1
|
Sun P, Lin S, Li X, Li D. Different stages of flavor variations among canned Antarctic krill (Euphausia superba): Based on GC-IMS and PLS-DA. Food Chem 2024; 459:140465. [PMID: 39024888 DOI: 10.1016/j.foodchem.2024.140465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The aim of the present study was to explore changes in the profile of volatile compounds (VCs) in canned Antarctic krill (Euphausia superba) at different processing stages using partial least squares discriminant analysis (PLS-DA) and gas chromatography-mass spectrometry (GC-IMS). A total of 43 VCs were detected using GC-IMS in all krill meat samples, which included mainly alcohols, aldehydes, ketones, esters, and furans. Considering the different processing stages, the highest variation in VCs and the highest VC content were observed in krill meat which underwent both blanching and salt addition. PLS-DA further revealed flavor differences in canned Antarctic krill meat at different processing stages, with octanal, 2-hexanol, 2-octane, 2,3,5-trimethyl pyrazine, and cis-3-hexanol as the main contributors to observed differences in VC profiles. These findings contribute to the production of high-quality canned krill meat, enhancing its flavor quality and providing a feasible theoretical basis for future krill meat pretreatment and industry development.
Collapse
Affiliation(s)
- Peizi Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Xinran Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Dongmei Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Zhu H, Li X, Wang J, Wang H, Zhao S, Tian Y, Su Y. Transcriptomic analysis reveals differentially expressed genes associated with meat quality in Chinese Dagu chicken and AA + broiler roosters. BMC Genomics 2024; 25:1002. [PMID: 39455924 PMCID: PMC11515088 DOI: 10.1186/s12864-024-10927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND With the improvement of living standards, the quality of chicken has become a significant concern. Chinese Dagu Chicken (dual-purpose type) and Arbor Acres plus broiler (AA+ broiler) (meat-type) were selected as the research subjects in this study, the meat quality of the breast and leg muscles were measured. However, the molecular mechanism(s) underlying regulation of muscle development are not yet fully elucidated. Therefore, finding molecular markers or major genes that regulate muscle quality has become a crucial breakthrough in chicken breeding. Unraveling the molecular mechanism behind meat traits in chicken and other domestic fowl is facilitated by identifying the key genes associated with these developmental events. Here, a comparative transcriptomic analysis of chicken meat was conducted on breast muscles (BM) and leg muscles (LM) in AA+ broilers (AA) and Dagu chicken (DG) to explore the differences in their meat traits employing RNA-seq. RESULTS Twelve cDNA libraries of BM and LM from AA and DG were constructed from four experimental groups, yielding 14,464 genes. Among them, Dagu chicken breast muscles (DGB) vs AA+ broilers breast muscles (AAB) showed 415 upregulated genes and 449 downregulated genes, Dagu chicken leg muscles (DGL) vs AA+ broilers leg muscles (AAL) exhibited 237 upregulated genes and 278 downregulated genes, DGL vs DGB demonstrated 391 upregulated genes and 594 downregulated genes, and AAL vs AAB displayed 122 upregulated genes and 154 downregulated genes. 13 genes, including nine upregulated genes (COX5A, COX7C, NDUFV1, UQCRFS1, UQCR11, BRT-1, FGF14, TMOD1, MYOZ2) and four downregulated genes (MYBPC3, MYO7B, MTMR7, and TNNC1), were found to be associated with the oxidative phosphorylation signaling pathway. Further analysis revealed that the differentially expressed genes (DEGs) from muscle were enriched in various pathways, such as metabolic pathways, oxidative phosphorylation, carbon metabolism, glycolysis, extracellular matrix-receptor interaction, biosynthesis of amino acids, focal adhesion, vascular smooth muscle contraction, and cardiac muscle contraction, all of which are involved in muscle development and metabolism. This study also measured the meat quality of the breast and leg muscles from the two breeds, which demonstrated superior overall meat quality in Chinese Dagu Chicken compared to the AA+ broiler. CONCLUSIONS Our findings show that the meat quality of dual-purpose breeds (Chinese Dagu chicken) is higher than meat-type (AA+ broiler), which may be related to the DEGs regulating muscle development and metabolism. Our findings also provide transcriptomic insights for a comparative analysis of molecular mechanisms underlying muscle development between the two breeds, and have practical implications for the improvement of chicken breeding practices.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou , Liaoning, 121001, China
- Key Laboratory of Molecular Cell Biology and New Drug Development of the Education, Department of Liaoning Province, Jinzhou, Liaoning, 121001, China
| | - Xiaohan Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jie Wang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Haoming Wang
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou , Liaoning, 121001, China
| | - Song Zhao
- Key Laboratory of Molecular Cell Biology and New Drug Development of the Education, Department of Liaoning Province, Jinzhou, Liaoning, 121001, China
- College of Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yumin Tian
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yuhong Su
- College of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
3
|
Cui Z, Amevor FK, Lan X, Tang B, Qin S, Fu P, Liu A, Liu L. Integrative metabolomics and transcriptomics analysis revealed specific genes and metabolites affecting meat quality of chickens under different rearing systems. Poult Sci 2024; 103:103994. [PMID: 38991385 PMCID: PMC11296026 DOI: 10.1016/j.psj.2024.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Different rearing systems have varying effect on animal welfare and meat quality of poultry. Currently, there are no established standards for the rearing systems of Chinese indigenous chickens. Our study aimed to investigate the effects of different rearing systems on the meat quality, gene profiles, and metabolites of Chinese indigenous chickens (Nanchuan chicken). 10-wk-old Nanchuan chickens (n=360) were randomly divided into 3 groups (cage, net, and free-range groups), with 6 replicates per group (20 chickens per replicate). The experiment lasted for 12 wk. At 154-days-old, 36 healthy chickens (6 males and 6 females per group) were randomly selected, euthanized, and their breast muscles were collected to assess the meat quality parameters and histomorphological characteristics. Additionally, breast muscles from 18 random hens (3 males and 3 females per group) were used for metabolomics and RNA-seq analysis. The results showed that rearing systems significantly affected the meat quality and myofiber characteristics. The meat quality of breast muscles from free-range chickens was superior to that of caged chickens, characterized by more tender meat and smaller myofiber cross-sectional areas. Integrative metabolomics and transcriptomics analysis revealed that the differentially expressed genes of chicken breast muscles were primarily involved in the myofiber differentiation. Mechanically, the improved meat quality of breast muscle in free-range chickens were mainly associated with enhanced skeletal muscle differentiation facilitated by fibromodulin, increased levels of up-regulated Acetyl-L-carnitine and Propionylcarnitine level, and decreased levels of Nonanoic acid and Elaidic acid abundance (Graphical abstract). This provides a comprehensive understanding of the most effective and sustainable breeding, production, and rearing systems for Chinese indigenous chickens. It also contributes to the current knowledge of the molecular mechanisms underlying the effects of rearing systems on growth performance and meat quality of chickens.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Felix Kwame Amevor
- State Key Laboratory of Swine and Poultry Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Bincheng Tang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Simeng Qin
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Penghui Fu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China.
| |
Collapse
|
4
|
Wang Q, Du R, Wang Y, Zhang S, Wang L, Wang L. Characterization and Differentiation of Flavor Profile of 12 Air-Dried Yak Meat Products Using GC-IMS and Multivariate Analysis. Foods 2024; 13:2626. [PMID: 39200553 PMCID: PMC11354184 DOI: 10.3390/foods13162626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Volatile organic compounds (VOCs) in food are key factors constituting their unique flavor, while the characteristics of VOCs in air-dried yak meat (AYM) from various regions of the Tibetan Plateau and their inter-regional differences remain unclear. Therefore, this study conducted a comprehensive analysis of VOCs in the five-spice (FS), spicy and numbing (SN), and aromatic and spicy (AS) versions of AYM from four regions of the Tibetan Plateau (Gansu, Qinghai, Sichuan, and Tibet) using gas chromatography-ion mobility spectrometry (GC-IMS) A total of 58 VOCs were identified, with alcohols accounting for 28.40%, ketones 22.89%, aldehydes 18.85%, and terpenes 17.61%. Topographic plots, fingerprint profiles, and multivariate analysis not only distinguished AYM of the same flavor from different regions but also discriminated those of different flavors within the same region. Furthermore, 17 key VOCs were selected as the primary aroma characteristics of the 12 types of AYM, including linalool, 3-methylbutanal, acetone, and limonene. Meanwhile, the differential VOCs for each flavor were determined, with linalyl acetate being unique to the FS, (E)-ocimene and ethyl propanoate being specific to the SN, and 2-methyl-3-(methylthio)furan-D and Hexanal-D being characteristic of the AS flavor. Based on the above results, the flavor of AYM can be improved to suit the taste of most people and increase its consumption.
Collapse
Affiliation(s)
- Qiuyu Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| | - Rongsheng Du
- Sichuan Institute of Musk Deer Breeding, Chengdu 611800, China;
| | - Yuqi Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| | - Shulin Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Lu’an Soyea Electrical Manufactring Co., Ltd., Lu’an 237000, China
| | - Lina Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| |
Collapse
|
5
|
Wang T, Yang L, Xiong Y, Wu B, Liu Y, Qiao M, Zhu C, Wu H, Deng J, Guan J. Characterization of flavor profile of Steamed beef with rice flour using gas chromatography-ion mobility spectrometry combined with intelligent sensory (Electronic nose and tongue). Front Nutr 2024; 11:1435364. [PMID: 39229587 PMCID: PMC11368871 DOI: 10.3389/fnut.2024.1435364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
The intelligent senses (Electronic nose and tongue), were combined with headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and free amino acid were used in combination to determine the aroma and taste components during the processing of Chinese traditional dish Steamed beef with rice flour (SBD). The findings revealed that E-nose and E-tongue, could clearly distinguish and identify the aroma and taste of SBD. A total of 66 volatile substances and 19 free amino acids were identified by HS-GC-IMS and amino acid analyzer, respectively. The highest contribution to aroma in the production of SBD was alcohols, esters and aldehydes. Further analysis of relative odor activity showed that 3-Methylbutanol-D, 3-Methylbutanol-M and 3-Methylthio propanal is the marinating stage (T2) main aroma components. Ethyl 3-methylbutanoate-M and Ethyl 3-methylbutanoate-D were the main aroma components in the seasoning stage (T3). Additionally, the calculation of the taste activity value showed that Glutamic contributed significantly to the umami of SBD. Alanine was a representative taste component in the marinating stage (T2), while Proline, Aspartic, Lysine, Glutamic, Valine, Arginine, and Histidine were characteristic amino acids of the seasoning stage (T3). Consequently, this study offers valuable insights into the industrial-scale production and flavor regulation of SBD products.
Collapse
Affiliation(s)
- Tianyang Wang
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lian Yang
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
| | - Yiling Xiong
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Baozhu Wu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yang Liu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huachang Wu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ju Guan
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Sun X, Yu Y, Wang Z, Akhtar KH, Saleh ASM, Li W, Zhang D. Insights into flavor formation of braised chicken: Based on E-nose, GC-MS, GC-IMS, and UPLC-Q-Exactive-MS/MS. Food Chem 2024; 448:138972. [PMID: 38555691 DOI: 10.1016/j.foodchem.2024.138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Effects of braising duration on volatile organic compounds (VOCs) and lipids in chicken were investigated. Aroma profiles identified by an electronic nose were effective in differentiating braising stages. During braising process, a total of 25 key VOCs were detected in braised chicken, and sample braised for 210 min exhibited the highest level of key VOCs. Additionally, a gas chromatography mass spectrometry fingerprint was established to evaluate the distribution of VOCs throughout the braising process. Partial least square discriminant analysis indicated that 2-heptanone, 3-methyl-2-butanone, octanal, nonanal, butanal, (E)-2-pentenal, 1-octen-3-ol, 1-hexanol, pentanal, hexanal, and 1-pentanol significantly affected flavor characteristics of braised chicken. Furthermore, 88 differential lipids were screened, and glycerolipids metabolic was found to be main metabolic pathway during braising process. Triglycerides (TG) and phosphatidyl ethanolamine (PE), such as TG (16:0/18:1/18:2), TG (18:0/18:1/18:2), TG (18:1/18:2/18:3), TG (18:1/18:1/18:2), PE (O-18:2/18:2), PE(O-18:2/18:1), and TG (16:0/16:1/18:2), played a vital role in the generation of VOCs.
Collapse
Affiliation(s)
- Xiangxiang Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yumei Yu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Kumayl Hassan Akhtar
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
He L, Yang H, Lan F, Chen R, Jiang P, Jin W. Use of GC-IMS and Stoichiometry to Characterize Flavor Volatiles in Different Parts of Lueyang Black Chicken during Slaughtering and Cutting. Foods 2024; 13:1885. [PMID: 38928826 PMCID: PMC11202429 DOI: 10.3390/foods13121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Chilled and cut chicken is preferred by consumers for its safeness and readiness to cook. To evaluate the quality characteristics of various chilled chicken products, differences in volatile organic components (VOCs) of six different cut parts (breast, back, leg, heart, liver, and gizzard) of Lueyang black chicken were characterized through gas chromatography-ion mobility spectroscopy (GC-IMS) combined with stoichiometry. A total of 54 peaks in the signal of VOCs were detected by GC-IMS, and 43 VOCs were identified by qualitative analysis. There were 22 aldehydes (20.66-54.07%), 8 ketones (25.74-62.87%), 9 alcohols (4.17-14.69%), 1 ether (0.18-2.22%), 2 esters (0.43-1.54%), and 1 furan (0.13-0.52%), in which aldehydes, ketones, and alcohols were the main categories. Among the six cut parts, the relative content of aldehydes (54.07%) was the highest in the gizzard, and the relative content of ketones (62.87%) was the highest in the heart. Meanwhile, the relative content of alcohols (14.69%) was the highest in the liver. Based on a stable and reliable predictive model established by orthogonal partial least squares-discriminant analysis (OPLS-DA), 3-hydroxy-2-butanone (monomer and dimer), acetone, 2-butanone monomer, hexanal (monomer and dimer), isopentyl alcohol monomer, and n-hexanol monomer were picked out as characteristic VOCs based on variable importance in projection (VIP value > 1.0, p < 0.05). Principal component analysis (PCA) and the clustering heatmap indicated that the characteristic VOCs could effectively distinguish the six cut parts of Lueyang black chicken. The specific VOCs responsible for flavor differences among six different cut parts of Lueyang black chicken were hexanal (monomer and dimer) for the gizzard, 2-butanone monomer and hexanal dimer for the breast, hexanal monomer for the back, 3-hydroxy-2-butanone monomer for the leg, 3-hydroxy-2-butanone (monomer and dimer) for the heart, and acetone and isopentyl alcohol monomer for the liver. These findings could reveal references for quality assessment and development of chilled products related to different cut parts of Lueyang black chicken in the future.
Collapse
Affiliation(s)
- Linlin He
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (L.H.); (F.L.); (R.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Hui Yang
- Shaanxi Baisheng Biological Engineering Co., Ltd., Hanzhong 723001, China
| | - Fei Lan
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (L.H.); (F.L.); (R.C.)
| | - Rui Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (L.H.); (F.L.); (R.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Pengfei Jiang
- College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Wengang Jin
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (L.H.); (F.L.); (R.C.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| |
Collapse
|
9
|
Yuan D, Liang X, Kong B, Xia X, Cao C, Zhang H, Liu Q, Li X. Influence of seaweed dietary fibre as a potential alternative to phosphates on the quality profiles and flavour attributes of frankfurters. Meat Sci 2024; 213:109511. [PMID: 38598966 DOI: 10.1016/j.meatsci.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study primarily aimed to investigate the influence of seaweed dietary fibre (SDF), as a potential alternative to phosphates, on the quality profiles and flavour attributes of frankfurters. The results revealed that SDF addition can significantly improve the cooking yield and texture characteristics of phosphate-free frankfurters (P < 0.05), and 1.00% SDF proved to be the optimal concentration for replacing phosphates in frankfurters. Moreover, electronic nose and electronic tongue analyses demonstrated that SDF incorporation potentially influences the aroma and taste of phosphate-free frankfurters. Furthermore, volatile compound analysis revealed that SDF addition potentially compensates for the decrease in volatile flavour compound content caused by phosphate deficiency. Generally, our results indicate that SDF can be successfully applied as a potential alternative to phosphates and subsequently improve the quality profiles and flavour attributes of phosphate-free frankfurters. Moreover, they provide valuable theoretical guidance for the processing of phosphate-free emulsified meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Yuan C, Xu C, Chen L, Yang J, Qiao M, Wu Z. Effect of Different Cooking Methods on the Aroma and Taste of Chicken Broth. Molecules 2024; 29:1532. [PMID: 38611810 PMCID: PMC11013132 DOI: 10.3390/molecules29071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A single combi oven, known for its versatility, is an excellent choice for a variety of chicken soup preparations. However, the impact of universal steam ovens on the flavor quality of chicken soup remains unclear. This study aimed to explore the impact of different cooking methods on the aroma and taste of chicken soup. Three cooking methods with various stewing times were compared: ceramic pot (CP), electric pressure cooker (EPC), and combi oven (CO). Analyses were conducted using electron-nose, electron-tongue, gas chromatography-ion mobility spectrometry (GC-IMS), automatic amino acid analysis, and chemometric methods. A total of 14 amino acids, including significant umami contributors, were identified. The taste components of CP and CO chicken soups were relatively similar. In total, 39 volatile aroma compounds, predominantly aldehydes, ketones, and alcohols, were identified. Aldehydes were the most abundant compounds, and 23 key aroma compounds were identified. Pearson's correlation analyses revealed distinct correlations between various amino acids (e.g., glutamic acid and serine) and specific volatile compounds. The aroma compounds from the CP and CO samples showed similarities. The results of this study provide a reference for the application of one-touch cooking of chicken soup in versatile steam ovens.
Collapse
Affiliation(s)
- Can Yuan
- College of Food, Sichuan Tourism University, Chengdu 610100, China
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Chengjian Xu
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Lilan Chen
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Jun Yang
- College of Food, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Zhoulin Wu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Yang Y, Wang Q, Xie J, Deng Y, Zhu J, Xie Z, Yuan H, Jiang Y. Uncovering the Dynamic Alterations of Volatile Components in Sweet and Floral Aroma Black Tea during Processing. Foods 2024; 13:728. [PMID: 38472841 DOI: 10.3390/foods13050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, β-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiayi Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
12
|
Yang Y, Xie J, Wang Q, Deng Y, Zhu L, Zhu J, Yuan H, Jiang Y. Understanding the dynamic changes of volatile and non-volatile metabolites in black tea during processing by integrated volatolomics and UHPLC-HRMS analysis. Food Chem 2024; 432:137124. [PMID: 37633132 DOI: 10.1016/j.foodchem.2023.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Processing technology has an important effect on the flavor quality of black tea. However, the dynamic changes of volatile and non-volatile metabolites in black tea during processing are poorly understood. In this study, the volatile and non-volatile compounds during black tea processing were comprehensively characterized by integrated volatolomics and UHPLC-Q-Exactive/MS analysis. Volatile and non-volatile metabolites changed continuously throughout the processing process, especially during the withering stage. A total of 178 volatile metabolites and 103 non-volatile metabolites were identified. Among them, 11 volatile components with relative odor activity value greater than 1 (including dimethyl sulfide, 3-methylbutanal, 2-methylbutanal, β-myrcene, β-ocimene, linalool, methyl salicylate, β-cyclocitral, β-citral, citral, and β-ionone) were regarded as key aroma-active components responsible for finished black tea with sweet aroma. This study provides a comprehensive understanding of dynamic evolution trajectory of volatile and non-volatile metabolites during processing, which lays a theoretical foundation for the targeted processing of high-quality black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
13
|
Geng D, Chen X, Lu D, Chen B. Discrimination of different edible vegetable oils based on GC-IMS and SIMCA. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2160827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dechun Geng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinyu Chen
- Department of Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Daoli Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
Zhou H, Hu Z, Liu Y, Xiong S. Flavor and sensory profile of Chinese traditional fish noodles produced by different silver carp ( hypophthalmichthys molitrix) mince ingredients. Food Chem X 2023; 20:100977. [PMID: 38144732 PMCID: PMC10740137 DOI: 10.1016/j.fochx.2023.100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/26/2023] Open
Abstract
This study employs sensory evaluation, headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) techniques to investigate the effect of different pretreatment of fresh silver carp mince (running water rinsing 0, 1, or 2 times) and commercially frozen surimi on the odor characteristics of fish noodles. The free choice profiling (FCP) and check all that apply (CATA) sensory analysis methods were utilized to identify 10 characteristic descriptors, which include "grass, fish fragrance, unpleasant fishy, fatty, roast, ammonia, caramel, warmed-over, earthy, and mushroomy". HS-GC-IMS and HS-SPME-GC-MS detected 80 and 37 volatile compounds (VCs) in fish noodles. The 1-Penten-3-ol, (E)-2-pentenal-D, hexanal-D, pentanal-D, (E,E)-2, 4-heptadienal-D contents were significantly correlated with "fish fragrance" and "unpleasant fishy", and octanal, nonanal, heptanal, 2-methylpyrazine contents were significantly correlated with "warmed-over" flavor. The results of this study can be helpful for fish noodle quality improvement and industrial production.
Collapse
Affiliation(s)
- Hongyu Zhou
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Zhiwei Hu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Youming Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| |
Collapse
|
15
|
Duan M, Xu L, Gu T, Sun Y, Xia Q, He J, Pan D, Lu L. Investigation into the characteristic volatile flavor of old duck. Food Chem X 2023; 20:100899. [PMID: 38144818 PMCID: PMC10740054 DOI: 10.1016/j.fochx.2023.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
In order to explore the characteristic aroma flavor and its formation mechanism of old ducks, two ages (30 days and 60 days) of young ducks and three ages of old ducks (300 days, 900 days, and 1500 days) were selected and studied. An electronic nose was applied to evaluate the overall aroma flavor, and the result showed significant differences between the five duck samples. By gas chromatography-mass spectrometry (GC-MS), forty-eight volatile flavor compounds were detected, including seven aldehydes, six esters, five alcohols, five nitrogen compounds, twenty-one hydrocarbons, and four others. Among these compounds, twelve components, such as hexanal and dimethyl anthranilate, were considered as the characteristic flavor compounds along with duck aging. Furthermore, correlation analysis indicated that meat's unsaturated free fatty acids, especially linoleic acid (C18:2), were responsible for the duck's characteristic flavor formation. These data contribute to the flavor research and identification of old ducks.
Collapse
Affiliation(s)
- Mingcai Duan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ligen Xu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Jun He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
16
|
Zhu X, Yang C, Song Y, Qiang Y, Han D, Zhang C. Changes provoked by altitudes and cooking methods in physicochemical properties, volatile profile, and sensory characteristics of yak meat. Food Chem X 2023; 20:101019. [PMID: 38144763 PMCID: PMC10739933 DOI: 10.1016/j.fochx.2023.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
The present study aimed to shed light on the effects of altitudes and three cooking methods (boiling, steaming, and roasting) on the physicochemical quality, volatile profile, and sensorial characteristics of yak meat. Composite meat samples were prepared to represent each cooking method and altitude level from the longissimus thoracis et lumborum (LTL) muscle of nine yaks. The techniques employed were gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) along with chemometrics analysis to study the changes occurring in yak volatile profile, and TBARS measurement in lipid oxidation during cooking. Among the cooking methods, boiling and steaming exhibited higher protein and fat content while lower volatile compound contents. Additionally, roasted yak meat received the highest sensory scores, along with decreased L*-values, while elevated a*- and b*-values, and tenderness. A total of 138 volatile compounds were detected, and among them, 36 odorants were identified as odor-active compounds in cooked yak meat. It is evidenced that low-altitude yak presented more complex and richer flavor profiles than high-altitude ones. Moreover, yak meat from low- and high-altitude was classified into two groups by an electronic nose (E-nose) owing to distinct flavor characteristics. Overall, roasted yak meat originating from low altitudes tends to be more popular from a sensory perspective.
Collapse
Affiliation(s)
- Xijin Zhu
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 7301070, PR China
| | - Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 7301070, PR China
- College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Yu Song
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yu Qiang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Dong Han
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chunhui Zhang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
17
|
Xiang X, Chen L, Dong S, Wang F, Li X, Huang Y, Liu Y, Huang Q, Li S, Ye L. Multiomics reveals the formation pathway of volatile compounds in preserved egg yolk (PEY) induced by NaCl: Based on the model of PEY and salted egg yolk (SEY) treated with/without NaCl. Food Chem 2023; 429:136823. [PMID: 37480774 DOI: 10.1016/j.foodchem.2023.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
The models of preserved egg yolk (PEY) and salted egg yolk both treated with or without NaCl were performed to explore the effect of NaCl on the characteristic volatile compounds (VOCs) in PEY. 1-hexanol, 2-heptanone, isoamyl acetate, etc., compounds were confirmed as the characteristic VOCs in PEY mainly induced by NaCl and the formation of 1-octanol, 2-pentylfuran, ammonia, etc., characteristic VOCs induced by NaCl may depend on the combined effect of Cu2+ and OH-. Among them, 1-hexanol and 2-heptanone were formed from linoleic acid in PS(18:0_18:2) and oleic acid in PG(22:6_18:1), respectively, through multi-omics and correlation analysis. Meanwhile, 1-octanol may originated from β-oxidation of oleic acid in PS(18:1); 2-pentylfuran and ammonia maybe derived from the derivative of aspartate and the degradation of l-methionine, respectively. Moreover, this study provides a new insight to parse the influence of NaCl with/without other exogenous factors on the formation of VOCs in food products.
Collapse
Affiliation(s)
- Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Le Chen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Shiqin Dong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China
| |
Collapse
|
18
|
Sun X, Yu Y, Saleh ASM, Yang X, Ma J, Gao Z, Zhang D, Li W, Wang Z. Characterization of aroma profiles of chinese four most famous traditional red-cooked chickens using GC-MS, GC-IMS, and E-nose. Food Res Int 2023; 173:113335. [PMID: 37803645 DOI: 10.1016/j.foodres.2023.113335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
The aroma profile of the four most popular types of red-cooked chickens in China was analyzed using a combination of gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose (E-nose). Principal component analysis (PCA) demonstrated that the E-nose could successfully distinguish between the four types of red-cooked chickens. Additionally, a fingerprint was created using GC-IMS to examine the variations in volatile organic compounds (VOCs) distribution in the four chicken types. A total number of 84 and 62 VOCs were identified in the four types of red-cooked chickens using GC-MS and GC-IMS, respectively. Odor activity value (OAV) showed that 1-octen-3-ol, heptanal, hexanal, nonanal, octanal, eugenol, dimethyl trisulfide, anethole, anisaldehyde, estragole, and eucalyptol were the key volatile components in all samples. Furthermore, partial least squares-discriminant analysis (PLS-DA) demonstrated that (E, E)-2,4-decadienal, dimethyl trisulfide, octanal, eugenol, hexanal, (E)-2-nonenal, 1-octen-3-ol, butanal, ethyl acetate, ethyl acetate (D), nonanal, and heptanal could be used as markers to distinguish aroma of the four types of red-cooked chickens. Also, it is worth noting that levels of VOCs varied between chicken breast muscle and skin. The obtained results offer theoretical and technological support for flavor identification and control in red-cooked chickens to enhance their quality and encourage consumer consumption, which will be advantageous for the red-cooked chicken production chain.
Collapse
Affiliation(s)
- Xiangxiang Sun
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yumei Yu
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Xinyu Yang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jiale Ma
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziwu Gao
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Zhenyu Wang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
19
|
Shen C, Cai Y, Ding M, Wu X, Cai G, Wang B, Gai S, Liu D. Predicting VOCs content and roasting methods of lamb shashliks using deep learning combined with chemometrics and sensory evaluation. Food Chem X 2023; 19:100755. [PMID: 37389322 PMCID: PMC10300318 DOI: 10.1016/j.fochx.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
A comparison was made between the traditional charcoal-grilled lamb shashliks (T) and four new methods, namely electric oven heating (D), electric grill heating (L), microwave heating (W), and air fryer treatment (K). Using E-nose, E-tongue, quantitative descriptive analysis (QDA), and HS-GC-IMS and HS-SPME-GC-MS, lamb shashliks prepared using various roasting methods were characterized. Results showed that QDA, E-nose, and E-tongue could differentiate lamb shashliks with different roasting methods. A total of 43 and 79 volatile organic compounds (VOCs) were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. Unsaturated aldehydes, ketones, and esters were more prevalent in samples treated with the K and L method. As a comparison to the RF, SVM, 5-layer DNN and XGBoost models, the CNN-SVM model performed best in predicting the VOC content of lamb shashliks (accuracy rate all over 0.95) and identifying various roasting methods (accuracy rate all over 0.92).
Collapse
Affiliation(s)
- Che Shen
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Yun Cai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Meiqi Ding
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xinnan Wu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Guanhua Cai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Bo Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengmei Gai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
20
|
Xiong X, Ma J, He Q, Chen X, Wang Z, Li L, Xu J, Xie J, Rao Y. Characteristics and potential biomarkers of flavor compounds in four Chinese indigenous chicken breeds. Front Nutr 2023; 10:1279141. [PMID: 37899822 PMCID: PMC10600453 DOI: 10.3389/fnut.2023.1279141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Chinese indigenous chickens have a long history of natural and artificial selection and are popular for their excellent meat quality and unique flavor. This study investigated six meat quality-related traits in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens. Two-dimensional gas chromatography-time-of-flight mass spectrometry was used to detect unique flavors in 24 breast muscle samples from the same phenotyped chickens. Overall, 685, 618, 502, and 487 volatile organic compounds were identified in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components were separated into eight categories, including hydrocarbons and aldehydes. Multivariate analyses of the identified flavor components revealed some outstanding features of these breeds. For example, the hydrocarbons (22.09%) and aldehydes (14.76%) were higher in Ningdu yellow chickens and the highest content of N, N-dimethyl-methylamine was in Ningdu yellow, Baier yellow, and Shengze 901 chickens, indicating the maximum attribution to the overall flavor (ROAV = 439.57, 289.21, and 422.80). Furthermore, we found that 27 flavor compounds differed significantly among the four Chinese breeds, including 20 (e.g., 1-octen-3-ol), two (e.g., 2-methyl-naphthalene), four (e.g., 2,6-lutidine), and one (benzophenone) flavor components were showed significant enrichment in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components enriched in each breed were key biomarkers distinguishing breeds and most were significantly correlated with meat quality trait phenotypes. These results provide novel insights into indigenous Chinese chicken meat flavors.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jinge Ma
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Qin He
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhangfeng Wang
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Longyun Li
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jiguo Xu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| |
Collapse
|
21
|
Song Z, Cao Y, Qiao H, Wen P, Sun G, Zhang W, Han L. Analysis of the effect of Tenebrio Molitor rennet on the flavor formation of Cheddar cheese during ripening based on gas chromatography-ion mobility spectrometry (GC-IMS). Food Res Int 2023; 171:113074. [PMID: 37330834 DOI: 10.1016/j.foodres.2023.113074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to evaluate the potential application of Tenebrio Molitor rennet (TMR) in Cheddar cheese production, and to use gas chromatography-ion mobility spectrometry (GC-IMS) to monitor flavor compounds and fingerprints of cheese during ripening. The results indicated that Cheddar cheese prepared from TMR (TF) has fat content significantly lower than that of commercial rennet (CF) (p < 0.05). However, the results of the sensory evaluation showed that there were no statistically significant differences between the two kinds of cheese (p > 0.05). Both cheeses were rich in free amino acids and free fatty acids. Compared to the CF cheese, gamma-aminobutyric acid and Ornithine contents of the TF cheese reached 187 and 749 mg/kg, respectively, during 120 days of ripening. Moreover, GC-IMS provided information on the characteristics of 40 flavor substances (monomers and dimers) in the TF cheese during ripening. Only 30 flavor substances were identified in the CF cheese. The fingerprint of the two kinds of cheese during ripening can be established by GC-IMS and principal component analysis based on the identified flavor compounds. Therefore, TMR has potential application in Cheddar cheese production. GC-IMS might be applied for the quick, accurate and comprehensive monitoring of cheese flavor during ripening.
Collapse
Affiliation(s)
- Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Haijun Qiao
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Guozheng Sun
- Qingyang Food Inspection and Testing Center, Qingyang, Gansu, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
22
|
Martín-Gómez A, Rodríguez-Hernández P, Cardador MJ, Vega-Márquez B, Rodríguez-Estévez V, Arce L. Guidelines to build PLS-DA chemometric classification models using a GC-IMS method: Dry-cured ham as a case of study. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Wang Y, Wang X, Huang Y, Yue T, Cao W. Analysis of Volatile Markers and Their Biotransformation in Raw Chicken during Staphylococcus aureus Early Contamination. Foods 2023; 12:2782. [PMID: 37509874 PMCID: PMC10379977 DOI: 10.3390/foods12142782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
To address the potential risks to food safety, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to analyze the volatile organic compounds (VOCs) generated from chilled chicken contaminated with Staphylococcus aureus during early storage. Together with the KEGG database, we analyzed differential metabolites and their possible biotransformation pathways. Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to characterize VOCs and identify biomarkers associated with the early stage of chicken meat contamination with S. aureus. The results showed 2,6,10,15-tetramethylheptadecane, ethyl acetate, hexanal, 2-methylbutanal, butan-2-one, 3-hydroxy-2-butanone, 3-methylbutanal, and cyclohexanone as characteristic biomarkers, and 1-octen-3-ol, tetradecane, 2-hexanol, 3-methyl-1-butanol, and ethyl 2-methylpropanoate as potential characteristic biomarkers. This provides a theoretical basis for the study of biomarkers of Staphylococcus aureus in poultry meat.
Collapse
Affiliation(s)
- Yin Wang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xian Wang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuanyuan Huang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Cao
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
24
|
He S, Zhang B, Dong X, Wei Y, Li H, Tang B. Differentiation of Goat Meat Freshness Using Gas Chromatography with Ion Mobility Spectrometry. Molecules 2023; 28:molecules28093874. [PMID: 37175284 PMCID: PMC10179894 DOI: 10.3390/molecules28093874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate the flavor changes in goat meat upon storage, the volatile components observed in goat meat after different storage periods were determined using gas chromatography-ion mobility spectrometry (GC-IMS). A total of 38 volatile organic compounds (VOCs) were determined from the goat meat samples, including alcohols, ketones, aldehydes, esters, hydrocarbons, ethers, and amine compounds. 1-Hexanol, 3-Hydroxy-2-butanone, and Ethyl Acetate were the main volatile substances in fresh goat meat, and they rapidly decreased with increasing storage time and can be used as biomarkers for identifying fresh meat. When combined with the contents of total volatile basic-nitrogen (TVB-N) and the total numbers of bacterial colonies observed in physical and chemical experiments, the characteristic volatile components of fresh, sub-fresh, and spoiled meat were determined by principal component analysis (PCA). This method will help with the detection of fraudulent production dates in goat meat sales.
Collapse
Affiliation(s)
- Shan He
- College of Food and Bioengineering, Bengbu University, Bengbu 233000, China
| | - Bin Zhang
- College of Food and Bioengineering, Bengbu University, Bengbu 233000, China
| | - Xuan Dong
- College of Food and Bioengineering, Bengbu University, Bengbu 233000, China
| | - Yuqing Wei
- College of Food and Bioengineering, Bengbu University, Bengbu 233000, China
| | - Hongtu Li
- College of Food and Bioengineering, Bengbu University, Bengbu 233000, China
| | - Bo Tang
- College of Food and Bioengineering, Bengbu University, Bengbu 233000, China
| |
Collapse
|
25
|
Shen C, Cai Y, Wu X, Gai S, Wang B, Liu D. Characterization of selected commercially available grilled lamb shashliks based on flavor profiles using GC-MS, GC × GC-TOF-MS, GC-IMS, E-nose and E-tongue combined with chemometrics. Food Chem 2023; 423:136257. [PMID: 37172501 DOI: 10.1016/j.foodchem.2023.136257] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
HS-SPME-GC-MS, SPME-Arrow-GC × GC-TOF-MS, HS-GC-IMS, Electronic-nose, and Electronic-tongue systems were applied in a feasibility study of the flavor characterization of five commercially available Chinese grilled lamb shashliks. A total of 198 volatile organic compounds (VOCs) were identified (∼71% by GC × GC-TOF-MS). Using data fusion strategies, five predictive models were applied to the composition of VOCs and brand identification of the lamb shashliks. Compared with partial least squares regression, support vector machine, deep neural network, and RegBoost modeling, a momentum deep belief network model performed best in predicting VOCs content and identifying shashlik brands (R2 above 0.96, and RMSE below 0.1). Intelligent sensory technology combined with chemometrics is a promising approach to the flavor characterization of shashliks and other food matrices.
Collapse
Affiliation(s)
- Che Shen
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Yun Cai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xinnan Wu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengmei Gai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Bo Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, China.
| |
Collapse
|
26
|
Xie H, Meng L, Guo Y, Xiao H, Jiang L, Zhang Z, Song H, Shi X. Effects of Volatile Flavour Compound Variations on the Varying Aroma of Mangoes ' Tainong' and ' Hongyu' during Storage. Molecules 2023; 28:molecules28093693. [PMID: 37175103 PMCID: PMC10179933 DOI: 10.3390/molecules28093693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The aroma, taste, and flavour profiles of mango cultivars vary, directly influencing their marketability and consumer acceptance. In this study, we explored the effects of volatile organic compounds (VOCs) on the distinct aromas of two mango cultivars during storage using GC-IMS and HS-SPME-GC-MS combined with OPLS-DA analysis. Our findings revealed that the terpene and aldehyde contents were higher in the 'Tainong' mango cultivar, compared to the 'Hongyu' mango, while the ester content was lower. The aroma was attributed to the presence of terpinolene, 2-nonenal, delta-carene, and alpha-phellandrene in the early stages of storage, and later-between 5 and 11 days-to ethyl acetate, ethyl butyrate, and ethyl propanoate. Further analysis of characteristic VOCs using OPLS-DA demonstrated and explained the strong grassy aroma of the 'Tainong' mango, and the strong fruity and sweet aromas of the 'Hongyu' mango. Additionally, esters mainly accumulated during the later periods of storage, especially propyl butyrate, which was produced and accumulated when fruit quality deteriorated in the later storage period. Our study provides a theoretical basis for detecting mango VOCs during storage to determine the appropriate marketing time for the two mango cultivars and enables informed consumer choice.
Collapse
Affiliation(s)
- Huiwen Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lanhuan Meng
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ying Guo
- Department Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hongmei Xiao
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haichao Song
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xuequn Shi
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
27
|
Zhao P, Li N, Chen L, Guo Y, Huang Y, Tong L, Wang L, Fan B, Wang F, Liu L. Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt. Molecules 2023; 28:molecules28073067. [PMID: 37049830 PMCID: PMC10096348 DOI: 10.3390/molecules28073067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
This study investigated the effect of oat β-glucan as a fat substitute on the structure formation, texture, and sensory properties of pea protein yogurt. The results showed that the incorporation of 0.5% β-glucan significantly accelerated the lactic acid bacteria-induced fermentation, with the time for reaching the target pH of 4.6 shortened from 3.5 h to 3 h (p < 0.05); increased the plastic module (G′) from 693 Pa to 764 Pa when fermenting 3 h (p < 0.05); and enhanced the water-holding capacity from 77.29% to 82.15% (p < 0.05). The identification of volatile organic compounds (VOCs) in low-fat pea protein yogurt by GC-IMS revealed a significant decrease in aldehydes and a significant increase in alcohols, ketones and acids in the pea yogurt after fermentation (p < 0.05). Among them, the levels of acetic acid, acetone, 2,3-butanedione, 3-hydroxy-2-butanone, and ethyl acetate all significantly increased with the addition of oat β-glucan (p < 0.05), thereby providing prominent fruity, sweet, and creamy flavors, respectively. Combined with the results of sensory analysis, the quality characteristics of pea protein yogurt with 1% oil by adding 1% oat β-glucan were comparable to the control sample with 3% oil. Therefore, oat β-glucan has a good potential for fat replacement in pea protein yogurt.
Collapse
|
28
|
Wang Y, Tang M, Ma Y, Xu B. Isolation, identification and spoilage capability of dominant spoilage bacteria on Dezhou-braised chicken with different packaging. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
29
|
Wei G, Dan M, Zhao G, Wang D. Recent advances in chromatography-mass spectrometry and electronic nose technology in food flavor analysis and detection. Food Chem 2023; 405:134814. [DOI: 10.1016/j.foodchem.2022.134814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
30
|
Li B, Zhang T, Dai Y, Jiang G, Peng Y, Wang J, Song Y, Ding Z. Effects of probiotics on antioxidant activity, flavor compounds and sensory evaluation of Rosa roxburghii Tratt. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
31
|
Duan S, Tang X, Li W, Huang X. Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS. Molecules 2023; 28:molecules28041726. [PMID: 36838714 PMCID: PMC9961950 DOI: 10.3390/molecules28041726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
As the main consumed meat of Chinese residents, pork has a unique flavor, but the internal volatile organic compounds that cause the flavor differences between pork muscles are not clear at present. In this study, four muscles of Duroc × (Landrace × Yorkshire) pigs (loin, ham, shoulder and belly) were used as experimental subjects. Through the analysis of volatile organic compounds in four muscles of pork, the internal volatile organic compounds of different muscles of pork were discussed. Gas chromatography-ion mobility spectrometry was employed to analyze the four muscles, and volatile organic compounds in these muscles were analyzed and identified. A total of 65 volatile organic compound peaks were obtained by gas chromatography-ion mobility spectrometry. From the qualitative database, a total of 49 volatile organic compounds were identified, including aldehydes, alcohols and ketones. With the variable importance for the projection greater than 1 and significance level less than 0.05 as the criterion, the organic compounds with significant differences were screened by partial least squares-discriminant analysis and significance difference analysis. It was determined that 2-pentylfuran, 2-butanone (M), pentanal (M), butanal (D), (E)-2-hexenal, (E)-2-heptenal (D), 1,2-propanediol and 2-methylpropanal were the differential organic compounds that distinguish the four pork muscles.
Collapse
Affiliation(s)
- Shengnan Duan
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyan Tang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: ; Tel./Fax: +86-10-82106563
| | - Wusun Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyuan Huang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
32
|
Huang D, Li M, Wang H, Fu M, Hu S, Wan X, Wang Z, Chen Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
33
|
Liao Y, Ding Y, Wu Y, Du Q, Xia J, Jia J, Lin H, Benjakul S, Zhang B, Hu Y. Analysis of volatile compounds and flavor fingerprint in hairtail ( Trichiurus lepturus) during air-drying using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Front Nutr 2023; 9:1088128. [PMID: 36712508 PMCID: PMC9875018 DOI: 10.3389/fnut.2022.1088128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
In the present study, changes in volatile compounds during processing were analyzed using the headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), to investigate the generation of aroma in hairtails (Trichiurus lepturus) during air-drying. Physicochemical indices, such as moisture content and thiobarbituric acid reactive substances (TBARS), were also detected. Flavor fingerprints were studied and developed to distinguish the samples of fresh hairtails (0 day) from air-dried hairtails (2 and 4 days). A total of 75 volatile organic compounds (VOCs) were identified in hairtails, in which alcohols, aldehydes, ketones, and esters were the principal contributors to the formation of the overall flavor of hairtails during air-drying. Seven flavor compounds (ethanol, 3-methyl-1-butanol, 1-pentanol, hexanal, octanal, benzaldehyde, and 3-methylbutanal), two flavor compounds (acetoin and dimethyl sulfide), and eight flavor compounds (1-hexanol, 1-octen-3-ol, nonanal, heptanal, 2-heptanone, ethyl acetate, trimethylamine, and ammonia) were identified in 0, 2, and 4 air-dried hairtails as biomarkers, respectively. The results showed that HS-GC-IMS could detect VOCs in different air-dried hairtails rapidly and comprehensively.
Collapse
Affiliation(s)
- Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yixuan Ding
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jiangyue Xia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Junqi Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Huimin Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,*Correspondence: Huimin Lin ✉ ; ✉
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,Bin Zhang ✉ ; ✉
| | - Yi Hu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
34
|
Li J, Han D, Huang F, Zhang C. Effect of reheating methods on eating quality, oxidation and flavor characteristics of Braised beef with potatoes dish. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Effect of Cold-Plasma-Treated Phosphate Solution to Substitute Partial Nitrite on the Color, Texture, and Flavor of Smoked Sausage. Bioengineering (Basel) 2022; 9:bioengineering9120794. [PMID: 36551000 PMCID: PMC9774416 DOI: 10.3390/bioengineering9120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are several alternative technologies to nitrite use in meat products, including cold plasma. In this study, a cold-plasma-treated phosphate solution was added to smoked sausage, as a new ingredient. Subsequently, the color, texture, and flavor of the samples were analyzed. The results showed that, compared with nitrite (0.075 g/kg nitrite added to sausage), the addition of 30~90% nitrite and cold-plasma-treated phosphate solution had no significant effect on the a* value or the relative content of oxygenated myoglobin (p > 0.05). The amount of residual nitrite in the smoked sausage prepared with the addition of 30~70% nitrite and cold-plasma-treated phosphate solution was significantly lower than that of the nitrite-treated group. The addition of nitrite combined with cold-plasma-treated phosphate solution had no significant effects on the texture (hardness, springiness, cohesiveness, and resilience) or the sensory evaluation of the smoked sausage. A total of 69 volatile compounds were detected, and 20 of them had VIP (Variable Importance Plot) scores higher than one. In conclusion, cold plasma treatment represents a potential technology to partially substitute nitrite. This study provides new methods for the application of this nitrite substitute.
Collapse
|
36
|
Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata ‘chachi’ peel at different collection periods using gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Li P, Zhou H, Wang Z, Al-Dalali S, Nie W, Xu F, Li C, Li P, Cai K, Xu B. Analysis of flavor formation during the production of Jinhua dry-cured ham using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Meat Sci 2022; 194:108992. [PMID: 36170784 DOI: 10.1016/j.meatsci.2022.108992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/04/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to clarify the formation process of flavor compounds and identify the volatile substances present during a continuous period of Jinhua dry-cured ham (JDH) making. Via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), a total of 53 volatile organic compounds (VOCs), including 20 aldehydes, 16 alcohols, 11 ketones, 5 esters and 1 furan, were identified in JDH from seven sampling stages. The results showed that butanal, 3-methylbutanal, 2-methylbutanal, 2-hexanone, 2-pentanone and 2-butanone could be flavor markers in the evolution of aroma characteristics of JDH. Aldehydes (2-methylbutanal and 3-methylbutanal), alcohols (2-methylpropanol, 2-methylbutanol, 3-methylbutanol and 1-penten-3-ol), ketones (2-pentanone, 2-propanone, 2-butanone and 2-hexanone) and esters (ethyl acetate and ethyl 3-methylbutyrate) were considered the main VOCs in the mature JDH. Free fatty acid (FFA) analysis displayed the changes in intramuscular fat (IMF) of JDH. Additionally, principal component analysis (PCA) showed that drying-ripening was a critical stage in the flavor formation of JDH.
Collapse
Affiliation(s)
- Ping Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Zhiqi Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kezhou Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
38
|
Xu P, Liu L, Liu K, Wang J, Gao R, Zhao Y, Bai F, Li Y, Wu J, Zeng M, Xu X. Flavor formation analysis based on sensory profiles and lipidomics of unrinsed mixed sturgeon surimi gels. Food Chem X 2022; 17:100534. [DOI: 10.1016/j.fochx.2022.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
|
39
|
Chi X, Guo H, Zhang Y, Zheng N, Liu H, Wang J. E-nose, E-tongue Combined with GC-IMS to Analyze the Influence of Key Additives during Processing on the Flavor of Infant Formula. Foods 2022; 11:foods11223708. [PMID: 36429300 PMCID: PMC9689958 DOI: 10.3390/foods11223708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
In order to analyze the influence of key additives during processing on the flavor of infant formula, the headspace-gas chromatography-ion mobility spectrometry, electronic tongue, and electronic nose techniques were used to evaluate flavor during the processing of stage 1 infant formula milk powder (0-6 months), including the analysis of seven critical additives. A total of 41 volatile compounds were identified, involving 12 aldehydes, 11 ketones, 9 esters, 4 olefins, 2 alcohols, 2 furans, and 1 acid. The electronic nose metal oxide sensor W5S had the highest response, followed by W1S and W2S, illustrating that these three sensors had great effects on distinguishing samples. The response results of the electronic tongue showed that the three sensory attributes of bitter, salty, and umami, as well as the richness of aftertaste, were more prominent, which contributed significantly to evaluating the taste profile and distinguishing among samples. Raw milk is an essential control point in the flavor formation process of stage 1 infant formula milk powder. Demineralized whey powder is the primary source of potential off-flavor components in hydrolyzed milk protein infant formula. This study revealed the quality characteristics and flavor differences of key additives in the production process of stage 1 infant formula milk powder, which could provide theoretical guidance for the quality control and sensory improvement of the industrialized production of infant formula.
Collapse
Affiliation(s)
- Xuelu Chi
- College of Animal Science, Xinjiang Agriculture University, Urumchi 830091, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongxia Guo
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (H.L.); (J.W.)
| | - Jiaqi Wang
- College of Animal Science, Xinjiang Agriculture University, Urumchi 830091, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (H.L.); (J.W.)
| |
Collapse
|
40
|
Development of Flavor and Taste Components of Sous-Vide-Cooked Nile Tilapia ( Oreochromis niloticus) Fillet as Affected by Various Conditions. Foods 2022; 11:foods11223681. [PMID: 36429273 PMCID: PMC9689723 DOI: 10.3390/foods11223681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to shed light on the association between non-volatile and volatile compounds related to flavor/taste characteristics as well as sensory acceptability of Nile tilapia fillet (Oreochromis niloticus) cooked by various sous-vide (SV) conditions (50−60 ℃, 30−60 min), with fish cooked with boiling water used as control. Higher temperatures and longer processing times of SV cooking led to greater protein and lipid oxidation as indicated by the increase in total sulfhydryl (-SH), carbonyl, free fatty acid (FFA) contents as well as peroxide values (PV) and thiobarbituric acid reactive substance (TBARS) values. The differences in flavor/taste components including adenosine triphosphate (ATP)-related compounds, free amino acids (FAAs) and volatiles were also obtained, which directly affect sensory acceptability as evaluated by using the hedonic scale. Based on principal component analysis (PCA) results, the acceptability score was strongly correlated with inosine monophosphate (IMP) and acetoin, which seem to be the most crucial flavor enhancers for cooked tilapia. Among all samples, tilapia processed at 60 °C for 45 and 60 min, which contained significantly higher IMP and acetoin (p < 0.05) than others, had significantly higher flavor-liking and overall-liking scores, with a more than 7.5 meaning for high acceptability (p < 0.05), indicating the optimal SV conditions for tilapia fillet. Overall, the present finding indicated that the SV-cooking technique, at the optimal conditions, can improve the meat quality of cooked fish, in terms of flavor/taste characteristics, compared with traditional cooking (control).
Collapse
|
41
|
Sun W, Ji H, Zhang D, Zhang Z, Liu S, Song W. Evaluation of Aroma Characteristics of Dried Shrimp (Litopenaeus vannamei) Prepared by Five Different Procedures. Foods 2022; 11:foods11213532. [PMID: 36360145 PMCID: PMC9658951 DOI: 10.3390/foods11213532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Litopenaeus vannamei is one of the most popular shrimp species in the world and has been reported in studies on its dryness and flavor. However, the aroma characteristics of shrimps dried with different drying methods are compared in a unified way, and there are few reports on the difference in aroma of different shrimps dried. In order to clarify the difference in aroma characteristics of shrimp dried produced by different drying methods. In this study, blanched shrimp (BS) was used as a control to analyze the aroma characteristics of shrimp dried by five different procedures (SD-BFDP) samples, namely vacuum freeze-dried shrimp (VFDS), vacuum dried-shrimp (VDS), heat pump-dried shrimp (HPDS), hot air dried-shrimp (HADS) and microwave vacuum-dried shrimp (MVDS). An electronic nose (E-nose) was used to obtain the aroma fingerprint of SD-BFDP samples. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for qualitative and quantitative analysis of volatile compounds in SD-BFDP samples. Partial least squares regression (PLSR) was used to analyze potential correlations between sensory attributes and aroma-active compounds (AACs). Partial least squares-discrimination analysis (PLS-DA) was used to screen for signature aroma compounds. The results of the E-nose showed that there were differences in the aroma fingerprints of the SD-BFDP samples, and the E-nose could distinguish the five kinds of SD-BFDP. The qualitative and quantitative results of GC-MS showed that the types and contents of the main volatile components of SD-BFDP samples were different. 15 AACs were screened from SD-BFDP based on odor activity value (OAV). The PLSR results showed good correlations between certain sensory attributes and the majority of AACs. PLS-DA results displayed that aroma attributes of SD-BFDP samples could be distinguished by six signature aroma compounds, including trimethylamine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, nonanal, 3-ethyl-2,5-dimethylpyrazine, and octanal. These research results reveal that shrimps dried in different procedures have unique aroma characteristics, which could provide a theoretical basis for the rapid identification of aroma attributes of dried shrimps in the future. From a flavor perspective, MVD is the best drying method.
Collapse
Affiliation(s)
- Weizhen Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongwu Ji
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zewei Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
42
|
Yu J, Lu K, Zi J, Yang X, Zheng Z, Xie W. Halophilic bacteria as starter cultures: A new strategy to accelerate fermentation and enhance flavor of shrimp paste. Food Chem 2022; 393:133393. [DOI: 10.1016/j.foodchem.2022.133393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
43
|
The impact of sous vide braising on the sensory characteristics and heterocyclic amines contents of braised chicken. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Comparative Studies on the Physicochemical and Volatile Flavour Properties of Traditional Deep Fried and Circulating-Air Fried Hairtail ( Trichiurus lepturus). Foods 2022; 11:foods11172710. [PMID: 36076895 PMCID: PMC9455639 DOI: 10.3390/foods11172710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to investigate the effects of deep frying (DF) and air frying (AF) on the quality and flavour profile of hairtail (Trichiurus lepturus) fillets. The changes of some physicochemical indices such as moisture content, oil content, colour, thiobarbituric acid reactive substances (TBARS) and peroxide values (POV) in hairtail fillets were detected with increasing frying time. According to these physicochemical indices and sensory evaluation, deep frying for 7 min under 190 °C (DF7) and air frying for 24 min under 190 °C (AF24) were selected as samples for their great quality. The flavour fingerprint of hairtail (Raw, DF7, AF24) was developed and volatile compounds were investigated by HS-GC-IMS. A total of 28 volatile substances including aldehydes, alcohols, ketones and others were identified both in the DF7 and AF24 samples. There are differences in the aroma fingerprint between the DF7 and AF24 samples. DF was characterised by 2-Heptanone, (E)-2-Heptenal, 2-Pentyfuran and 1-Pentanol, AF was characterised by 2-methylbutanol, Ethyl methyl ketone-M and 3-hydroxy-2-butanone. These findings suggest that the aroma of hairtail fillets after DF7 and AF24 was significantly different and supply flavour information and practical applications of the fried hairtail fillets.
Collapse
|
45
|
Deng S, Liu R, Li C, Xu X, Zhou G. Meat quality and flavor compounds of soft-boiled chickens: Effect of Chinese yellow-feathered chicken breed and slaughter age. Poult Sci 2022; 101:102168. [PMID: 36228527 PMCID: PMC9573924 DOI: 10.1016/j.psj.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this research was to investigate the effects of Mahuang and Tuer chickens, 2 representatives of the native chicken breed, and the slaughter age on meat quality and flavor compounds of soft-boiled chickens (SCs) in comparison to a commercial cross boiler. A total of 432 chicks were randomly allocated into the following groups: 817 groups raised for 55 d, and Mahuang and Tuer chickens raised for 60, 65, 70, and 75 days (d). After the completion of rearing period, the chickens were slaughtered, and 5 carcasses per group were randomly selected for SC manufacturing. Meat quality was determined based on product yield, pH, color, meat tenderness, and textural and sensorial attributes. The volatile compounds of chicken breast were identified by gas chromatography-ion mobility spectrometry (GC-IMS). The results showed that the yellow-feathered chicken breed, especially Mahuang chicken, had a higher product yield, and lower shear force and sensorial scores than the cross broiler. The pH, L* and b* values in SC breast meat were not significantly influenced by breed (P > 0.05), while greater a* was observed in SC of yellow-feathered chickens compared to cross broilers. The slaughter age had a significant effect on the pH, color, shear force, and textural properties of SC (P < 0.05). The meat tenderness of SC was significantly decreased as the age of chicken increased from 65 d to 75 d (P < 0.05). The relatively young age of yellow-feathered chickens (60 d and 65 d) was rated to have a higher overall sensory score of SC (P < 0.05). A total of 65 organic volatile compounds were identified in SC, including 18 aldehydes, 16 alcohols, 10 ketones, 9 esters, 2 acids, 3 furans, 5 pyrazines, and 2 sulfur-containing compounds. Three chicken breeds were separately clustered in the plot of principal component analysis, indicating breed-specific flavor characteristics. Collectively, the present study provides valuable information for SC processing in terms of carcass selection of yellow-feathered chicken breeds and slaughter age.
Collapse
Affiliation(s)
- Shaolin Deng
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Yang Y, Qian MC, Deng Y, Yuan H, Jiang Y. Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC × GC-TOFMS. Food Chem 2022; 387:132813. [DOI: 10.1016/j.foodchem.2022.132813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
|
47
|
Zhang L, Badar IH, Chen Q, Xia X, Liu Q, Kong B. Changes in flavor, heterocyclic aromatic amines, and quality characteristics of roasted chicken drumsticks at different processing stages. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
HS-SPME-GC-MS and OAV analyses of characteristic volatile flavour compounds in salt-baked drumstick. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Li C, Al-Dalali S, Wang Z, Xu B, Zhou H. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC-MS-O, GC-IMS, and E-nose. Food Chem 2022; 386:132728. [PMID: 35509168 DOI: 10.1016/j.foodchem.2022.132728] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
To clarify the characteristic aroma substances of water-boiled salted duck (WSD), headspace-gas chromatography-mass spectrometry-olfactometry (HS-GC-MS-O), gas chromatography-ion mobility spectrometry (GC-IMS) combined with an electronic nose (E-nose) were used to analyze the volatile flavor profile of three types of WSD (containing four samples). Thirty-one and fifty volatile flavor components were identified by GC-MS and GC-IMS, including aldehydes, alcohols, esters, ketones, hydrocarbons, and others. The characteristic aroma compounds of WSD, including pentanal, hexanal, heptanal, octanal, nonanal, (E)-2-octenal, benzaldehyde, (E)-2-nonenal, decanal, 1-octen-3-ol, 1-octanol, 1-pentanol, ethyl acetate, d-limonene, and 2-pentylfuran, were confirmed by GC-O, odor activity values (OAVs), and aroma-recombination and omission experiments. The aroma description of these aroma-active compounds can be divided into 6 categories, namely, "fruity", "mushroom", "fat", "sweet", "faint scent" and "potato, scorch" aromas. The difference between samples was mainly caused by the differential volatile compounds, followed by the identification method.
Collapse
Affiliation(s)
- Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Agricultural Products Processing, Hefei 230601, Anhui, China.
| |
Collapse
|
50
|
Wang Y, Jiang L, An D, Zhao Y, He Y, Wu F, Zhao H, Lu X, Lu H. Analysis of volatile flavor changes of sea urchin gonads and phospholipids after heating based on
GC‐IMS. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Youjun Wang
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| | - Lu Jiang
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
| | - Dongping An
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| | - Yangmeijin Zhao
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| | - Yuxuan He
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| | - Fangbing Wu
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
| | - Hui Zhao
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| | - Xuefeng Lu
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| | - Hang Lu
- College of Food Science and Engineering Dalian Ocean University, Heishijiao Street, Dalian 116023 China
- Jiangsu Key Laboratory of Marine Bioresources and Environment Jiangsu Ocean University Cangwu Road, Lianyungang 222005 China
- Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street Dalian Polytechnic University 116034 Dalian China
| |
Collapse
|