1
|
Li B, Chen X, Zhang Y, Xu F, Tan L, Wu G, Zhu K, Zhang Y. The multi-scale structure and in vitro digestive kinetics of underutilized Chinese seedless breadfruit starch. Int J Biol Macromol 2024; 281:136134. [PMID: 39419687 DOI: 10.1016/j.ijbiomac.2024.136134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
In our previous research, the significant difference of physiochemistry properties for underutilized starches was showed between Chinese seedless breadfruit species and the other species. Based on this, the multiscale structure and digestion kinetics of Chinese seedless breadfruit of Spice and Beverage Research Institute species (SBS) and Xinglong species (XBS) was further researched. The SBS exhibited higher α-1,6 glycosylic bond content, free side-chain groups content, double-helix content, homogeneity, molecular weight, and V-type polymorphism, and fewer amorphous content, blocklet sizes, and a smaller semi-crystalline lamella thickness than XBS. Additionally, SBS showed higher final viscosity, pasting temperature, and gelatinization enthalpy than those of XBS. Consequently, SBS display lower rate constant (0.73 h-1) and glycemic index (65.17) than those of XBS (0.86 h-1 and 73.95). The anti-digestibility mechanism was revealed by the structure-digestibility relationship. It was found that resistant starch of SBS and XBS were significantly higher than those of starch from American and African species. This indicated that Chinese breadfruit starch could be considered as a good source of resistant starch, regulating glycemic index. In summary, XBS and XBS could be considered as a well source of resistant starch to make foods for preventing or improving type II diabetes or hyperlipemia.
Collapse
Affiliation(s)
- Bo Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; School of Medicine and Health, Harbin Institute of Technology, Herbin, Heilongjiang, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China.
| |
Collapse
|
2
|
Liu H, Zhou H, Li J, Peng Y, Shen Z, Luo X, Liu J, Zhang R, Zhang Z, Gao X. Effects of nitrogen fertilizer application on the physicochemical properties of foxtail millet (Setaria italica L.) starch. Int J Biol Macromol 2024; 278:134522. [PMID: 39128735 DOI: 10.1016/j.ijbiomac.2024.134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
The use of nitrogen fertilizer is a crucial agronomic practice to increase crop output and quality. This study investigated the impact of five nitrogen application levels (0, 60, 135, 210, and 285 kg N/hm2) on the physicochemical properties of foxtail millet (FM) starch. Optimal nitrogen application (210 kg N/hm2) significantly increased L*, a*, and b* values, water and oil absorption capacity, water solubility, and swelling power of starch. The number of small starch granules increased as the nitrogen application rate increased, but the granule morphology and typical A-type pattern did not change among the treatments. Nitrogen application increased the relative crystallinity and ordered structure, resulting in a higher gelatinization enthalpy. Compared to the control group (7.02 J/g), the enthalpy increased by 21.94 %, 66.38 %, 73.50 %, and 103.28 % under the nitrogen application rates, respectively. Moreover, nitrogen application greatly increased the percentage of A and B3 chains while it lowered the apparent amylose content, peak viscosity, and final viscosity. The effects of 210 and 285 kg N/hm2 treatments on the water solubility and swelling power, water and oil absorption, and light transmission of starch were greater compared to the 60 and 135 kg N/hm2 treatments. These results indicate that nitrogen fertilization significantly affects the physicochemical properties of FM starch.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Haolu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yanli Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhaoyang Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinyu Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jindong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruipu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhiyan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Chen X, Wang W. The lipid-amylose complexes enhance resistant starch content in candelilla wax-based oleogels cookies. Int J Biol Macromol 2024; 278:134804. [PMID: 39154677 DOI: 10.1016/j.ijbiomac.2024.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The substitution of margarine with candelilla wax (CW)-based oleogel is currently a prominent focus of research in the bakery industry. However, the use of CW-based oleogel in cookies increased starch digestibility, potentially posing a risk to human health. Thus, the anti-enzymatic mechanism of lipid-amylose complexes was used to evaluate the influence of olive diacylglycerol stearin (ODS) on starch digestibility in CW-based oleogel cookies. The in vitro digestibility analysis demonstrated that the DCW/ODS-35 cookie exhibited a increase of 27.72 % in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cookie formulated with margarine. The in-vivo glycemic index analysis revealed that the DCW/ODS-35 cookie had a medium glycemic index of 68. XRD pattern suggested that the presence of ODS in oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of ODS resulted in the gelatinization enthalpy of DCW-based cookies increased from 389.9 to 3314.9 J/g. The FTIR spectra indicated that the combination of ODS could promote a short-range ordered structure in DCW-based cookies. Overall, these findings demonstrated that the utilization of DCW-based oleogel presented a viable alternative to commercial margarine in the development of CW-based cookies with reduced starch digestibility.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
4
|
Qi M, Jiang L, Song J, Li L, Xu M, Li Y, Ma C, Chen S, Li H. Enhancing cassava beer quality: Extrusion-induced modification of cassava starch structure boosts fermentable sugar content in wort. Int J Biol Macromol 2024; 278:134895. [PMID: 39168202 DOI: 10.1016/j.ijbiomac.2024.134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
The high starch content and cost-effectiveness of cassava make it an attractive adjunct in beer brewing, with the fine structure of starch playing a crucial role in determining the composition of fermentable sugars (FS) and overall beer quality. This study investigated the effect of extrusion-induced changes in the starch structure of cassava flour on the FS profile of the wort and, consequently, on the quality attributes of cassava beer. The findings revealed that the shear stress during extrusion significantly reduced the molecular weight to 1.20 × 105g/mol and the branching degree of amylopectin. Simultaneously, there was an increase in the concentrations of short- and intermediate- chain amylose by 5.61% and 42.72%, respectively. These structural changes enhanced the enzymatic hydrolysis of extruded cassava flour (ECF), resulting in a higher total fermentable sugars content (22.00g/100 mL) in the ECF wort, predominantly composed of maltose and glucose. Furthermore, the altered FS profile led to an increased production of higher alcohols and esters in extruded cassava beer (ECB), particularly noted for the elevation of 2-phenylethyl alcohol levels, which imparted a distinctive rose aroma to the ECB. Consequently, the sensory profile of ECB showed significant improvement. This study offers critical insight into optimizing cassava beer quality and broadens the potential applications of cassava flour in the brewing industry.
Collapse
Affiliation(s)
- Mingming Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Lijun Jiang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Jialin Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Luxia Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mei Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yueming Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Chengye Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Shanfeng Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Hongjun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
5
|
Zhang S, Wang Z, Wang L, Tian H, Wang H, Du C, Zhang D, Li M, Huang J, Zhang X. A- and B-type wheat starch granules: The multiscale structural evolution during digestion and the distinct digestion mechanisms. Int J Biol Macromol 2024; 278:135033. [PMID: 39182861 DOI: 10.1016/j.ijbiomac.2024.135033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The digestive characteristics of wheat starch are closely related to human health. However, the digestive mechanisms of distinct wheat starch granules are not well understood. To address this problem, A- and B-type wheat starch granules (AWS and BWS, respectively) were digested in vitro and the structural evolution of the digestive remnants was compared. After stomach-intestinal digestion of AWS, its crystallinity decreased from 12.75 % to 6.65 %, its fractal dimension decreased from 3.12 to 2.35, and the median particle size decreased from 20.613 to 10.135 μm. Additionally, the number of short chains (polymerization degree<14) and thermodynamic stability decreased after digestion. For BWS, Fourier transform infrared ratio of 1047/1022 cm-1 and 995/1022 cm-1 increased from 0.665 and 0.725 to 0.990 and 0.800, respectively. The median particle size decreased from 5.480 to 4.769 μm. An enzyme-resistant scattering peak was observed in the 1.35 nm-1 lamellar structure. Additionally, the number of B2 and B3 chains and the thermodynamic stability increased after digestion. Our study confirmed that BWS is more likely than AWS to form enzyme-resistant structures during digestion. These findings provide insights into the distinct digestion mechanisms of AWS and BWS, and serve as a foundation for modifying wheat starch to increase its nutritional value.
Collapse
Affiliation(s)
- Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Hailong Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Huiping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Chenxu Du
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Meijuan Li
- Henan Guode Standard Testing Technology Co., LTD, Zhengzhou 451100, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China; Collaborative Innovation Center of Functional Food Green Manufacturing Henan Province, School of Food and Pharmacy, Xuchang University, Xuchang 461000, China.
| | - Xinrui Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
6
|
Liu Y, Wu R, Pan Q, Liang Z, Li J. Ultrasound and enzyme treatments on morphology, structures, and adsorption properties of cassava starch. Int J Biol Macromol 2024; 277:134336. [PMID: 39094887 DOI: 10.1016/j.ijbiomac.2024.134336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Porous starch materials are environmentally friendly and renewable and exhibit high adsorption performances. Ultrasound and compound enzyme (α-amylase and glucoamylase) treatments were applied to prepare modified cassava starch. The granules, crystal morphology, crystal structure, and molecular structure of starch were investigated. The hydrolysis degree, solubility, swelling, and adsorption properties of cassava starch were analyzed. After the cassava starch was modified by ultrasound and enzyme treatments, the granule size of the starch decreased, and the surfaces were eroded to form pits, grooves and cavity structure. The starch spherulites weakened or even disappeared. The functional groups of starch did not change significantly, but the degree of crystal order decreased. The double-helix structure was reduced, and the crystal structure was composed of A + V-type crystals, with a decrease in crystallinity. The gelatinization temperature and thermal degradation temperatures enhanced. The enzymatic hydrolysis degree and solubility of the modified cassava starch increased. The swelling degree decreased, and oil adsorption, water adsorption improved. MB adsorption behavior of modified cassava starch closely followed a pseudo-second-order kinetics model and the Langmuir isotherm equation. These findings could help to understand the relationship between the structure and properties of modified starch, and guide its application in the field of adsorption.
Collapse
Affiliation(s)
- Yuxin Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People's Republic of China.
| | - Rulong Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Qinghua Pan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Zesheng Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Jingqiao Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People's Republic of China
| |
Collapse
|
7
|
Fasakin OB, Uchenna OF, Ajayi OM, Onarinde BA, Konar S, Seung D, Oyeyinka SA. Optimisation of dry heat treatment conditions for modification of faba bean ( Vicia faba L.) starch. Heliyon 2024; 10:e35817. [PMID: 39253227 PMCID: PMC11381590 DOI: 10.1016/j.heliyon.2024.e35817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Faba bean is a protein-rich starchy grain that is underutilised in the UK. The starch of faba bean can be modified using environmentally friendly methods like dry heat treatment (DHT) to enhance functional and its physicochemical properties. This study investigated the impact of dry heat temperature and time on the structure, functional and physicochemical properties of faba bean starch (FBS) using a two-factor central composite rotatable design. Factors (DHT temperature:100-150 °C and DHT time:0.5-5 h) with their respective α mid-point values led to 13 experimental runs. Selected pasting and functional properties were measured as response variables. Corn starch was included as a reference and compared with the FBS modified using the optimized conditions. DHT increased peak (approx. 2205-2267 cP), final (approx. 3525-3642 cP) and setback (approx. 1887-1993 cP) viscosities but decreased the amylose content of FBS. Colour, as measured by lightness value, morphology and crystalline type were not altered but the starches showed a loss of order and an increase in crystallinity after DHT. FBS appeared resilient to DHT but showed higher swelling power and pasting properties compared to the corn starch control. The optimum DHT conditions to produce starch with desirable properties are a temperature of 100 °C for 0.1716 h, with a desirability factor of 66 %.
Collapse
Affiliation(s)
- Oluwatosin B Fasakin
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, PE12 7PT, UK
| | - Ogonnaya F Uchenna
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, PE12 7PT, UK
| | - Oluseyi M Ajayi
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, PE12 7PT, UK
| | - Bukola A Onarinde
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, PE12 7PT, UK
| | - Sumit Konar
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, LN6 7DL, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Samson A Oyeyinka
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, PE12 7PT, UK
| |
Collapse
|
8
|
Ma W, Tang J, Cheng H, Tian J, Wu Z, Zhou J, Xu E, Chen J. High-Resistant Starch Based on Amylopectin Cluster via Extrusion: From the Perspective of Chain-Length Distribution and Structural Formation. Foods 2024; 13:2532. [PMID: 39200459 PMCID: PMC11353313 DOI: 10.3390/foods13162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Resistant starch (RS) has the advantage of reshaping gut microbiota for human metabolism and health, like glycemic control, weight loss, etc. Among them, RS3 prepared from pure starch is green and safe, but it is hard to achieve structural control. Here, we regulate the crystal structure of starch with different chain-length distributions (CLDs) via extrusion at low/high shearing levels. The change in CLDs in extruded starch was obtained, and their effects on the fine structure (Dm, dBragg, dLorentz, degree of order and double helix, degree of crystal) of RS and its physicochemical properties were investigated by SAXS, FTIR, XRD and 13C NMR analyses. The results showed that the RS content under a 250 r/min extrusion condition was the highest at 61.52%. Furthermore, the crystalline system induced by high amylopectin (amylose ≤ 4.78%) and a small amount of amylose (amylose ≥ 27.97%) was favorable for obtaining a high content of RS3-modified products under the extruding environment. The control of the moderate proportion of the A chains (DP 6-12) in the starch matrix was beneficial to the formation of RS.
Collapse
Affiliation(s)
- Wen Ma
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Junyu Tang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Huan Cheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Jinhu Tian
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China;
| | - Jianwei Zhou
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Enbo Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Jianchu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| |
Collapse
|
9
|
Liu H, Gao S, Tian G, Zhang S, Liu S. Comparative study: how dry heating treatment and annealing influence the multi-structure, physicochemical properties and in vitro digestibility of black highland barley starch. Front Nutr 2024; 11:1453424. [PMID: 39149549 PMCID: PMC11324538 DOI: 10.3389/fnut.2024.1453424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
In this study, comparative investigation on the effect of dry heating treatment (DHT) and annealing (ANN) on multi-structure, physicochemical properties and in vitro digestibility of black highland barley (BHB) starch was done. Results revealed that both DHT and ANN did not affect the "A"-type crystalline pattern and FT-IR spectroscopy of BHB starch, but changed the morphology, raised water absorption capacity and lowered viscosities. Compared to native starch, DHT- and ANN-modified samples had totally opposite alteration trends in amylose content, color characteristics, oil absorption capacity, gelatinization parameters and pasting temperature. These changes were positively related to treatment temperature and time for DHT-modified starches, while which were dependant on treatment duration for ANN-modified starches. Total in vitro hydrolysis rate and rapidly digestive starch content in starch markedly raised after DHT, whereas slowly digestive starch and RS levels decreased. Nevertheless, ANN significantly improved the hydrolyzation stability with treatment time prolonging, especially increased RS content and lowered RDS level. Therefore, this study identified both DHT and ANN were effective methods to alter the properties of BHB starch, and more importantly, they had distinguishing influence by different mechanisms, which would remind user to select appropriate means for physical starch modification based on different application purposes.
Collapse
Affiliation(s)
- Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Shanshan Gao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Ge Tian
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Si Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Shuang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
10
|
Gu Y, Hu Y, Ying Y, Qian L, Bao J. Physicochemical characteristics of tea seed starches from twenty-five cultivars. Int J Biol Macromol 2024; 275:133570. [PMID: 38955297 DOI: 10.1016/j.ijbiomac.2024.133570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The physicochemical features of starches separated from tea seeds of 25 cultivars were analyzed. The distinct characteristic of tea seed starches was that they had high apparent amylose content (AAC, 28.94-39.91 %) and resistant starch contents (4.64-8.24 %), suggesting that tea starch can be used for production of low glycemic index food. One cultivar (T12) had smallest breakdown (74.2 RVU) and highest gel hardness, indicating it performed stably during shear thinning, resulting in a firm texture. Another cultivar (T25) had a peak viscosity of 417.6 RVU, a large breakdown and small setback, suggesting a low tendency for retrogradation. There was a range of 61.6 °C to 77.5 °C for the peak gelatinization temperature and 0.163 to 0.390 for the flow behavior index values. These parameters could serve for selecting suitable starches with minor differences in physicochemical properties for food use. Correlation analysis indicated that AAC is a key factor determining starch retrogradation properties. The broad genetic diversity in the tea seed starch physicochemical features provided potentially versatile applications in the food industry. The results gained from the present study contribute to a better understanding of tea seed starch quality, and encourage its application in many value-added food products.
Collapse
Affiliation(s)
- Yue Gu
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Lisheng Qian
- Institute of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
11
|
Mo X, Zhu H, Yi C, Deng Y, Yuan J. Rheological properties of indica rice determined by starch structure related enzymatic activities during after-ripening. Int J Biol Macromol 2024; 269:131738. [PMID: 38670177 DOI: 10.1016/j.ijbiomac.2024.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The processing quality of indica rice must undergo ripening after harvest to achieve stability and improvement. However, the mechanism underlying this process remains incompletely elucidated. Starch, the predominant component in indica rice, plays a crucial role in determining its properties. This study focused on analyzing the rheological properties and starch fine structure, as well as the related biosynthetic enzymes of indica rice during the after-ripening process. The results showed that after-ripened rice exhibited increased elastic modulus (G') and viscous modulus (G″), accompanied by a decrease in the loss tangent (Tan δ), indicating an enhancement in viscoelasticity and the gel network structure. Moreover, the proportions of amylopectin super long chains (DP 37-60) decreased, while those of medium chains (DP 13-24 and DP 25-36) or short chains (DP 6-12) of amylopectin increased. Additionally, the activities of starch branching enzyme (SBE) and starch debranching enzyme (DBE) declined over the after-ripening period. Pearson correlation analysis revealed that the rheological properties of after-ripened rice were correlated with the chain length distribution (CLD) of starch, which, in turn, was associated with its related endogenous enzymes. These findings provied new insights into understanding the quality changes of after-ripened indica rice.
Collapse
Affiliation(s)
- Xiya Mo
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China; School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Hong Zhu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Jieyao Yuan
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China
| |
Collapse
|
12
|
Shen H, Li J, Chen L, Guo X. Insights into multiscale structure and digestive characteristic of starch from two cultivars of chestnut during kernel development. Int J Biol Macromol 2024; 269:131978. [PMID: 38692537 DOI: 10.1016/j.ijbiomac.2024.131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Multiscale structure and digestive characteristic of starch during kernel development of Castanea henryi ('Jinzhui' (YS) and 'Baiyan No.1' (WS)) were investigated in this study. Structural analysis revealed that the surface of starch granules became smooth, the amylopectin content decreased (from 71.32 % to 70.47 %, from 71.44 % to 68.37 %, respectively), the chain length distribution of amylopectin reduced (the proportion of B1 chain decreased from 52.35 % to 50.60 %, from 52.22 % to 50.59 %, respectively) while the amorphous and semi-crystalline lamellae of starch increased during development, which was consistent with the decreasing relative crystallinity (from 28.79 % to 24.11 %, from 29.57 % to 23.66 %, respectively) and short-range ordering degree. The degradation of ordered structure further resulted in the increase of digestibility, especially in the late developmental stage, supported by a significant decrease of resistant starch content (from 70.21 % to 61.70 % and from 73.58 % to 58.86 %, respectively). Transcriptome analysis and RT-qPCR were performed to explore the possible molecular mechanisms affecting starch structure. The high expression of several key genes including AGPase, GBSS, SBE, SSS, ISA and PUL in late development stage might be the reason of structural changes during development. The results provided valuable information for starch accumulation during kernel development of Castanea henryi.
Collapse
Affiliation(s)
- Haoran Shen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Jiaqi Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
13
|
He X, Yang L, Zhou L, Gunness P, Hunt W, Solah VA, Sun Q. Effect of lecithin on the complexation between different botanically sourced starches and lauric acid. Int J Biol Macromol 2024; 268:131996. [PMID: 38697417 DOI: 10.1016/j.ijbiomac.2024.131996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.
Collapse
Affiliation(s)
- Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institution, Qingdao 266109, China
| | - Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institution, Qingdao 266109, China
| | - Purnima Gunness
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Wendy Hunt
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Vicky A Solah
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia; Qingdao Special Food Research Institution, Qingdao 266109, China.
| |
Collapse
|
14
|
Liu Q, Guan H, Guo Y, Wang D, Yang Y, Ji H, Jiao A, Jin Z. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy. Food Chem 2024; 437:137950. [PMID: 37952395 DOI: 10.1016/j.foodchem.2023.137950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The formation of amylose-lipid complexes, known as resistant starch type Ⅴ (RS5), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS5. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose-lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion. The EECS-LA complexes were ordered form II complexes, with a significantly improved short-range molecular order. The melting temperature was in the range of 105-145℃. The enthalpy change increased with the increase of LA content and the value was 9.42 J/g for EECS-8 %LA complexes; these complexes could reform after dissociation. Scanning electron microscopy examination of the EECS-LA complexes revealed an irregular lamellar structure. The RS content of EECS-LA complexes increased significantly, achieving a value of 38.34 % for EECS-8 %LA complexes. This extrusion-debranching-complexing strategy is effective for preparing RS5 and could be useful in industry for the continuous production of RS5.
Collapse
Affiliation(s)
- Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Wang K, Tan C, Tao H, Yuan F, Guo L, Cui B. Effect of different screw speeds on the structure and properties of starch straws. Carbohydr Polym 2024; 328:121701. [PMID: 38220338 DOI: 10.1016/j.carbpol.2023.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
16
|
Jiang P, Tang H, Li Y, Liu X. Effect of particle size of sesbania gum on its modification, structure and performances. Int J Biol Macromol 2024; 262:129719. [PMID: 38280698 DOI: 10.1016/j.ijbiomac.2024.129719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Sesbania gum (SG), as an environmentally friendly and resourceful natural polymer, has attracted a lot of attention due to its favorable properties. The size distribution of SG powders was broadened owing to the growth. Therefore, it inevitably resulted in the differences in reaction activity, structure and properties of different SG particles. The results showed that small SG particles exhibited higher reaction activity in cross-linking, carboxymethylation and oxidation than its large counterparts. Compared with those of large SG particles, the sedimentation volume of small SG particles could be reduced by 1.1 mL, while their substitution degree of carboxymethyl groups and aldehyde content could be increased by 0.0824 and 18.11 %, respectively. The swelling capacity, freeze-thaw stability, acid and alkali resistance of small SG particles were greater than those of large SG particles, but their retrogradation was weaker than that of large counterparts. The crystalline degree of small SG particles consisting of more long molecular chains could be reduced by 9.8 % compared to large SG particles. The DSC curve of small SG particles was significantly different from that of large SG particles, while the difference in TGA curves between small particles and large particles was relatively small. The enthalpy change of small SG particle was reduced by 48.4 J/g compared to large SG particles. The peak viscosity, final viscosity, breakdown and setback of tapioca starch were obviously influenced by the addition of small SG particles. And their emulsification stability was also better than large SG particles.
Collapse
Affiliation(s)
- Peilong Jiang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Hongbo Tang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China.
| | - Yanping Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Xiaojun Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
17
|
Wang N, Zhang C, Li H, Zhang D, Wu J, Li Y, Yang L, Zhang N, Wang X. Addition of Canna edulis starch and starch nanoparticles to stabilized Pickering emulsions: In vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 258:128993. [PMID: 38163505 DOI: 10.1016/j.ijbiomac.2023.128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
18
|
Li S, Meng Y, Wang C, Suonan Z, Zhang X, Wu T, Dai Z, Zhang Y, Sharafeldin S, Zhang Y, Shen Q, Xue Y. Effect of structural characteristics of resistant starch prepared by various methods on microbial community and fermentative products. Int J Biol Macromol 2024; 254:127725. [PMID: 38287585 DOI: 10.1016/j.ijbiomac.2023.127725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Resistant starch (RS) has been extensively studied because of its beneficial effects on gut microbiota. In this study, four RSs obtained through various preparation processes were utilized for in vitro fermentation, and their structural characteristics before and after fermentation were determined using chromatography, Fourier infrared spectroscopy, and scanning electron microscopy (SEM). It was observed that these RSs can be classified into two categories based on their fermentation and structural features. The autoclaving RS (ARS) and extruding RS (ERS) were classified as Class I Microbiome Community (MC-I), characterized by a higher proportion of butyrate and its producers, including unclassified_g_Megasphaera and Megasphaera elsdenii. While microwaving RS (MRS) and ultrasound RS (URS) belonged to Class II Microbiome Community (MC-II), marked by a higher proportion of acetate and its producer, Bifidobacterium pseudocatenulatum DSM 20438. MC-I had a lower molecular weight, shorter chain length, more chains with degree of polymerization (DP) 36-100, and a more ordered structure than MC-II. Furthermore, SEM observations revealed distinct degradation patterns between MC-I and MC-II, which may be attributed to their surface structural characteristics. These findings imply that the preparation methods employed for RS can determine its multilevel structural characteristics, and consequently influence its physiological properties.
Collapse
Affiliation(s)
- Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chao Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhuoma Suonan
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xinyu Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Tong Wu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Sameh Sharafeldin
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Yumei Zhang
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
19
|
Pires JB, Santos FND, Cruz EPD, Fonseca LM, Siebeneichler TJ, Lemos GS, Gandra EA, Zavareze EDR, Dias ARG. Starch extraction from avocado by-product and its use for encapsulation of ginger essential oil by electrospinning. Int J Biol Macromol 2024; 254:127617. [PMID: 37879583 DOI: 10.1016/j.ijbiomac.2023.127617] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Starches from alternative sources, such as avocado seed, have potential for application in the encapsulation of essential oils. This study aimed to extract starch from avocado seeds and its use as wall material to encapsulate ginger essential oil (GEO), at different concentrations. The fibers were produced by electrospinning and evaluated by morphology, size, infrared spectra, thermogravimetric properties, contact angle, loading capacity, and antibacterial activity. The major compounds in GEO were α-zingiberene, β-sesquiphellandrene, α-farnesene, and α-curcumene. The starch-GEO fibers presented a higher diameter (∼553 nm) than those without GEO (345 nm). Encapsulation of GEO in starch fibers increased their thermal degradation temperatures from 165.8 °C (free GEO) to 257.6 °C (40 % GEO fibers). The starch-GEO fibers presented characteristic bands of their constituents by infrared spectra. Loading capacity ranged from 44 to 54 %. The fibers showed hydrophilic character, with a contact angle of <90°. Free GEO and the fibers with 50 % of GEO displayed antibacterial activity against Escherichia coli, proving the bioactivity of the starch-GEO fibers and its possible applicability for food packaging. Avocado seed starch showed to be a great wall material for GEO encapsulation.
Collapse
Affiliation(s)
- Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Graciele Saraiva Lemos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular Biology (LACABIM), Center for Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
20
|
Deng C, Wang B, Jin Y, Yu Y, Zhang Y, Shi S, Wang Y, Zheng M, Yu Z, Zhou Y. Effects of starch multiscale structure on the physicochemical properties and digestibility of Radix Cynanchi bungei starch. Int J Biol Macromol 2023; 253:126873. [PMID: 37716663 DOI: 10.1016/j.ijbiomac.2023.126873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Radix Cynanchi bungei (RCb) contains 40-70 % starch, yet little is known about the structure and properties of RCb starch. In this study, the multiscale structure of two cultivars of RCb starch (YW201501 and BW201001) were characterized, and the effects of starch structure on its physicochemical properties were investigated. The differences in physicochemical properties of RCb starch were influenced by its multiscale structure. The starch granules were round and irregular polygon, with sizes ranging between 2 and 14 μm. YW201501 had a higher amylose (21.81 %) and lipid (0.96 %) content, molecular weight (59.5 × 106 g/mol), and A chain proportion (27.5 %), and a lower average granule size (6.14 μm), amylopectin average chain length (19.7), and B3 chain proportion (10.3 %). Both starches were B-type crystalline, with higher crystallinity (26.3 %) and R1047/1022 (0.74) for YW201501, resulting in large gelatinization enthalpy. In addition, the higher peak viscosity and larger retrogradation degree of YW201501 were correlated to its higher amylose content. In vitro digestibility revealed that the low rapidly digestible starch and high resistant starch of BW201001 were related to the fine structure of starch. YW201501 and BW201001 had a medium glycemic index (62.6-66.0) with potential for processing into healthy starchy foods.
Collapse
Affiliation(s)
- Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Sanxu Shi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yifan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Akonor P, Osei Tutu C, Arthur W, Adjebeng-Danquah J, Affrifah N, Budu A, Saalia F. Granular structure, physicochemical and rheological characteristics of starch from yellow cassava ( Manihot esculenta) genotypes. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2161572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P.T. Akonor
- Food Technology Research Division, CSIR-Food Research Institute, Accra, Ghana
| | - C. Osei Tutu
- Department of Family and Consumer Sciences, University of Ghana, Accra, Ghana
| | - W. Arthur
- Food Technology Research Division, CSIR-Food Research Institute, Accra, Ghana
| | - J. Adjebeng-Danquah
- Scientific Support Group, CSIR-Savanna Agriculture Research Institute, Nyankpala, Ghana
| | - N.S. Affrifah
- Department of Food Process Engineering, University of Ghana, Accra, Ghana
| | - A.S. Budu
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - F.K. Saalia
- Department of Food Process Engineering, University of Ghana, Accra, Ghana
| |
Collapse
|
22
|
Wang N, Dai J, Miao D, Li C, Yang X, Shu Q, Zhang Y, Dai Y, Hou H, Xu S. Influence of enzymatic modification on the basis of improved extrusion cooking technology (IECT) on the structure and properties of corn starch. Int J Biol Macromol 2023; 253:127274. [PMID: 37804624 DOI: 10.1016/j.ijbiomac.2023.127274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Enzymatic modification can directly affect the structure and properties of starch, but generally causes high energy consumption in drying process. Improved extrusion cooking technology (IECT) itself is a starch modification technology. In this work, a co-extrusion method of starch with 42 % moisture and enzyme was adopted to reveal the effects of different enzyme dosages on the structure and properties of corn starch. After enzyme treatment on the basis of IECT, starch granules were broken into fragments without the occurrence of clear Maltese cross. R1047/1022 and R995/1022 values, peak intensity of Raman spectra and gelatinization temperature decreased, and the full width at half maximum at 480 cm-1 of Raman spectra raised. Moreover, the bound water proportion decreased from 87.44 % to 85.84 % ∼ 78.67 %, and the maximum light transmittance and dextrose equivalent values increased to 34.13 % and 26.14, respectively. The solubility of starch granules was all above 60 %. Findings supported that the mechanochemical effect of IECT on starch was conducive to the enzymatic modification.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Jingqi Dai
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Binzhou, Shandong 256500, China; Shandong Bohi Industry Co., Ltd., Binzhou, Shandong 256500, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Binzhou, Shandong 256500, China; Shandong Bohi Industry Co., Ltd., Binzhou, Shandong 256500, China
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Shaobin Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
23
|
Zheng J, Zhao W, Liu X, Liang W, Zheng Y, Ge X, Shen H, Li W. Electron beam irradiation-assisted prepare pea starch nanocrystals and characterization of their molecular structure, physicochemical and rheological properties. Int J Biol Macromol 2023; 251:126384. [PMID: 37595714 DOI: 10.1016/j.ijbiomac.2023.126384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Electron beam irradiation (EBI) is an environmentally friendly physical modification technology. In this study, pea starch nanocrystals (SNC) were prepared by EBI-assisted pretreatment, and investigated the effects of EBI on the multiscale structure and physicochemical properties of SNC. EBI-assisted pretreatment didn't change the particle morphology, crystalline type and FT-IR spectra of SNC. However, EBI-SNC's relative crystallinity and short-range orderliness index (R1047/1022) significantly increased with increasing irradiation dose (5 KGy-20 KGy). In addition, EBI-assisted pretreatment caused the long chains of SNC's amylopectin to break into short chains. Moreover, EBI-assisted treatment significantly reduced the mean size, molecular weight, apparent amylose content, swelling power and SDS + RS content of SNC, while increasing the solubility, zeta potential and RDS content. Furthermore, the flow properties of the EBI-SNC samples were increased. The results show that EBI effectively changed the structural and functional properties of SNC, and the excellent functional properties are expected to broaden the application range of SNC.
Collapse
Affiliation(s)
- Jiayu Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
24
|
Fan C, Li X, Wang Y, Dong J, Jin Z, Bai Y. Effects of maltogenic α-amylase on physicochemical properties and edible quality of rice cake. Food Res Int 2023; 172:113111. [PMID: 37689841 DOI: 10.1016/j.foodres.2023.113111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Maltogenic α-amylase (MA) are commercially used in the baking industry to retard starch retrogradation. However, whether MA can be used to modify rice flour during the fermentation process to improve the quality of rice flour remains unclear. In this study, MA was introduced during rice cake (RC) processing, and the modification effect and underlying mechanism were explored. Mn showed a decreasing trend except for 4.0 × 10-3 U/g sample. Chain length distribution data showed that MA effectively hydrolyzed long chains in amylopectin and increased the concentration of amylopectin chain length with a degree of polymerization of ≤ 9. High-performance liquid chromatography results suggested that the maltose content increased to 3.14% at an MA concentration of 9.5 × 10-3 U/g, which affected the fermentation effect of MA-treated RC. MA effectively reduced the viscosity of RC, and the gelatinization enthalpy of RC changed to 0.835 mJ/mg. MA also reduced the hardness and chewiness of RC after storage for 7 d. Moreover, rapidly digestible starch and slowly digestible starch contents of MA-treated RC decreased and increased, respectively, and resistant starch contents were remained unchanged. These results indicate that MA exerts a significant and effective antiretrogradation effect on RC. Combining the above results with sensory evaluation findings, an MA concentration of 4.0 × 10-3 U/g was the best supplemental concentration for obtaining RC with better edible quality. These findings suggest that MA treatment to rice flour during the fermentation process not only preserved the edible quality of RC but also retarded its retrogradation, thus, providing a novel processing method for the industrial production of RC.
Collapse
Affiliation(s)
- Can Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Wang R, Liu W, Liu L, Ma F, Li Q, Zhao P, Ma W, Cen J, Liu X. Characterization, in vitro digestibility, antioxidant activity and intestinal peristalsis in zebrafish of Dioscorea opposita polysaccharides. Int J Biol Macromol 2023; 250:126155. [PMID: 37549765 DOI: 10.1016/j.ijbiomac.2023.126155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The soluble crude polysaccharides from Dioscorea opposita (DOP1 and DOP2) were prepared and characterized. DOP1 and DOP2 obtained carbohydrate (65.71% and 70.18%, respectively), uronic acid (63.71% and 24.84%, respectively) and protein (8.09% and 9.51%, respectively) with molecular weight of 49.24 kDa and 21.62 kDa, respectively. DOP samples were mainly composed of mannose, glucose, galacturonic acid, galactose, and glucuronic acid. The digestibility in vitro, antioxidant activity and intestinal peristalsis effect were then investigated. DOP1 and DOP2 were degraded with decreased molecular weights (39.58 kDa and 18.56 kDa respectively), increased reducing sugar contents (from 16.95% to 19.27%; 12.45% to 15.50% respectively) and free monosaccharides (from 0.89% to 1.42%; 0.90% to 1.14% respectively) after gastric digestion. Both DOP1 and DOP2 were resistant to intestinal digestion, suggesting that DOP samples can be considered as a dietary fiber. Additionally, DOP1 and DOP2 exhibited antioxidant activities positively correlated with the concentration and remained the activities after gastrointestinal digestion in vitro. Furthermore, DOP reduced the fluorescence intensity significantly, indicating DOP can promote the intestinal peristalsis of zebrafish larvae (5 pdf) at 500 μg/mL. Therefore, DOP1 and DOP2 have a better functionality as dietary fibers, including antioxidant activity and intestinal peristalsis promotion, which can be developed as functional foods.
Collapse
Affiliation(s)
- Ruijiao Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Wei Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China.
| | - Qian Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Peng Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wenjing Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China.
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| |
Collapse
|
26
|
Dong F, Gao W, Liu P, Kang X, Yu B, Cui B. Digestibility, structural and physicochemical properties of microcrystalline butyrylated pea starch with different degree of substitution. Carbohydr Polym 2023; 314:120927. [PMID: 37173026 DOI: 10.1016/j.carbpol.2023.120927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
In this study, microcrystalline butyrylated pea starch (MBPS) with higher contents of resistant starch (RS) was synthesized via esterification with butyric anhydride (BA) using microcrystalline pea starch (MPS) as the raw material. With the addition of BA, the new characteristic peaks appeared at 1739 cm-1 and 0.85 ppm obtained from FTIR and 1H NMR, respectively, and increased with the higher degree of BA substitution. Moreover, an irregular shape of MBPS, such as condensed particles and more cracks or fragments, had been observed by SEM. Further, the relative crystallinity of MPS increased then native pea starch and decreased with the reaction of esterification. MBPS had higher decomposition onset temperature (To) and temperature of maximum decomposition (Tmax) with increasing DS values. Simultaneously, an increasing trend RS content from 63.04 % to 94.11 % and a decreasing trends in rapidly digestible starch (RDS) and slowly digestible starch (SDS) contents of MBPS were recorded with increasing DS values. MBPS samples showed higher production capacity of butyric acid ranging from 553.82 μmol/L to 892.64 μmol/L during the fermentation process. Compared with MPS, the functional properties of MBPS were significantly improved.
Collapse
Affiliation(s)
- Fuyue Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
27
|
Luo W, Li B, Zhang Y, Tan L, Hu C, Huang C, Chen Z, Huang L. Unveiling the retrogradation mechanism of a novel high amylose content starch- Pouteria campechiana seed. Food Chem X 2023; 18:100637. [PMID: 36949750 PMCID: PMC10025978 DOI: 10.1016/j.fochx.2023.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The research of starch retrogradation have been attracting interest. Thereby, the long-term retrogradation mechanism (0-21 days) of Pouteria campechiana seed starch (PCSS) was investigated. The results showed that crystal type was changed from A- to B + V-type during retrogradation. The retrogradation PCSS (RPCSS) exhibited faster retrogradation rate and more compact internal ultra-structure compared to rice, wheat and maize starch. Pearson correlation indicated that, as retrogradation days increased, values of α-1,4-glycosidic bond, A chains, double helix, V-type polymorphism, Mw, relative crystallinity (Rc) and short-range order gradually significantly increased, and B1 chains, B3 + chains values gradually significantly dropped (p < 0.05). These inferred an increasing peak temperature and compactness of morphology with increasing retrogradation days. Compared to native starch, RPCSS α-1.4-glycosidic bond was increased, which indicated that its quick molecules degradation including decreased Mw, B3 + chains, Rc, semicrystalline order, and ΔH. These might provide a theoretical direction for preparation of starch-basis food.
Collapse
Affiliation(s)
- Wanru Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Yanjun Zhang
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Lehe Tan
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Chi Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Corresponding author.
| | - Zhanpeng Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Lijie Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| |
Collapse
|
28
|
Chen C, Li G, Corke H, Zhu F. Molecular structure of lotus seed amylopectins and their beta-limit dextrins. Int J Biol Macromol 2023:125105. [PMID: 37257534 DOI: 10.1016/j.ijbiomac.2023.125105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Investigation on amylopectin molecular structure is gaining importance for understanding the properties of starch. Lotus seeds are a novel starch source with high apparent amylose content. Current understanding on the molecular structure of amylopectin in lotus seed starch is scarce. This study compared the molecular structure of a range of lotus seed amylopectins with those of maize and potato amylopectins. Internal structures of these amylopectins were compared via investigating the chain length distribution of their β-limit dextrins. The average lengths and molar compositions of unit chains in lotus seed amylopectins and their β-limit dextrins fell generally between those of maize and potato. The average chain lengths of lotus seed, maize, and potato amylopectins were 19.95 (on average), 19.11, and 21.19 glucosyl units, respectively. Lotus seed amylopectins had higher weight proportion of clustered unsubstituted chains (44.94 % on average) than those of potato (43.99 %) and maize amylopectins (42.95 %). Results of correlation analysis indicated that apparent amylose content of LS were related to structural characteristics of its amylopectin due to the presence of long external chains. The results of this study are of fundamental importance for the utilization of lotus seed starch as a novel starch source.
Collapse
Affiliation(s)
- Chuanjie Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Guantian Li
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
29
|
Zhang X, Shen Q, Yang Y, Zhang F, Wang C, Liu Z, Zhao Q, Wang X, Diao X, Cheng R. Structural, functional and mechanistic insights uncover the role of starch in foxtail millet cultivars with different congee-making quality. Int J Biol Macromol 2023:125107. [PMID: 37257541 DOI: 10.1016/j.ijbiomac.2023.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Ten foxtail millet cultivars with different congee-making quality were investigated for relationships between starch structures, functional properties and congee-making qualities. Swelling power, pasting peak viscosity (PV) and setback (SB), gel hardness and resilience, and gelatinization onset (To), peak (Tp) and range (R) temperature were correlated with congee-making performance significantly. Good eating-quality cultivars with these parameters were in the range of 15.41-18.58 %, 3095-3279 cp, 1540-1745 cp, 430-491 g, 0.47-0.57, 64.43-65.28 °C, 69.97-70.32 °C and 23.38-24.52 °C, respectively. Correlation analysis showed that amylose, amylopectin B2 chains and A21 were essential parameters controlling the functional properties. Amylose molecules with linear molecular morphology would cause crystal defects and a wide range of molecular weight distribution. Additionally, they were more prone to re-association, which influenced the PV, SB, To, Tp and gel hardness. B2 chains impacted the gelatinization temperature range (R), gel resilience and swelling behavior by affecting the alignment of double helices and the size of starch particles and pores. Starch with more binding sites of bound water (A21) tended to leach from the swelling granules easily and contributed to higher values of PV. The content of amylose, B2 chains and A21 of good eating-quality cultivars were 16.19-18.46 %, 11.60-11.69 % and 96.50-97.02 %, respectively.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yu Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Fan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| | - Xianrui Wang
- Research Institute of Millet, Chifeng Academy of Agriculture and Animal Science, Chifeng 024031, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruhong Cheng
- Research Institute of Millet, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| |
Collapse
|
30
|
Liu S, Liu H, Gao S, Guo S, Zhang C. Dry heating affects the multi-structures, physicochemical properties, and in vitro digestibility of blue highland barley starch. Front Nutr 2023; 10:1191391. [PMID: 37234552 PMCID: PMC10206050 DOI: 10.3389/fnut.2023.1191391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
As a physical method for starch modification, dry heating treatment (DHT) at high temperatures (150 and 180°C, respectively) was applied to blue highland barley (BH) starch with different durations (2 and 4 h). The effects on its multi-structures, physicochemical properties, and in vitro digestibility were investigated. The results showed that DHT had changed the morphology of BH starch, and the diffraction pattern remained an "A"-type crystalline structure. However, with an extension of DHT temperature and time, the amylose content, gelatinization temperature, enthalpy value, swelling power, and pasting viscosity of modified starches decreased, while the light transmittance, solubility, and water and oil absorption capacities increased. Additionally, compared with native starch, the content of rapidly digestible starch in modified samples increased after DHT, whereas those of slowly digestible starch and RS decreased. Based on these results, the conclusion could be drawn that DHT is an effective and green way to transform multi-structures, physicochemical properties, and in vitro digestibility of BH starch. This fundamental information might be meaningful to enrich the theoretical basis of physical modification on BH starch and extend the applications of BH in the food industry.
Collapse
Affiliation(s)
- Shuang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Shanshan Gao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Cheng Zhang
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
31
|
Yang N, Zou F, Tao H, Guo L, Cui B, Fang Y, Lu L, Wu Z, Yuan C, Zhao M, Liu P, Dong D, Gao W. Effects of primary, secondary and tertiary structures on functional properties of thermoplastic starch biopolymer blend films. Int J Biol Macromol 2023; 236:124006. [PMID: 36907303 DOI: 10.1016/j.ijbiomac.2023.124006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
To better understand the correlation between structure and properties in thermoplastic starch biopolymer blend films, the effects of amylose content, chain length distribution of amylopectin and molecular orientation of thermoplastic sweet potato starch (TSPS) and thermoplastic pea starch (TPES) on microstructure and functional properties of thermoplastic starch biopolymer blend films were studied. After thermoplastic extrusion, the amylose contents of TSPS and TPES decreased by 16.10 % and 13.13 %, respectively. The proportion of the chains with the degree of polymerization between 9 and 24 of amylopectin in TSPS and TPES increased from 67.61 % to 69.50 %, and from 69.51 % to 71.06 %, respectively. As a result, the degree of crystallinity and molecular orientation of TSPS and TPES films increased as compared to sweet potato starch and pea starch films. The thermoplastic starch biopolymer blend films possessed a more homogeneous and compacter network. The tensile strength and water resistance of thermoplastic starch biopolymer blend films increased significantly, whereas thickness and elongation at break of thermoplastic starch biopolymer blend films decreased significantly.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
32
|
Yang N, Gao W, Zou F, Tao H, Guo L, Cui B, Lu L, Fang Y, Liu P, Wu Z. The relationship between molecular structure and film-forming properties of thermoplastic starches from different botanical sources. Int J Biol Macromol 2023; 230:123114. [PMID: 36599387 DOI: 10.1016/j.ijbiomac.2022.123114] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
To illustrate the correlations between molecular structures and the film-forming properties of thermoplastic starch from various botanical sources, starches from cereal, tuber and legume were modified by thermoplastic extrusion and the corresponding thermoplastic starch films were prepared including thermoplastic corn starch (TCS), thermoplastic rice starch (TRS), thermoplastic sweet potato starch (TSPS), thermoplastic cassava starch (TCAS) and thermoplastic pea starch (TPES) films. TPES film displayed a higher tensile strength (6.28 MPa) and stronger water resistance, such as lower water solubility (15.70 %), water absorption (42.35 %), and water vapor permeability (0.285 g·mm·h-1·m-2·kPa-1) due to higher contents of amylose and B1 chains. TCAS showed a smoother and more amorphous film due to higher amylopectin content, resulting higher elongation at break and larger opacity. TCS film was the most transparent due to a compacter network and more ordered crystallinity structure, which was suit for the packaging of fresh vegetables and aquatic products, whereas TCAS film was the opaquest, which protected package foods from light such as meat products, etc. The outcome would provide an innovative theory to regulate accurately the functional properties of thermoplastic starch films for different food needs.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
33
|
Téllez-Morales JA, Rodríguez-Miranda J. Improved Extrusion Cooking Technology: A Mini Review Of Starch Modification. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2023. [DOI: 10.1080/15428052.2022.2163952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- José A. Téllez-Morales
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México, Mexico
| | - Jesús Rodríguez-Miranda
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Tuxtepec, Oaxaca, Mexico
| |
Collapse
|
34
|
Miao WB, Wu ZW, Jiang JH, Li YJ, Qin Z, Liu HM, Cai XS, Wang XD. The physicochemical properties of starches isolated from defatted tigernut meals: Effect of extrusion pretreatment. Carbohydr Polym 2022; 298:120152. [DOI: 10.1016/j.carbpol.2022.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
35
|
Zhang Y, Xu F, Wang Q, Zhang Y, Wu G, Tan L, Zhang Z. Effects of moisture content on digestible fragments and molecular structures of high amylose jackfruit starch prepared by improved extrusion cooking technology. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Zhang Z, Zang M, Zhang K, Wang S, Li D, Li X. Effect of two types of thermal processing methods on the aroma and taste profiles of three commercial plant-based beef analogues and beef by GC-MS, E-nose, E-tongue, and sensory evaluation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Miao Z, Lv R, Teng S, Cao C, Lu P. Development of antioxidant active packaging films with slow release properties incorporated with tea polyphenols-loaded porous starch microcapsules. Int J Biol Macromol 2022; 222:403-412. [PMID: 36126814 DOI: 10.1016/j.ijbiomac.2022.09.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Slow release active packaging films can realize the sustained release of active agents and prolong the shelf life of food. For this aim, a novel slow release active polyvinyl alcohol (PVA) film was developed by using solution casting method. With porous starch loaded with tea polyphenols (PSTP) as core material and maltodextrin (MD) as wall material, PSTP@MD microcapsules were prepared using freeze drying method and used as slow release carrier of tea polyphenols (TP) in the active films. The interactions between PSTP@MD microcapsules and PVA molecular chains were physical interactions. In addition, the relative crystallinity of the slow release active films was reduced to 23.74 %. The addition of PSTP@MD microcapsules can enhance the ductility of active films and reduce the water content and swelling degree of active films by 46.74 % and 54.38 %, respectively. Moreover, the thermal stability, water vapor and ultraviolet barrier properties of active films were promoted. The transparency and antioxidant activity of active films was high, and the radical scavenging activity of active films was 58 %. The encapsulation of TP with PSTP@MD microcapsules can realize the slow release of TP. The slow release active films had antioxidant activity and sustained release properties, which could be used as an active packaging film to extend the shelf life of food.
Collapse
Affiliation(s)
- Zhikun Miao
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ruifu Lv
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shilong Teng
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Cheng Cao
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Panfang Lu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
38
|
Chi C, Shi M, Zhao Y, Chen B, He Y, Wang M. Dietary compounds slow starch enzymatic digestion: A review. Front Nutr 2022; 9:1004966. [PMID: 36185656 PMCID: PMC9521573 DOI: 10.3389/fnut.2022.1004966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Dietary compounds significantly affected starch enzymatic digestion. However, effects of dietary compounds on starch digestion and their underlying mechanisms have been not systematically discussed yet. This review summarized the effects of dietary compounds including cell walls, proteins, lipids, non-starchy polysaccharides, and polyphenols on starch enzymatic digestion. Cell walls, proteins, and non-starchy polysaccharides restricted starch disruption during hydrothermal treatment and the retained ordered structures limited enzymatic binding. Moreover, they encapsulated starch granules and formed physical barriers for enzyme accessibility. Proteins, non-starchy polysaccharides along with lipids and polyphenols interacted with starch and formed ordered assemblies. Furthermore, non-starchy polysaccharides and polyphenols showed robust abilities to reduce activities of α-amylase and α-glucosidase. Accordingly, it can be concluded that dietary compounds lowered starch digestion mainly by three modes: (i) prevented ordered structures from disruption and formed ordered assemblies chaperoned with these dietary compounds; (ii) formed physical barriers and prevented enzymes from accessing/binding to starch; (iii) reduced enzymes activities. Dietary compounds showed great potentials in lowering starch enzymatic digestion, thereby modulating postprandial glucose response to food and preventing or treating type II diabetes disease.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Chengdeng Chi
| | - Miaomiao Shi
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yingting Zhao
- Center for Nutrition and Food Sciences, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Meiying Wang
- School of Engineering, University of Guelph, Guelph, ON, Canada
- Meiying Wang
| |
Collapse
|
39
|
Wei P, Fang F, Liu G, Zhang Y, Wei L, Zhou K, You X, Li M, Wang Y, Sun J, Deng S. Effects of composition, thermal, and theological properties of rice raw material on rice noodle quality. Front Nutr 2022; 9:1003657. [PMID: 36118753 PMCID: PMC9479187 DOI: 10.3389/fnut.2022.1003657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
The study aims to evaluate the relationships between characteristics of regional rice raw material and resulting quality of rice noodles. Four of most commonly used rice cultivars in Guangxi for noodles production were investigated. The results showed that compositions of rice flour primarily affected gelatinization and retrogradation, which then influenced the textural and sensory properties of rice noodles. Amylose content had strong positive correlation with peak viscosity (PV) and trough viscosity (TV) of rice flour (P < 0.01). PV and TV had strong negative correlations with adhesive strength (P < 0.01) and positive correlations with chewiness (P < 0.05), hardness, peak load and deformation at peak of rice noodles (P < 0.01). Protein content had positive correlation with the Setback of rice flour (P < 0.05), which is known to have influences on retrogradation. In addition, solubility had positive correlations with cooking loss (P < 0.01) and broken rate (P < 0.05) of rice noodles and strong negative correlation with its springiness (P < 0.01). Swelling power had negative correlation with broken rate (P < 0.05). As sensory score of rice noodles was negatively correlated with broken rate (P < 0.05) and cooking loss (P < 0.01) and positively correlated with springiness (P < 0.01), solubility and swelling power of rice flours were presumed to be useful for predicting consumer acceptability of rice noodles.
Collapse
Affiliation(s)
- Ping Wei
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Guoming Liu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
- *Correspondence: Yayuan Zhang
| | - Linyan Wei
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kui Zhou
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Xiangrong You
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
- Xiangrong You
| | - Mingjuan Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Ying Wang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Sili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
40
|
Li B, Zhang Y, Luo W, Liu J, Huang C. Effect of new type extrusion modification technology on supramolecular structure and in vitro glycemic release characteristics of starches with various estimated glycemic indices. Front Nutr 2022; 9:985929. [PMID: 36046133 PMCID: PMC9423736 DOI: 10.3389/fnut.2022.985929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, the highly effective modified technology to starch with various digestibility is gaining interest in food science. Here, the interactions between glycemic release characteristics and fine supramolecular structure of cassava (ECS), potato (EPS), jackfruit seed (EJFSS), maize (EMS), wheat (EWS), and rice starches (ERS) prepared with improved extrusion modification technology (IEMS) were investigated. The crystalline structures of all extruded cooking starches changed from the A-type to V-type. IEMS-treated cassava, potato, and rice starches had broken α-1.6-glycosidic amylopectin (long chains). The others sheared α-1.4-glycosidic amylopectin. The molecular weight, medium and long chain counts, and relative crystallinity decreased, whereas the number of amylopectin short chains increased. The glycemic index (GI) and digestive speed rate constant (k) of ECS, EPS, EJFSS, and EWS were improved compared to those of raw starch. Although EMS and ERS had degraded molecular structures, their particle morphology changed from looser polyhedral to more compact with less enzymolysis channels due to the rearrangement of side chain clusters of amylopectin, leading to enzyme resistance. The starch characteristics of IEMS-treated samples significantly differed. EPS had the highest amylose content, medium chains, long chains, and molecular weight but lowest GI, relative crystallinity, and k. ERS showed the opposite results. Thus, IEMS may affect starches with different GIs to varying degrees. In this investigation, we provide a basis for wider applications of conventional crop starch in the food industry corresponding to different nutrition audience.
Collapse
Affiliation(s)
- Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.,Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.,Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Wanru Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jin Liu
- Women's and Children's Hospital of Wanning, Wanning, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
41
|
Huang X, Liu H, Ma Y, Mai S, Li C. Effects of Extrusion on Starch Molecular Degradation, Order-Disorder Structural Transition and Digestibility-A Review. Foods 2022; 11:foods11162538. [PMID: 36010538 PMCID: PMC9407177 DOI: 10.3390/foods11162538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Extrusion is a thermomechanical technology that has been widely used in the production of various starch-based foods and can transform raw materials into edible products with unique nutritional characteristics. Starch digestibility is a crucial nutritional factor that can largely determine the human postprandial glycemic response, and frequent consumption of foods with rapid starch digestibility is related to the occurrence of type 2 diabetes. The extrusion process involves starch degradation and order-disorder structural transition, which could result in large variance in starch digestibility in these foods depending on the raw material properties and processing conditions. It provides opportunities to modify starch digestibility by selecting a desirable combination of raw food materials and extrusion settings. This review firstly introduces the application of extrusion techniques in starch-based food production, while, more importantly, it discusses the effects of extrusion on the alteration of starch structures and consequentially starch digestibility in various foods. This review contains important information to generate a new generation of foods with slow starch digestibility by the extrusion technique.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yue Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shihua Mai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
42
|
Huang S, Chi C, Li X, Zhang Y, Chen L. Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Shen H, Ge X, Zhang B, Su C, Zhang Q, Jiang H, Zhang G, Yuan L, Yu X, Li W. Preparing potato starch nanocrystals assisted by dielectric barrier discharge plasma and its multiscale structure, physicochemical and rheological properties. Food Chem 2022; 372:131240. [PMID: 34619520 DOI: 10.1016/j.foodchem.2021.131240] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
Non-thermal plasma has increasingly been used for surface modification of various materials as a novel green technology. In this study, we prepared potato starch nanocrystals (SNCs) assisted by dielectric barrier discharge plasma technology and investigated its multiscale structure, physicochemical properties and rheology. Plasma treatment did not change the morphology and crystalline pattern of SNCs but reduced the crystallinity. The amylose content, swelling power, gelatinization temperature, and apparent viscosity of SNCs decreased after the plasma process by depolymerizing the amylopectin branch chains and degrading SNCs molecules. Besides, plasma increased the rapidly digestible starch and resistant starch content. Changes in rheological properties of plasma treated SNCs suggested that the plasma process increased the flowing capacity. The effective structural and functional changes of plasma treated SNCs confirm that plasma technology has great potential for modification of SNCs.
Collapse
Affiliation(s)
- Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Bo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chunyan Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Guoquan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 7710119, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
44
|
Tatta ER, Imchen M, Moopantakath J, Kumavath R. Bioprospecting of microbial enzymes: current trends in industry and healthcare. Appl Microbiol Biotechnol 2022; 106:1813-1835. [PMID: 35254498 DOI: 10.1007/s00253-022-11859-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenomics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial enzyme optimization tools. KEY POINTS: • Microbial bioactive molecules are vital for therapeutic and industrial applications. • High-throughput OMIC is the most proficient approach for novel enzyme discovery. • Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme design and discovery.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India.
| |
Collapse
|
45
|
Dong Y, Wang B, Fang Y, Xu X, Yan S, Cui B, Abd El‐Aty AM. Effect of Different Rotational Speeds of the Extruder on the Structure of Corn Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuqing Dong
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- Department of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - Youxin Fang
- Department of Forestry College Shandong Agricultural University Taian 271018 China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- Department of Food Science and Engineering Shandong Agricultural University Taian 271018 China
| | - A. M. Abd El‐Aty
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- Department of Pharmacology Faculty of Veterinary Medicine Cairo University Giza 12211 Egypt
- Department of Medical Pharmacology Medical Faculty Ataturk University Erzurum 25240 Turkey
| |
Collapse
|
46
|
He Y, Ye F, Li S, Wang D, Chen J, Zhao G. Effect of Sand-Frying-Triggered Puffing on the Multi-Scale Structure and Physicochemical Properties of Cassava Starch in Dry Gel. Biomolecules 2021; 11:biom11121872. [PMID: 34944515 PMCID: PMC8699278 DOI: 10.3390/biom11121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
This study revealed the underlying mechanisms involved in the puffing process of dried cassava starch gel by exploring the development of the puffed structure of gel upon sand-frying, chiefly focused on the changes in the multi-scale structure and the physicochemical properties of starch. The results suggested that the sand-frying-induced puffing proceeded very fast, completed in about twenty seconds, which could be described as a two-phase pattern including the warming up (0~6 s) and puffing (7~18 s) stages. In the first stage, no significant changes occurred to the structure or appearance of the starch gel. In the second stage, the cells in the gel network structure were expanded until burst, which brought about a decrease in moisture content, bulk density, and hardness, as well as the increase in porosity and crispness when the surface temperature of gel reached glass transition temperature of 125.28 °C. Upon sand-frying puffing, the crystalline melting and molecular degradation of starch happened simultaneously, of which the latter mainly occurred in the first stage. Along with the increase of puffing time, the thermal stability, peak viscosity, and final viscosity of starch gradually decreased, while the water solubility index increased. Knowing the underlying mechanisms of this process might help manufacturers produce a better quality of starch-based puffed products.
Collapse
Affiliation(s)
- Yonglin He
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Sheng Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
- Chongqing Engineering Research Center for Sweet Potato, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-2118
| |
Collapse
|
47
|
Shen H, Guo Y, Zhao J, Zhao J, Ge X, Zhang Q, Yan W. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int J Biol Macromol 2021; 191:821-831. [PMID: 34597694 DOI: 10.1016/j.ijbiomac.2021.09.157] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Plasma is a simple, effective and promising food processing technology with great potential for starch modification. Mung bean starch was subjected to ultrasound (300 W, 10, 30 and 50 min), plasma (40 V, 1, 3 and 9 min) and the synergistic treatment, as well as investigating its effects on the morphology, chain length distribution, molecular weight, crystalline structure and physicochemical properties of starch. Ultrasound and plasma treatment did not change the granule shape, but caused some corrosions on the surface, and dual treatment increased the damage degree of starch granules surface. All treatments decreased the molecular weight (Mw), amylopectin long chains and crystallinity but increased the gelatinization temperatures and enthalpy. Different from ultrasound irradiation, single plasma treatment significantly reduced the swelling power and pasting viscosities. Furthermore, dual treatment increased the thermal stability of starch paste, owing to the reinforcement effect between ultrasound and plasma. Thus, dual modification displayed an excellent ability to modify starch with specific characteristics and expand the potential application of mung bean starch in the food industry.
Collapse
Affiliation(s)
- Huishan Shen
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yu Guo
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Jiangyan Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Jian Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| |
Collapse
|
48
|
|
49
|
Tian Y, Zhou M, Luo T, Zhu P, Cheng F, Zhang Y, Lin Y. A comparative investigation of gelatinized and regenerated starch composites reinforced by microfibrillated cellulose. Food Chem 2021; 373:131470. [PMID: 34740051 DOI: 10.1016/j.foodchem.2021.131470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022]
Abstract
This research demonstrated a novel and ecofriendly method for producing regenerated starch (RS)/microfibrillated cellulose (MFC) composite films with a nearly 1.4-fold improvement in tensile strength than traditional gelatinized starch (GS) films. Pure starch was dissolved in 14 wt% urea/4 wt% sodium hydroxide (NaOH) solution at 0 °C. Then, RS films and their biocomposite films containing MFC were prepared by dialyzing and solution-casting method. Results showed that the tensile strength and elongation at break of RS increased by 44.8% and 82.4%, compared with that of GS film, respectively. Owing to the adequate dispersion, lower viscosity-average molecular weight, higher amylose content, lower crystallinity and smaller crystal grain size, RS/MFC composite films exhibited significantly improved mechanical properties. The novel strategy used in this study will be helpful in preparing regenerated starch materials with excellent mechanical properties and biodegradability as alternatives to petrochemical plastics for the development of sustainable materials.
Collapse
Affiliation(s)
- Yu Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Ting Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - PuXin Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
50
|
Benítez Benítez R, Elvira Tabares WF, Lenis Velásquez LA, Hurtado Sánchez CI, Salinas Cruel OA. Enzymatic hydrolysis as a tool to improve total digestibility and techno-functional properties of pigeon pea (C ajanus cajan) starch. Heliyon 2021; 7:e07817. [PMID: 34466702 PMCID: PMC8384908 DOI: 10.1016/j.heliyon.2021.e07817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/09/2021] [Accepted: 08/13/2021] [Indexed: 12/01/2022] Open
Abstract
Recent studies have indicated that starch from legumes can potentially be used as an alternative to commercial flour with applications in food and biomaterials; however, some modifications may be required first to improve their functionality, as they show relatively lower solubility and functional properties compared to commonly marketed flours (e.g. good water retention capacity). This work used multiple enzymes in flour extracts of pigeon pea (Cajanus cajan), a legume, to optimize the enzyme hydrolysis process of such extracts by the Response Surface Method (RSM), to increase the digestibility and obtain desirable functional attributes at the nutritional level. The pH, temperature, time and enzyme/substrate (E/S) ratio were evaluated, and the degree of hydrolysis (DH) was calculated as well as the reducing sugar content (%RS), used as response variable. According to the experimental design, the best pH, temperature, time and E/S ratio were 6.8, 43 °C, 1.84% m/m and 270 min, respectively. The %RS for the samples under optimal conditions was 3.49 ± 0.02%, and the in vitro digestibility yielded values of 39.2 ± 0.4, 58.6 ± 0.3 and 2.2 ± 0.2 for slowly digestible starch (SDS), rapidly digestible starch (RDS) and resistant starch (RS), respectively. Total digestibility (TD) was 97.8 ± 0.5. The statistical analysis revealed a strong positive relationship for E/S ratio followed by pH: (E/S) ratio, temperature and pH. Enzymatic hydrolysis carried out on pigeon pea showed an increase in TD. Viscosity, water retention capacity (WRC) and solubility were evaluated showing good response for future applications at the industrial level.
Collapse
Affiliation(s)
- Ricardo Benítez Benítez
- Group of Natural Products Chemistry (QPN), Department of Chemistry, Universidad del Cauca, (501100005682) career 3 No. 3N-100, Popayán, Colombia
| | - Wilmar Fernando Elvira Tabares
- Group of Natural Products Chemistry (QPN), Department of Chemistry, Universidad del Cauca, (501100005682) career 3 No. 3N-100, Popayán, Colombia
| | - Luis Alberto Lenis Velásquez
- Group of Natural Products Chemistry (QPN), Department of Chemistry, Universidad del Cauca, (501100005682) career 3 No. 3N-100, Popayán, Colombia
| | - Clara Inés Hurtado Sánchez
- Group of Natural Products Chemistry (QPN), Department of Chemistry, Universidad del Cauca, (501100005682) career 3 No. 3N-100, Popayán, Colombia
| | - Omar Alberto Salinas Cruel
- Group of Natural Products Chemistry (QPN), Department of Chemistry, Universidad del Cauca, (501100005682) career 3 No. 3N-100, Popayán, Colombia
| |
Collapse
|