12743. [PMID: 37702757 DOI: 10.1080/10408398.2023.2256013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The increasing global meat demand raises concerns regarding the spoilage of meat caused by microbial invasion and oxidative decomposition. Natural substances, as a gift from nature to humanity, possess broad-spectrum bioactivity and have been utilized for meat preservation. However, their limited stability, solubility, and availability hinder their further development. To address this predicament, advanced organic nanocarriers provide an effective shelter for the formation of nano-natural substances (NNS). This review comprehensively presents various natural substances derived from plants, animals, and microorganisms, along with the challenges they face. Subsequently, the potential of organic nanocarriers is explored, highlighting their distinct features and applicability, in addressing these challenges. The review methodically examines the application of NNS in meat preservation, with a focus on their pathways of action and preservation mechanisms. Furthermore, the outlook and future trends for NNS applications in meat preservation are concluded. The theory and practice summary of NNS is expected to serve as a catalyst for advancements that enhance meat security, promote human health, and contribute to sustainable development.
Collapse
Affiliation(s)
- Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qing Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jingnan Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiong Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
24
|
Sun K, Pan C, Chen S, Wu H, Liu S, Hao S, Huang H, Xiang H. Effect of water change on quality deterioration of Pacific white shrimp (Litopenaeus vannamei) during partial freezing storage. Food Chem 2023; 416:135836. [PMID: 36893640 DOI: 10.1016/j.foodchem.2023.135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The correlation between water changes and quality deterioration of Litopenaeus vannamei during partial freezing storage was evaluated in this study. Significant increases in cross-sectional area and equivalent diameter are detected, but the roundness and longiness of the ice crystals show irregular growth. Within the extension of storage, the bound water (T2b) and immobilized water (T21) decreased significantly. However, the free water (T22) increased significantly. Quality determination showed significant decrease in total sulfhydryl and Ca2+-ATPase, but significant increase in disulfide bonds during storage. Correlation analysis revealed that cross-sectional area showed significant negative correlation with total sulfhydryl and Ca2+-ATPase, while significant positive correlation with disulfide bonds, respectively. The correlation between water distribution index and Ca2+-ATPase, disulfide bonds was significant, respectively. Predicted models for the growth of ice crystals with respect to cross-sectional area and equivalent diameter size have been developed with the help of the Arrhenius model.
Collapse
Affiliation(s)
- Kangting Sun
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilizationand Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572000, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Haiyun Wu
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 1088477, Japan
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuxian Hao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
25
|
Huang X, Tu Z, Liu W, Wu C, Wang H. Effect of three culture patterns on quality changes of crayfish meats during partial freezing storage. Food Chem 2023; 414:135683. [PMID: 36808028 DOI: 10.1016/j.foodchem.2023.135683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
The quality changes and main metabolites of rice-crayfish (DT), intensive crayfish (JY), and lotus pond crayfish (OT) under three culture patterns during partial freezing were studied. Compared with the DT and JY groups, the OT samples had higher thiobarbituric acid reactive substances (TBARS), K values and color values. The microstructure of the OT samples deteriorated most obviously during storage, and they had the lowest water-holding capacity and the worst texture. Furthermore, differential metabolites of crayfish under different culture patterns were identified by UHPLC-MS, and the most abundant differential metabolites of the OT groups were found. The main differential metabolites include alcohols polyols and carbonyl compounds; amines; amino acids, peptides, and analogues; carbohydrates and carbohydrate conjugates; fatty acids and conjugates. In conclusion, based on the analysis of existing data, the OT groups were considered to be the most serious deterioration during partial freezing compared with the other two culture patterns.
Collapse
Affiliation(s)
- Xiaoliang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Wenyu Liu
- Ji 'an Agricultural and Rural Industry Development Service Center, Jian 343000, China
| | - Chunlin Wu
- Ji 'an Agricultural and Rural Industry Development Service Center, Jian 343000, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
26
|
Zhang J, Fei L, Cui P, Walayat N, Ji S, Chen Y, Lyu F, Ding Y. Effect of low voltage electrostatic field combined with partial freezing on the quality and microbial community of large yellow croaker. Food Res Int 2023; 169:112933. [PMID: 37254359 DOI: 10.1016/j.foodres.2023.112933] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
The effect of low voltage electrostatic field combined with partial freezing (LVEF- PF) treatment on storage quality and microbial community of large yellow croaker was studied. Three different methods including chilled (C), partial freezing (PF) and 6 kV/m electrostatic field combined partial freezing storage were used to preserve large yellow croaker for 18 days. Total viable counts (TVC), sensory evaluation, and physiochemical index including pH, total volatile basic nitrogen (TVB-N), K value and centrifugal loss were examined. During storage, the large yellow croaker was susceptible to microbial growth and spoilage. However, LVEF-PF treatment was found to be effective in enhancing sensory quality, inhibiting microbial growth, and maintaining myofibril microstructure. Low field nuclear magnetic resonance showed that LVEF-PF treatment reduced the migration of immobilized water to free water. At 18th day, the TVC value of LVEF-PF, PF and chilled group were 3.56 log CFU/g, 5.11 log CFU/g, 7.73 log CFU/g, respectively. Therefore, from the results of TVB-N and TVC value, the shelf life of LVEF-PF group was at least 3 days longer than PF group, and 6 days longer than the chilled group. High-throughput sequencing showed that the microbial community diversity significantly decreased during storage. The predominant bacteria in chilled, PF, LVEF-PF group at 18th day were Pseudomonas, Psychrobacter and Shewanella, respectively, and the relative abundance of spoilage bacteria such as Pseudomonas and Psychrobacter were reduced by LVEF-PF treatment, that corresponding with lower values of TVB-N and TVC value. LVEF-PF treatment could be used as a new processing and storage method to delay deterioration and prolong shelf life of large yellow croaker.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengqiang Ji
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yiling Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
27
|
Saini R, Kaur S, Aggarwal P, Dhiman A. The influence of conventional and novel blanching methods on potato granules, phytochemicals, and thermal properties of colored varieties. Front Nutr 2023; 10:1178797. [PMID: 37215207 PMCID: PMC10196190 DOI: 10.3389/fnut.2023.1178797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Colored potatoes comprise many bioactive compounds that potentially support human health. Polyphenols present in them have associated therapeutic benefits like antimutagenic and anticarcinogenic properties. Method The current study aimed to explore the effects of different blanching methods (steam blanching, hot water blanching, and microwave-assisted blanching) on the phytochemical and structural aspects of PP-1901 and Lady Rosetta (LR) potato varieties. Changes in the antioxidant activity, color, total ascorbic acid, phenolic, and flavonoid content were based on the variations in parameters including temperature (blanching using hot water and steam) and capacity 100- 900 W (blanching using microwave). Results For both PP-1901 and LR varieties, all the blanching methods led to a significant reduction in residual peroxidase activity, as well as affecting their color. The preservation of bioactive substances exhibited a microwave steam>hot water blanching trend. Blanching significantly increased the antioxidant activity of all the samples. Additionally, Fourier-transform infrared spectroscopy revealed that phytocompounds were retained to their maximum in microwave-blanched samples, especially at 300 W. The type of blanching method significantly affected the thermal properties of potatoes by disrupting the ordered structure of the matrix. Discussion Microwaves at 300 W can be used as a novel and suitable alternative technique for blanching potatoes, which successfully retained the original quality of it in comparison to steam and hot water blanching.
Collapse
Affiliation(s)
- Rajni Saini
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sukhpreet Kaur
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Poonam Aggarwal
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| |
Collapse
|
28
|
Zhang J, Sun L, Cui P, Zou L, Chen Y, Liang J, Ji S, Walayat N, Lyu F, Ding Y. Effects of combined treatment of electrolytic water and chitosan on the quality and proteome of large yellow croaker (Pseudosciaena crocea) during refrigerated storage. Food Chem 2023; 406:135062. [PMID: 36462361 DOI: 10.1016/j.foodchem.2022.135062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The labeled quantitative proteomic method was used to study the changes in muscle proteins of large yellow croaker (Pseudosciaena crocea) treated with electrolytic water (EW) and chitosan (CHI) combined preservation during 12 days of refrigeration storage (4 °C). The analysis indicated that the freshness instructed by total viable count (TVC), total volatile basic nitrogen (TVB-N) and K value was significantly maintained after combined preservation during storage at 4 °C for 12 days (CS12). Furthermore, 46 differentially abundant proteins (DAPs) were detected in storage at 4 °C for 12 days (S12) compared to the freshness group (F), which bioinformatics confirmed were mainly skeletal proteins and enzymes. Correlation analysis showed that 19 highly correlated DAPs could be used as potential protein markers of freshness. Changes in the relation of freshness and protein were shown in further correlative analysis of F and CS12, which were caused by combined preservation. Therefore, combined preservation is promising in the quality and stability of large yellow croakers.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Yutong Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Jianqin Liang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shengqiang Ji
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
29
|
Zhong H, Wei S, Kang M, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu M, Liu S. Effects of different storage conditions on microbial community and quality changes of greater amberjack (Seriola dumerili) fillets. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
30
|
Ming Y, Wang Y, Xie Y, Dong X, Nakamura Y, Chen X, Qi H. Polyphenol extracts from Ascophyllum nodosum protected sea cucumber (Apostichopus japonicas) body wall against thermal degradation during tenderization. Food Res Int 2023; 164:112419. [PMID: 36738022 DOI: 10.1016/j.foodres.2022.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
To retard the protein degradation during sea cucumber processing, polyphenol extracts from Ascophyllum nodosum (PhE) was used as a potential antioxidant to maintain the structural integrity of sea cucumber body wall. Accordingly, the protection effects of PhE (0, 0.5, 1.0 and 1.5 mg PhE/g SFBW) against thermal degradation of the solid fragments of body wall (SFBW) have been investigated in order to evaluate their impact on the oxidation level and structural changes. Electronic Spin Resonance results showed that PhE could significantly inhibit the occurrence of oxidation by scavenging the free radicals. The effect of PhE on chemical analysis of soluble matters in SFBW was characterized by SDS-PAGE and HPLC. Compared with thermally treated SFBW, samples with PhE presented a decrease in protein dissolution. Thermal treatment resulted in the disintegration of collagen fibrils and fibril bundles in SFBW samples, while the density of collagen fibrils was increased, and the porosity decreased in samples with PhE. The results of FTIR and intrinsic tryptophan fluorescence confirmed that the structures of SFBW were modified by PhE. Besides, the denaturing temperature and decomposition temperature were both improved with the addition of PhE. These results suggested that PhE appeared to have a positive effect on lowering oxidation and improving thermostability and structural stability of SFBW, which could provide a theoretical basis for protecting sea cucumber body wall against degradation during thermal tenderization.
Collapse
Affiliation(s)
- Yu Ming
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yuqianqian Xie
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Xiufang Dong
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China.
| |
Collapse
|
31
|
Lan W, Chen X, Zhao Y, Xie J. The effects of tea polyphenol-ozonated slurry ice treatment on the quality of large yellow croaker (Pseudosciaena crocea) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7052-7061. [PMID: 35690887 DOI: 10.1002/jsfa.12066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The aim of the current study was to evaluate the synergistic effects of tea polyphenol-ozonated slurry ice on the quality, physicochemical and protein characteristics of large yellow croaker (Pseudosciaena crocea) during chilled (4 °C) storage. To 0.3% tea polyphenol combined with ozone water was added sodium chloride until the salt concentration reached 3.3% and with the use of an ice machine the mixture formed the tea polyphenol-ozonated slurry ice. Microbial [total viable count (TVC)], physicochemical [total volatile basic nitrogen (TVB-N), K value], myofibrillar fragmentation index (MFI), Ca2+ -ATPase activity, total sulfhydryl content, intrinsic fluorescence intensity (IFI), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were analyzed during chilled (4 °C) storage for up to 20 days. RESULTS The results showed that tea polyphenol-ozonated slurry ice could effectively inhibit the increase of TVC and TVB-N, reduce the degree of adenosine triphosphate (ATP) degradation. In addition, the tea polyphenol-ozonated slurry ice treatment could protect the integrity of myosin in myofibrillar proteins (MPs) by inhibiting the decrease of Ca2+ -ATPase activity and the content of total sulfhydryl. Furthermore, the tea polyphenol-ozonated slurry ice presented a superiorly protective effect on protein structure in MPs as manifested by the results of IFI, FTIR and SDS-PAGE. It was possible that due to the addition of tea polyphenol, the antioxidant activity of this complex was significantly improved. CONCLUSION The tea polyphenol-ozonated slurry ice treatment can maintain the quality of large yellow croaker by decreasing the damage of MP caused by the interaction between microorganisms and endogenous enzymes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yanan Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
32
|
Yang X, Lan W, Zhao X, Lang A, Xie J. Inhibitory effects of chitosan grafted chlorogenic acid on antioxidase activity, and lipid and protein oxidation of sea bass (Lateolabrax japonicus) fillets stored at 4 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6236-6245. [PMID: 35502594 DOI: 10.1002/jsfa.11972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sea bass (Lateolabrax japonicus), a marine fish, is prone to spoilage due to its high nutritional value. Preservatives are commonly used for storage for the production of fish fillets. In this work, chitosan (CS) was grafted onto chlorogenic acid (CA) to obtain a new preservative, chitosan grafted chlorogenic acid (CS-g-CA), which could enhance the biochemical properties of chitosan and obtain better antibacterial and antibacterial properties. This study therefore investigated the inhibitory effects of CS-g-CA on antioxidant enzyme activity, and lipid and protein oxidation of sea bass fillets stored at 4 °C. RESULTS Compared with the control group on day 9, the activity of 63% catalase (CAT), 78% superoxide diamidase (SOD), 73% glutathione peroxide enzyme (GSH-Px) and 60% DPPH scavenging activity was retained by CS-g-CA treatment. Changes in thiobarbituric acid (TBA) and conjugated diene (CD) values were delayed by CS-g-CA treatment. The use of CS-g-CA retards protein oxidation by inhibiting the formation of free amino acid and carbonyl groups, and maintaining a higher sulfhydryl content. Regarding myofibril degradation, CS-g-CA could maintain protein secondary structure by increasing the ratio of α-helices. CONCLUSIONS Chitosan-grafted chlorogenic acid could protect the activity of antioxidant enzymes and inhibit lipid oxidation by slowing down the production of lipid oxidation products. It also delayed protein oxidation by inhibiting oxidation product generation and stabilizing protein structure. It could therefore be used as a promising preservative for seafood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - XinYu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
33
|
Ultrasound-reinforced encapsulation of proanthocyanidin by chitosan-chondroitin sulfate nanosystem. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Wang H, Shi W, Wang X. Differential proteomic analysis of frozen tilapia (Oreochromis niloticus) fillets with quality characteristics by a tandem mass tag (TMT)-based strategy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Liu Z, Zhao M, Wang X, Li C, Wang J, Liu Z, Shen X, Zhou D. Response surface methodology-optimized extraction of flavonoids with antioxidant and antimicrobial activities from the exocarp of three genera of coconut and characterization by HPLC-IT-TOF-MS/MS. Food Chem 2022; 391:132966. [PMID: 35609458 DOI: 10.1016/j.foodchem.2022.132966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022]
Abstract
Response surface methodology optimization based on central composite design was applied to extract flavonoids from the exocarp of three coconut genera. The antioxidant and antimicrobial activities and structures of the flavonoids were determined. The results indicated that the optimal extraction conditions were ethanol concentration, 60%; temperature, 50 ℃; time, 90 min; liquid/material ratio, 40 mL/g; ultrasonic power, 150 W. Under these conditions, the yields of green, red and yellow coconut exocarp were 366.03 ± 7.57, 596.38 ± 10.32, and 403.78 ± 5.56 mg rutin/g powder, respectively. The flavonoids exhibited eminent DPPH and ABTS radical scavenging activities with IC50 values of 0.01-0.02 mg/mL. At a concentration of 2 mg/mL, they exhibited antimicrobial activity against Vibrio parahaemolyticus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella and Pseudomonas aeruginosa. In total, 17 flavonoids and 5 phenolic acids were characterized by UPLC-IT-TOF-MS/MS; among them, catechin, kaempferol, and quercetin were abundant. Yellow coconut had a distinct flavonoid spectrogram from other genera and contained more methoxy flavonoids.
Collapse
Affiliation(s)
- Zhiqing Liu
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Mantong Zhao
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Xinwen Wang
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Jiamei Wang
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China.
| | - Xuanri Shen
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Dayong Zhou
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
36
|
Shao F, Ma X, Wei P, Cao J, He Y, Feng A, Dong X, Zhou D, Li C. The effects of polyphenols on fresh quality and the mechanism of partial freezing of tilapia fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6014-6023. [PMID: 35460082 DOI: 10.1002/jsfa.11954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fish is one of the most popular foods for consumers because of its abundant nutrition, tenderness and delicious taste. With increasing demand for tilapia fillets, practical preservation is widely used to maintain quality and safety during long-distance transportation and storage. Thus the effects of polyphenols (2 g L-1 ) on color, flavor quality and mechanism of tilapia fillets were studied during 49 days of partial freezing (-4 °C). RESULTS Treatment with carnosic acid (CA), procyanidin (PA), quercetin (QE) and resveratrol (RSV) inhibited water migration, myoglobin oxidation and psychrophilic bacteria stability during partial freezing storage. Aeromonas and Acinetobacter were the dominant bacteria of tilapia fillets during -4 °C storage. The relative abundance of aromatic substances (T70/2) in the polyphenol groups (>20%) was richer than in the control (CON) group (17%). Partial least squares discriminant analysis results showed that the different odors of the control and polyphenol groups were completely separated. Moreover, 35 fatty acids were identified by gas chromatographic analysis. On 49 days, the ratios of unsaturated fatty acids in the PA group (58.64%), QE group (57.70%) and RSV group (57.25%) were higher than in the control group (57.19%), and the PA group was the highest. CONCLUSION Polyphenol treatment effectively maintained freshness and improved the quality of tilapia fillets during partial freezing. The polyphenol treatment comprehensively sustained the color and flavor quality of tilapia fillets found in the proposed mechanism. In particular, PA treatment was considered a potential method for preserving the freshness of fillets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fanghui Shao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoye Ma
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yanfu He
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Aiguo Feng
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiuping Dong
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
37
|
Wang S, Liu Z, Zhao M, Gao C, Wang J, Li C, Dong X, Liu Z, Zhou D. Chitosan-wampee seed essential oil composite film combined with cold plasma for refrigerated storage with modified atmosphere packaging: A promising technology for quality preservation of golden pompano fillets. Int J Biol Macromol 2022; 224:1266-1275. [DOI: 10.1016/j.ijbiomac.2022.10.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
38
|
Huang J, Hu Z, Hu L, Li G, Yuan C, Chen J, Hu Y. The modification effects of roselle anthocyanin film on shrimp texture via water distribution controlling and protein conformation maintenance. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Zhu W, Han M, Bu Y, Li X, Yi S, Xu Y, Li J. Plant polyphenols regulating myoglobin oxidation and color stability in red meat and certain fish: A review. Crit Rev Food Sci Nutr 2022; 64:2276-2288. [PMID: 36102134 DOI: 10.1080/10408398.2022.2122922] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Color is an essential criterion for assessing the freshness, quality, and acceptability of red meat and certain fish with red muscle. Myoglobin (Mb), one of the significant pigment substances, is the uppermost reason to keep the color of red meat. Their oxidation and browning are easy to occur throughout the storage and processing period. Natural antioxidants are substances with antioxidant activity extracted from plants, such as plant polyphenols. Consumers prefer natural antioxidants due to safety concerns and limitations on the use of synthetic antioxidants. In recent years, plant polyphenols have been widely used as antioxidants to slow down the deterioration of product quality due to oxidation. As natural antioxidants, it is necessary to strengthen the researches on the antioxidant mechanism of plant polyphenols to solve the discoloration of red meat and certain fish. A fundamental review of the relationship between Mb oxidation and color stability is discussed. The inhibiting mechanisms of polyphenols on lipid and Mb oxidation are presented and investigated. Meanwhile, this review comprehensively outlines applications of plant polyphenols in improving color stability. This will provide reference and theoretical support for the rational application of plant polyphenols in green meat processing.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Menglin Han
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| |
Collapse
|
40
|
Dai W, Wang W, Gu S, Xu M, Yao H, Zhou X, Ding Y. Effect of chitosan-epigallocatechin gallate coating on volatile flavor compounds retention in bighead carp (Aristichthys nobilis) fillets during chilled storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Dai W, Yan C, Ding Y, Wang W, Gu S, Xu Z, Zhou X, Ding Y. Effect of a chitosan coating incorporating epigallocatechin gallate on the quality and shelf life of bighead carp (Aristichthys nobilis) fillets during chilled storage. Int J Biol Macromol 2022; 219:1272-1283. [PMID: 36058394 DOI: 10.1016/j.ijbiomac.2022.08.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
The objective of this study was to investigate the potential application of chitosan coatings incorporating epigallocatechin gallate (EGCG) for preserving fillets of bighead carp during chilled storage. The fillets were coated with acetic acid and glycerol, chitosan, and chitosan-EGCG, respectively, and the changes in their physicochemical, microbiological, and sensory characteristics during storage at 4 °C were determined. Notably, total volatile basic nitrogen, thiobarbituric-acid-reactive substances, and K value of chitosan-EGCG coated fillets sampled on day 15 were 48.04 %, 60.19 %, and 32.91 % lower than untreated fillets, respectively. Microbial enumeration suggested that the inclusion of EGCG significantly improved the inhibitory effect of pure chitosan coating on the proliferation of microorganisms. Furthermore, the chitosan-EGCG coated fillets also performed the best in terms of color, texture, and sensory analysis, and extended the shelf-life of the fillets for at least 6 days. A principal component analysis further confirmed the preserving effect of the chitosan-EGCG coating. Mantel test results suggested that the fillets' organoleptic characteristics strongly correlated with physicochemical and microbiological indicators. Overall, this work provides an effective protocol for food quality control and the extension of shelf life during chilled storage, and it clarifies the relationships between organoleptic characteristics and physicochemical and microbiological indexes.
Collapse
Affiliation(s)
- Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Chen Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Wenjie Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China..
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
42
|
Pei Z, Wang H, Xia G, Hu Y, Xue C, Lu S, Li C, Shen X. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chem 2022; 403:134424. [DOI: 10.1016/j.foodchem.2022.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
43
|
The Positive Influences of Roselle Anthocyanin Active Film on Shrimp (Penaeus vannamei) Sensory Attribute Modification. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Shi Y, Wei P, Shi Q, Cao J, Zhu K, Liu Z, Zhou D, Shen X, Li C. Quality changes and deterioration mechanisms in three parts (belly, dorsal and tail muscle) of tilapia fillets during partial freezing storage. Food Chem 2022; 385:132503. [PMID: 35331610 DOI: 10.1016/j.foodchem.2022.132503] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
The quality changes in tilapia belly muscle (BM), dorsal muscle (DM) and tail muscle (TM) were studied and the hypothesis of browning of the fillets was revealed during partial freezing. Compared with DM and TM groups, BM samples had higher thiobarbituric acid reactive substances (TBARS) (0.41 mg malondialdehyde eq/kg at 49 d) and K values (61.81% at 42 d) (P < 0.05). The microstructure of the BM group deteriorated most obviously during storage. Therefore, the BM group was considered to be the fastest to oxidize and deteriorate. In addition, 54 different micromolecular metabolites were identified from tilapia fillets by UHPLC-Q-TOF-MS analysis, and there were significant differences in the micromolecular metabolites in the three parts of tilapia. Therefore, proteins and lipids were degraded by the action of enzymes and microorganisms to produce some amines and small molecular acids, leading to the deterioration of the quality of tilapia fillets.
Collapse
Affiliation(s)
- Yali Shi
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiuge Shi
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Zhongyuan Liu
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
45
|
Xu Z, Cao Q, Manyande A, Xiong S, Du H. Analysis of the binding selectivity and inhibiting mechanism of chlorogenic acid isomers and their interaction with grass carp endogenous lipase using multi-spectroscopic, inhibition kinetics and modeling methods. Food Chem 2022; 382:132106. [PMID: 35240531 DOI: 10.1016/j.foodchem.2022.132106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022]
Abstract
Polyphenols are inhibitors for lipase, but the binding selectivity and mechanism of polyphenol isomers and how they interact with lipase are not clear. Here, chlorogenic acid (CGA) isomers, neochlorogenic acid (NCGA) and cryptochlorogenic acid (CCGA) were used to explore the binding selectivity and mechanism of lipase. An inhibition assay indicated that both CGA isomers had dose-dependent inhibitory effects on lipase; however, the inhibitory effect of NCGA was better (IC50: 0.647 mg/mL) than that of CCGA (IC50: 0.677 mg/mL). NCGA and CCGA formed complexes with lipase at a molar ratio of 1:1, and the electrostatic interaction force plays a major role in the lipase-CCGA system. Molecular dynamics studies demonstrated that NCGA had a greater impact on the structure of lipase. The multi-spectroscopic and modeling results explained the effects of micro-structural changes on the binding site, the interaction force and the inhibition rate of the isomers when they combined with lipase.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Qiongju Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
46
|
Lv Y, Liang Q, Li Y, Zhang D, Yi S, Li X, Li J. Study on the interactions between the screened polyphenols and Penaeus vannamei myosin after freezing treatment. Int J Biol Macromol 2022; 217:701-713. [PMID: 35843403 DOI: 10.1016/j.ijbiomac.2022.07.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
The denaturation of proteins (particularly myosin) due to freezing can lead to the deterioration of Penaeus vannamei. The purpose of this study was to verify the antifreeze protective effects of polyphenols screened by a molecular docking technique, and to explore their interactions with myosin after freezing treatment. It was found that the screened polyphenols could significantly increase the freezing rate and unfreezable water content of shrimp paste. The results of fluorescence spectra indicated that the hesperetin to myosin quenching process included both dynamic and static quenching, and it was primarily bound to myosin through hydrophobic interactions; The quenching of myosin by both dihydroquercetin and mangiferin was static quenching, and they were bound to myosin mainly by hydrogen bonds and van der Waals forces; All three of these polyphenols had only one binding site on myosin. Surface hydrophobicity indicated that all four polyphenols were engaged in non-covalent binding (hydrophobic interactions) with myosin. Infrared spectra demonstrated that the addition of these four polyphenols significantly increased the α-helix content of myosin. They also reduced the myosin particle size, zeta potential, and protein degeneration degree. Scanning electron microscopy revealed that the four polyphenols reduced the degree of aggregation, while more uniformly distributing the myosin particles. These observations provide a basis for the screening of polyphenols and further research into the protective mechanism of polyphenols on frozen myosin.
Collapse
Affiliation(s)
- Yanfang Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Qianqian Liang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Ying Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Defu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
47
|
Wang H, Pei Z, Xue C, Cao J, Shen X, Li C. Comparative Study on the Characterization of Myofibrillar Proteins from Tilapia, Golden Pompano and Skipjack Tuna. Foods 2022; 11:foods11121705. [PMID: 35741902 PMCID: PMC9222683 DOI: 10.3390/foods11121705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, the physicochemical properties, functional properties and N-glycoproteome of tilapia myofibrillar protein (TMP), golden pompano myofibrillar protein (GPMP) and skipjack tuna myofibrillar protein (STMP) were assessed. The microstructures and protein compositions of the three MPs were similar. TMP and GPMP had higher solubility, sulfhydryl content and endogenous fluorescence intensity, lower surface hydrophobicity and β-sheet contents than STMP. The results showed that the protein structures of TMP and GPMP were more folded and stable. Due to its low solubility and high surface hydrophobicity, STMP had low emulsifying activity and high foaming activity. By N-glycoproteomics analysis, 23, 85 and 22 glycoproteins that contained 28, 129 and 35 N-glycosylation sites, were identified in TMP, GPMP and STMP, respectively. GPMP had more N-glycoproteins and N-glycosylation sites than STMP, which was possibly the reason for GPMP’s higher solubility and EAI. These results provide useful information for the effective utilization of various fish products.
Collapse
Affiliation(s)
- Huibo Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Zhisheng Pei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel./Fax: +86-0898-66256495
| |
Collapse
|
48
|
Wang X, Xie X, Zhang T, Zheng Y, Guo Q. Effect of edible coating on the whole large yellow croaker (Pseudosciaena crocea) after a 3-day storage at −18 °C: With emphasis on the correlation between water status and classical quality indices. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Lan W, Zhao X, Wang M, Xie J. Effects of chitosan and apple polyphenol coating on quality and microbial composition of large yellow croaker (Pseudosciaena crocea) during ice storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3099-3106. [PMID: 34778959 DOI: 10.1002/jsfa.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Large yellow croaker (Pseudosciaena crocea) has important commercial value because of its high nutritional value and delicious taste. However, large yellow croaker is readily affected by microorganisms during storage, which causes the corruption of muscle tissue. Both chitosan (CS) and apple polyphenols (APs) are bio-preservatives, which can effectively inhibit the growth of microorganisms and improve the quality of large yellow croaker. The effects of 10.0 and 20.0 g L-1 CS combined with 1.0 g L-1 AP coating on the quality and microbial composition of large yellow croaker during ice storage were investigated respectively. RESULTS CS + AP coating restrained the increase of total volatile basic nitrogen (TVB-N) and biogenic amines, slowed down the rise of K-value and retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the concentration of CS. Through the analysis of high-throughput sequencing (HTS), the microbial diversity was changed respectively. The proportion of Shewanella was significantly decreased by CS + AP coating treatment and Pseudomonas was the dominant microorganism in spoiled samples. Compared with the shelf-life of the control group (8 days), 20.0 g L-1 CS combined with 1.0 g L-1 AP coating treatment could extend the shelf-life of large yellow croaker for another 8 days. CONCLUSIONS CS combined with AP coating may be considered a promising method to delay the biochemical changes of ice stored large yellow croaker and extend its shelf life. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
50
|
Effects of phenolic acid grafted chitosan on moisture state and protein properties of vacuum packaged sea bass (Lateolabrax japonicus) during refrigerated storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|