1
|
Zheng Y, Yin L, Jayan H, Jiang S, El-Seedi HR, Zou X, Guo Z. In situ self-cleaning PAN/Cu 2O@Ag/Au@Ag flexible SERS sensor coupled with chemometrics for quantitative detection of thiram residues on apples. Food Chem 2025; 473:143032. [PMID: 39855070 DOI: 10.1016/j.foodchem.2025.143032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Flexible surface-enhanced Raman scattering (SERS) sensors offer a promising solution for the rapid in situ monitoring of food safety. The sensor's capability to furnish quantitative detection and retain recyclability is crucial in practical applications. This study proposes a self-cleaning flexible SERS sensor, augmented with an intelligent algorithm designed for expeditious in situ and non-destructive thiram detection on apples. Flexible carriers were prepared via electrostatic spinning, while cuprous oxide spheres decorated with silver (Cu2O@Ag) were synthesized through surfactant-mediated in situ reduction of silver spheres. Then, PAN/Cu2O@Ag/Au@AgNPs flexible sensors with both SERS enhancement and photocatalytic degradation effects were generated by self-assembling core-shell Au@Ag nanoparticles on the flexible carriers. Convolutional neural network (CNN) and competitive adaptive reweighted sampling-partial least squares (CARS-PLS) algorithms were applied for the quantitative prediction of thiram. The results showed that the CNN algorithm has better performance, with correlation coefficient of 0.9963 and detection limit of 0.020 mg/L, respectively. Notably, the flexible SERS sensor could be recycled at least 5 times, with thiram detection recovery ranging from 88.32 % to 111.80 %. This self-cleaning flexible sensor combined with deep learning algorithm has shown significant potential for applications in food safety monitoring.
Collapse
Affiliation(s)
- Yuxia Zheng
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuiquan Jiang
- National Professional Research and Development Center of Fruit and Vegetable Processing Equipment, Jiangsu Kaiyi Intelligent Technology Co., Ltd, Wuxi 214174, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, SE, 751 24 Uppsala, Sweden
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Guo Z, Zheng Y, Wang C, Jayan H, Yin L, El-Seedi HR, Gong Y, Zou X. Flexible label-free SERS substrate with alginate-chitosan@silver nanocube for in situ nondestructive detection of thiram on apples. Talanta 2025; 283:127168. [PMID: 39520922 DOI: 10.1016/j.talanta.2024.127168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The rapid in situ detection of pesticide residues in real samples based on surface-enhanced Raman spectroscopy (SERS) remains a challenge, necessitating an urgent need for a feasible solution that addresses issues such as sample complexity, reproducibility, and SERS substrate stability. This paper proposes a flexible SERS substrate, which consists of a composite gel made of sodium alginate-chitosan loaded with silver nanocubes (SA-CTS@AgNCs). The flexible nature of the SERS substrate enables the analysis of irregular surfaces of apples, dispensing with laborious pretreatment and promoting an effective contact with target molecules. By utilizing the SA-CTS@AgNCs substrate in conjunction with a portable Raman instrument, an exceptional sensitivity was achieved with a detection limit of 0.055 mg/L for thiram in apples. In addition, the stability, homogeneity, and batch-to-batch reproducibility of the substrates were evaluated. The experimental results showed that after 45 days of storage, the substrate still maintained more than 84.40 % SERS activity, demonstrating long-term stability. Within a single substrate, the point-to-point relative standard deviation (RSD) was only 4.2 %, while among different batches of substrates, the RSD was as low as 6.8 %, displaying better homogeneity and reproducibility. Hence, this flexible SERS substrate provides a reliable and convenient platform for rapid detection and on-site monitoring of food safety.
Collapse
Affiliation(s)
- Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Yuxia Zheng
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China; Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
4
|
Liu Y, Wang X, Wang S. Environmental fate and safety analysis of methoxyfenozide application to control litchi and longan pests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37316-37325. [PMID: 38769265 PMCID: PMC11182796 DOI: 10.1007/s11356-024-33677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Litchi and longan pests significantly affect crop yield and quality. Chemical prevention and control are very effective for production; therefore, it is crucial to study fate assessment and appropriate field efficacy before pesticide application on crops to appropriately assess the health and ecological risks linked with these agents. This study conducted Good Agricultural Practice (GAP) field trials and laboratory experiments to elucidate the dissipation, terminal residues, and efficacy of methoxyfenozide on litchi and longan in six locations throughout China. To detect methoxyfenozide residues on litchi and longan, a QuEChERS/UPLC-MS/MS-based method was designed. The initial methoxyfenozide levels in litchi and longan ranged from 2.21-2.86 to 0.83-0.95 mg kg-1 and indicated half-lives of 5.1-5.3 and 5.3-5.7 days, respectively. After 7 days of foliage treatment, the concentrations of terminal methoxyfenozide residue were 0.78-2.61 and 0.02-1.01 mg kg-1, which were less than the established maximum residue limit for methoxyfenozide in litchi and longan. The chronic (acceptable daily intake = 0.0055-0.0331%) dietary intake risk analysis for methoxyfenozide in longan and litchi indicated acceptable concentrations of terminal residue for the general population. Methoxyfenozide in litchi and longan was readily degraded in first-order kinetics models, the degradation rate on longan was higher than that on litchi, and their dietary risks were negligible to consumers. Two hundred forty grams per liter of methoxyfenozide suspension concentrate (SC) represents a highly efficacious insecticidal dose to control litchi and longan pests and indicates a significant application potential as it is rapidly degraded and linked with reduced post-treatment residue levels.
Collapse
Affiliation(s)
- Yanping Liu
- Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiaonan Wang
- Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Siwei Wang
- Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
5
|
Jiao C, Wu L, Zhao W, Cai M, Liu Y, Xie S. Occurrence, multiphase partition and risk assessment of organic amine pesticides in drinking water source of Xiang River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:105. [PMID: 38441743 DOI: 10.1007/s10653-024-01900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The extensive use of organic amine pesticides (OAPs) in agricultural practices has resulted in the contamination of water environments, posing threats to ecosystems and human health. This study focused on the Xiang River (XR), a representative drinking water source, as the research area to investigate the occurrence characteristics of 34 OAPs. Diphenylamine emerged as the most prevalent OAP in surface water due to industrial and agricultural activities, while cycloate dominated in sediments due to cumulative effects. Generally, the concentration of OAPs in a mixed tap water sample was lower than those in surface water samples, indicating OAPs can be removed by water plants to a certain extent. The water-sediment distribution coefficients (kd) of ΣOAPs were much less than 1 L/g, the majority of OAPs maintained relatively high concentrations in water samples instead of accumulating in sediments. Furthermore, risk assessment revealed that carbofuran showed a moderate risk to the aquatic environment, with a risk quotient of 0.23, while other OAPs presented minor risks. This study provided crucial insights for regional pesticide management and control in the XR basin, emphasizing the importance of implementing strategies to minimize the release of OAPs into the environment and protect human health.
Collapse
Affiliation(s)
- Cao Jiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Linjunyue Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Wenyu Zhao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
| | - Minghong Cai
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Yanju Liu
- Hunan Ecology and Environment Monitoring Center, State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410014, China
| | - Sha Xie
- Hunan Ecology and Environment Monitoring Center, State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410014, China
| |
Collapse
|
6
|
Li S, Wu J, Zhang S, Jiao T, Wei J, Chen X, Chen Q, Chen Q. Inner filter effect-based upconversion nanosensor for rapid detection of thiram pesticides using upconversion nanoparticles and dithizone-cadmium complexes. Food Chem 2024; 434:137438. [PMID: 37713750 DOI: 10.1016/j.foodchem.2023.137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Herein, we propose a method for detecting thiram based on the fluorescence inner filter effect using upconversion nanoparticles and dithizone-cadmium complexes (DZ-Cd2+). The ultraviolet absorption of DZ-Cd2+ was in the range of 480-600 nm under alkaline conditions, resulting in fluorescence quenching of the nanoparticles at 540 nm. Thiram had a stronger coordination effect with Cd2+ than dithizone; thus, more thiram-cadmium complex (T-Cd2+) formed when thiram was added, leading to fluorescence recovery at 540 nm. The standard thiram curve was found to have a detection limit of 6.75 ng/mL in the linear range of 0.01-1000 µg/mL. In addition, high-performance liquid chromatography results for detecting thiram in apple samples revealed good application performance. The results demonstrate that the developed method has great potential to detect thiram residues in food.
Collapse
Affiliation(s)
- Shuhua Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shen Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
7
|
Zhang M, Cai H, Ling D, Pang C, Chang J, Jin Z, Chi YR. Herbicidal Activity of Beflubutamid Analogues as PDS Inhibitors and SAR Analysis and Degradation Dynamics in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906815 DOI: 10.1021/acs.jafc.3c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this work, a series of beflubutamid (BF) analogues' postemergent herbicidal activity was evaluated, and the structure-activity relationship (SAR) was discussed. At a dosage of 300 g ai/ha, compounds (Rac)-6h and (Rac)-6q showed excellent herbicidal activity against Amaranthus retroflexus, Abutilon theophrasti, and Medicago sativa, with inhibition rates of 90, 100, and 80% and 100, 100, and 100%, respectively, comparable to that of commercial herbicide BF, which showed inhibition rates of 90, 100, and 100%, respectively. Notably, at dosages of 150 and 300 g ai/ha, the chiral compounds (S)-6h and (S)-6q exhibited higher herbicidal activities than their racemates. Molecular docking results indicated that compounds (S)-BF and (S)-6h have stronger binding affinities with Oryza sativa phytoene desaturase (OsPDS), resulting in a higher herbicidal activity. Additionally, the degradation dynamics half-life of (S)-BF in wheat was determined to be 77.02 h. Consequently, compounds (S)-6h and (S)-6q are promising lead candidates for the development of highly effective herbicides.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Dan Ling
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Chen Pang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinming Chang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
8
|
Park DH, Cho HJ, Kang SH, Lee HH, Shin JY, Abd El-Aty AM, Shin HC. Development and validation of a sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method for quantitative analysis of bambermycin in livestock and aquatic products: Implications for food safety control and regulatory enforcement. J Sep Sci 2023; 46:e2300377. [PMID: 37653615 DOI: 10.1002/jssc.202300377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023]
Abstract
A sensitive and accurate analytical method was developed and validated to detect bambermycin, a commonly used antibiotic in animal feed and livestock. The presence of bambermycin residues in food products can pose health risks to consumers, emphasizing the need for a sensitive and accurate analytical method. A reversed-phase analytical column was utilized with a mobile phase comprising 0.005 mol/L ammonium acetate in 5% acetonitrile (A) and 0.005 mol/L ammonium acetate in 95% acetonitrile (B) to achieve effective chromatographic separation. Quantitative determination of bambermycin in various samples, including beef, pork, chicken, milk, eggs, flatfish, eel, and shrimp, was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry. Sample extraction involved a mixture of methanol and a 25% ammonium hydroxide solution, followed by low-temperature purification and phospholipid removal utilizing a Phree cartridge. The method exhibited a satisfactory recovery rate ranging from 69% to 100%. Validation results demonstrated the reliability, robustness, and accuracy of the method, exhibiting good linearity, precision, and recovery. This validated method can be applied for routine analysis of bambermycin residues, assisting in the development of effective monitoring and control measures to ensure the safety of livestock and aquatic products.
Collapse
Affiliation(s)
- Da-Hee Park
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jung Cho
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Se-Hyeong Kang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hong-Hee Lee
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae-Yong Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Sun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 2023; 10:1244459. [PMID: 37593680 PMCID: PMC10428016 DOI: 10.3389/fnut.2023.1244459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Food safety is a widespread global concern with the emergence of foodborne diseases. Thus, establishing accurate and sensitive detection methods of harmful contaminants in different food matrices is essential to address and prevent the associated health risks. Among various analytical tools, mass spectrometry (MS) can quantify multiple impurities simultaneously due to high resolution and accuracy and can achieve non-target profiling of unknown pollutants in food. Therefore, MS has been widely used for determination of hazardous contaminants [e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes MS applications in detecting harmful contaminants in food matrices, discusses advantages of MS for food safety study, and provides a perspective on future directions of MS development in food research. With the persistent occurrence of novel contaminants, MS will play a more and more critical role in food analysis.
Collapse
Affiliation(s)
- Qiannan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, Henan, China
| | - Yide Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Huang Y, Feng D, Li X, Li W, Ren J, Zhong H. Covalent organic frameworks assisted for food safety analysis. Crit Rev Food Sci Nutr 2023; 64:11006-11025. [PMID: 37417398 DOI: 10.1080/10408398.2023.2230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Food safety incidents threaten human health and life safety. It is an effective method to prevent and control the occurrence of food safety events by enhancing the rapid and sensitive detection of food contaminants. Emerging porous materials provide for the development of efficient and stable detection methods. Covalent organic frameworks (COFs) are favored by researchers for their highly ordered pore structure, large specific surface area, and good structural and functional designability. Especially in the sensing field, COFs play the roles of carriers, conductors, quenchers, and reporters, and have broad application prospects. To better understand COFs-based sensing studies, this review briefly introduces the characteristics and different functional roles of COFs in food safety analysis, focusing on the applications of COFs in the detection of various food contaminants (including foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, and others). Finally, the challenges and opportunities for COFs-based sensing are discussed to facilitate further applications and development of COFs in food safety.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Donghui Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Xu Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Wang Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiali Ren
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Haiyan Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
11
|
Chen Y, Gao D, Wu Y, Wang L, Fan W, Gao Y, Wang W, Su L, Li B, Mu W, Yu W. Determination of the Dissipation Dynamics and Terminal Residue of Bupirimate and Its Metabolites in Cucumber by QuEChERS-Based UPLC-MS/MS. ACS OMEGA 2023; 8:23975-23981. [PMID: 37426269 PMCID: PMC10323959 DOI: 10.1021/acsomega.3c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Bupirimate is widely used as a highly active systemic fungicide. However, the frequent and heavy use of bupirimate has led to pesticide residues in crops that threaten human health and food safety. At present, there is limited research on the detection of ethirimol, which is the metabolite of bupirimate. This study established an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously detect bupirimate and ethirimol residues based on QuEChERS pretreatment. The average recoveries of bupirimate and ethirimol in cucumber were between 95.2 and 98.7%, respectively, with relative standard deviations (RSDs) of 0.92-5.54% at fortified levels of 0.01, 0.1, and 5 mg L-1. The established method was used to determine the residues in field trials in 12 regions of China, and the final residues of bupirimate were all less than the maximum residue limit (MRL). Since the risk quotient (RQ) of bupirimate and ethirimol in cucumber was less than 1.3%, the dietary risk assessment indicated that bupirimate and ethirimol had a low long-term dietary risk to the general population in China. This study provides effective guidance on the proper use of bupirimate in cucumber fields and a reference for establishing the MRL of bupirimate in China.
Collapse
Affiliation(s)
- Yue Chen
- Shandong
Academy of Pesticide Sciences, Jinan, Shandong 250033, China
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
| | - Deliang Gao
- Shandong
Academy of Pesticide Sciences, Jinan, Shandong 250033, China
| | - Yueming Wu
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
| | - Ling Wang
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Weidi Fan
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yun Gao
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wenli Wang
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Li Su
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Beixing Li
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wei Mu
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Weili Yu
- Shandong
Academy of Pesticide Sciences, Jinan, Shandong 250033, China
| |
Collapse
|
12
|
Ding Y, Zheng H, Chen Z, Gao Y, Xiao K, Gao Z, Han Z, Xue Y, Cai M. Ocean current redistributed the currently using Organoamine Pesticides in Arctic summer water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163979. [PMID: 37164088 DOI: 10.1016/j.scitotenv.2023.163979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
In a comprehensive study on the presence and distribution of Currently Using Organoamine Pesticides (CUOAPs) in the Arctic Ocean, this study collected and analyzed 36 surface seawater samples during the summer of 2021. The study detected 36 CUOAPs, 17 of these compounds at levels exceeding the Method Detection Limits (MDLs). Concentrations of CUOAPs ranged from 0.11 to 2.94 ng/L, exhibiting an average of 1.83 ± 0.83 ng/L. Spatial distribution analysis revealed lower CUOAP concentrations in the central Arctic Ocean, with Cycloate constituting the most abundant component (23.66 %). The investigation identified terrestrial inputs and long-range atmospheric transport as potential sources of CUOAPs in the Arctic Ocean region. The origins of individual CUOAPs appeared to be associated with application procedures and their propensity for co-occurrence at low latitudes. The study also examined the role of ocean currents in the transport and redistribution of CUOAPs in surface seawater across different regions. While ocean currents played a significant role, the influence of sea ice cover on CUOAP distribution was minimal. An ecological risk assessment analysis underscored the need for regional attention to the presence of CUOAPs in the Arctic Ocean.
Collapse
Affiliation(s)
- Yunhao Ding
- School of Environmental & Safety Engineering, Changzhou University, Jiangsu, Changzhou 213164, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Hongyuan Zheng
- Ocean Institute, Northwestern Polytechnical University, Jiangsu, Suzhou 215400, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China.
| | - Zhiyi Chen
- College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Zhejiang 310018, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Yuan Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Kaiyan Xiao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zhiwei Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zheyi Han
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yingang Xue
- School of Environmental & Safety Engineering, Changzhou University, Jiangsu, Changzhou 213164, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
13
|
Jin Y, Hu D, Shi C, Chen Q, Lu Y, Chen J. Development of a Pt-graphene nanocomposite-based solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the determination of carbamate pesticides in fish. ANAL SCI 2023:10.1007/s44211-023-00322-8. [PMID: 37000321 DOI: 10.1007/s44211-023-00322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
In the present work, a potential solid-phase extraction (SPE) material based on graphene anchored with platinum nanoparticles (Pt-Graphene) was prepared and characterized by scanning electron micrographs and transmission electron micrograph. The carbamates residues in fish were enriched by SPE filled with Pt-Graphene and detected by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The proposed extraction protocol exhibited satisfactory recoveries (76.5-115.6%), low limit of quantitation values in μg kg-1 level, and good precision for the studied ten carbamates. These results demonstrated the feasibility of the proposed protocol. The developed Pt-Graphene nanoparticles showed excellent performance for extracting analytes at trace levels, indicating that it could be used as a potential SPE sorbent in food residue analysis.
Collapse
Affiliation(s)
- Yating Jin
- Collaborative Innovation Center of Seafood Deep Processing, Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Di Hu
- Collaborative Innovation Center of Seafood Deep Processing, Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Cui Shi
- Collaborative Innovation Center of Seafood Deep Processing, Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qianqian Chen
- Collaborative Innovation Center of Seafood Deep Processing, Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yanbin Lu
- Collaborative Innovation Center of Seafood Deep Processing, Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
14
|
Wang S, Wang X, He Q, Lin H, Chang H, Liu Y, Sun H, Song X. Analysis of the fungicidal efficacy, environmental fate, and safety of the application of a mefentrifluconazole and pyraclostrobin mixture to control mango anthracnose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:400-410. [PMID: 36373789 DOI: 10.1002/jsfa.12154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mango anthracnose is among the most severe diseases impacting mango yields and quality. While this disease can be effectively controlled through chemical means, it is vital that appropriate field efficacy and fate determination studies be conducted when applying pesticides to crops in order to appropriately gauge the ecological and health risks associated with the use of these agents. RESULTS GAP field trials were conducted to explore the efficacy, dissipation, and terminal residues associated with the application of mefentrifluconazole and pyraclostrobin to mango crops in six locations throughout China. These analyses revealed that three applications of mefentrifluconazole [160 mg active ingredient (a.i.) kg-1 ] in combination with pyraclostrobin mixture achieved satisfactory disease control efficacy. To simultaneously detect mefentrifluconazole and pyraclostrobin residues on mangoes, a 'quick, easy, cheap, effective, rugged and safe' (QuEChERS) high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)-based approach was established. The initial mefentrifluconazole and pyraclostrobin concentrations ranged from 0.18 to 0.34 mg kg-1 , and these two compounds exhibited respective half-lives of 5.6 to 10.8 days and 5.5 to 9.0 days. At 21 days following foliage application, the terminal mefentrifluconazole and pyraclostrobin residue concentrations were 0.02-0.04 and 0.01-0.04 mg kg-1 , with these concentrations being below the maximum residue limit (MRL) established for pyraclostrobin. Both short-term [acute reference dose percent (ARfD%) 0.78-2.36% and 2.0-6.08%] and chronic [acceptable daily intake percent (ADI%) 0.08-0.47% and 0.09-0.55%] dietary intake risk assessments for mefentrifluconazole and pyraclostrobin indicated that these terminal residue concentrations are acceptable for the general population. CONCLUSION Mefentrifluconazole and pyraclostrobin in mango was rapidly degraded following first-order kinetics models. The dietary risk of mefentrifluconazole and pyraclostrobin through mango was negligible to consumers. The application of a 400 g L-1 mefentrifluconazole-pyraclostrobin suspension concentrate mixture represents a highly efficacious fungicidal approach to controlling mango anthracnose that exhibits significant potential for development as it is easily degraded and associated with low residual concentrations after application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siwei Wang
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P. R. China
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaonan Wang
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P. R. China
| | - Qiang He
- Guangdong Quality Safety Center of Agricultural Products, Department of Agriculture and Rural Affairs of Guangdong Province, Guangzhou, P. R. China
| | - Haidan Lin
- Guangdong Quality Safety Center of Agricultural Products, Department of Agriculture and Rural Affairs of Guangdong Province, Guangzhou, P. R. China
| | - Hong Chang
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P. R. China
| | - Yanping Liu
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P. R. China
| | - Haibin Sun
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P. R. China
| | - Xiaobing Song
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P. R. China
| |
Collapse
|
15
|
QuEChERS-Based Approach to the Extraction of Five Calcium Channel Blockers from Plasma Determined by UPLC-MS/MS. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020671. [PMID: 36677729 PMCID: PMC9866929 DOI: 10.3390/molecules28020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Here, a QuEChERS (quick, easy, cheap, effective, rugged, and safe) pretreatment method was combined with UPLC-MS/MS to facilitate the rapid and reliable simultaneous detection of five calcium channel blockers (CCBs) in human plasma. For this approach, samples were treated with 1 mL of acetonitrile, 350 mg of magnesium sulfate, and 70 mg of PSA adsorbent prior to centrifugation. Supernatants then underwent gradient elution for 8 min with an Agilent C18 column using an acetonitrile-water solution supplemented with 5 mmol⋅L-1 of ammonium acetate. This technique exhibited a good linear response in the 1-800 ng⋅mL-1 range for the analyzed drugs, with an R2≥ 0.9921, an accuracy of 87.54-113.05%, a matrix effect (ME) of 91.21-116.39%, a precision of 0.19-11.64%, and stability of no more than 10.05%. This time-saving QuEChERS reagent-based pretreatment technique thus allowed for the simultaneous and accurate detection of five CCBs in human plasma samples, providing a promising new basis for therapeutic drug monitoring in patients with hypertension.
Collapse
|
16
|
Terminal residue of fungicides in agro-products from north China: Assessment of human exposure potential. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Wang S, Wang X, Chang H, Sun H, Liu Y. Establishment of a Method for the Detection of Indaziflam, Spirotetramat, Cyantraniliprole, and Their Metabolites and Application for Fruit and Vegetable Risk Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16369-16381. [PMID: 36521106 DOI: 10.1021/acs.jafc.2c05560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The presence of pesticides in foodstuffs has received increasing amount of attention worldwide. In this study, an efficient and sensitive QuEChERS/HPLC-MS/MS-based method was established for the simultaneous detection of indaziflam, cyantraniliprole, spirotetramat, and their metabolites on fruits and vegetables. The purification procedure and detection condition parameters were optimized. Good precision and reproducibility were found for the method, and the average recoveries of the target analytes ranged from 71 to 118%, with the relative standard deviation ranging from 2 to 12%. The limits of quantification and the limits of detection were 1-5 and 0.3-1.5 μg kg-1, respectively. The proposed method was used to detect three pesticides and their metabolites in fruit and vegetable samples collected from China's major producing regions. Furthermore, the dietary risk posed by the pesticide residues on fruits and vegetables was evaluated by risk quotients (RQs) and risk probabilities (RPs). The RQ and RP values were less than 100% for Chinese consumers. This study not only provides a reliable analytical method for monitoring purposes but also serves as a significant guide for food safety and export.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Haibin Sun
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yanping Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| |
Collapse
|
18
|
Zheng M, Song J, Xue H, Li H, Lian K. Simultaneous Determination of Six Immunosuppressants in Human Whole Blood by HPLC-MS/MS Using a Modified QuEChERS Method. Molecules 2022; 27:molecules27134087. [PMID: 35807333 PMCID: PMC9268670 DOI: 10.3390/molecules27134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
A high-performance liquid chromatography-tandem mass spectrometry method was established for the simultaneous determination of mycophenolic acid, mycophenolate mofetil, tacrolimus, rapamycin, everolimus and pimecrolimus in human whole blood by optimizing the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) preparation method. Whole blood was extracted into ethyl acetate, salted out with anhydrous magnesium sulfate, and purified with ethylenediamine-N-propyl silane adsorbent. The supernatant was evaporated under nitrogen until dry and finally reconstituted in methanol. Chromatographic separation was performed on an Agilent Poroshell 120 EC-C18 column in methanol (mobile phase A)-water (optimized for 0.1% acetic acid and 10 mM ammonium acetate, mobile phase B) at a 0.3 mL·min−1 flow rate. Electrospray ionization and positive ion multiple reaction monitoring were used for detection. The time for of analysis was 13 min. The calibration curves range of tacrolimus, rapamycin, everolimus and pimecrolimus were in the range of 1−100 ng·mL−1, mycophenolate mofetil in the range of 0.1−10 ng·mL−1 and mycophenolic acid at 10−1000 ng·mL−1. All correlation coefficients were >0.993. The coefficients of variation (CV, %) for inter-day and intra-day precision were less than 10%, while the spiked recoveries were in the range of 92.1% to 116%. Our method was rapid, sensitive, specific, and reproducible for the simultaneous determination of six immunosuppressants in human whole blood. Importantly, our approach can be used to monitor drug concentrations in the blood to facilitate disease treatment.
Collapse
Affiliation(s)
- Min Zheng
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China;
- Jinan Center for Disease Control and Prevention, Jinan 250000, China
| | - Jianshi Song
- The School of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China;
| | - Hua Xue
- Chemistry Teaching Group and Fundamental Medical Department, Shijiazhuang 050599, China;
| | - Hui Li
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050299, China
- Correspondence: (H.L.); (K.L.); Tel.: +86-0311-69086009 (H.L.); +86-0311-86261043 (K.L.)
| | - Kaoqi Lian
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China;
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
- Correspondence: (H.L.); (K.L.); Tel.: +86-0311-69086009 (H.L.); +86-0311-86261043 (K.L.)
| |
Collapse
|