1
|
Liu Q, Xiong X, Lin H, Zhang L, Chen N, Liu X, Liu T. Antifungal effect of cinnamon essential oil against Penicillium oxalicum on rice noodles. J Food Sci 2024; 89:6638-6652. [PMID: 39289796 DOI: 10.1111/1750-3841.17363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Plant essential oils have been extensively investigated for their application in food industry due to their broad antimicrobial spectrum and safety. However, rare studies investigated their application in decontaminating rice noodles from fungal contamination. In this study, the cinnamon essential oil was screened out among 12 species of plant essential oils, and its antifungal activity against Penicillium oxalicum isolated from rice noodles was investigated. Our study revealed that cinnamon essential oil inhibited the spore germination in a concentration-dependent manner, and a dosage of 0.025% (v/v) could entirely disable the spore germination. The disruption of the fungal plasma membrane was evidenced by the change of plasma membrane permeability and the leakage of cellular components. The cinnamon essential oil in vapor phase (0.00625% [v/v]) could totally inhibit the growth of fungi inoculated on rice noodles. In addition to the potential application in inactivating fungi germination on rice noodles, this study also demonstrated the feasibility of cinnamon essential as an environmental disinfectant. This study is the first report that cinnamon essential oil has been studied for decontaminating rice noodles from fungal contamination with P. oxalicum, which not only broadens the application field of plant essential oil but also provides an alternative approach for rice noodle preservation.
Collapse
Affiliation(s)
- Qun Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing, China
| | - Xiaodi Xiong
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hua Lin
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou, China
| | - Lixiang Zhang
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, Harbin, China
| | - Naizhong Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing, China
| | - Xing Liu
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing, China
| |
Collapse
|
2
|
Akaber S, Ramezan Y, Reza Khani M. Effect of post-harvest cold plasma treatment on physicochemical properties and inactivation of Penicillium digitatum in Persian lime fruit. Food Chem 2024; 437:137616. [PMID: 37866339 DOI: 10.1016/j.foodchem.2023.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Cold atmospheric plasma (CAP) treatment is used in this study to inactivate Penicillium digitatum in lime fruit at post-harvest. Limes were inoculated manually withP. digitatum spore (106 CFU/fruit) and then were treated with CAP at 30, 60, 90, and 120 s and compared with untreated samples. The results showed that increasing the exposure time of CAP reduced spores to less than 7 CFU/fruit in 120 s on the lime peel. In the treated samples, antioxidant activity had an upward trend. In addition, phenolic compounds, vitamin C, density, soluble solid content (SSC), color, and pH of the lime juice were increased (P < 0.05). Compared to the control sample, no significant changes were observed in the juice yield percentage, texture, acidity, chlorophyll, and carotenoid (P > 0.05). The best exposure for CAP treatment was 60 s since it increased phenolic compounds, antioxidant activity, and vitamin C content in the lime juice.
Collapse
Affiliation(s)
- Sana Akaber
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, 1983963113, Iran
| |
Collapse
|
3
|
Wang Y, Yu M, Xie Y, Ma W, Sun S, Li Q, Yang Y, Li X, Jia H, Zhao R. Mechanism of inactivation of Aspergillus flavus spores by dielectric barrier discharge plasma. Toxicon 2024; 239:107615. [PMID: 38219915 DOI: 10.1016/j.toxicon.2024.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Dielectric barrier discharge plasma (DBDP) displays strong against fungal spores, while its precise mechanism of spore inactivation remains inadequately understood. In this study, we applied morphological, in vivo and in vitro experiments, transcriptomics, and physicochemical detection to unveil the potential molecular pathways underlying the inactivation of Aspergillus flavus spores by DBDP. Our findings suggested that mycelium growth was inhibited as observed by SEM after 30 s treatment at 70 kV, meanwhile spore germination ceased and clustering occurred. It led to the release of cellular contents and subsequent spore demise by disrupting the integrity of spore membrane. Additionally, based on the transcriptomic data, we hypothesized that the induction of spore inactivation by DBDP might be associated with downregulation of genes related to cell membranes, organelles (mitochondria), oxidative phosphorylation, and the tricarboxylic acid cycle. Subsequently, we validated our transcriptomic findings by measuring the levels of relevant enzymes in metabolic pathways, such as superoxide dismutase, acetyl-CoA, total dehydrogenase, and ATP. These physicochemical indicators revealed that DBDP treatment resulted in mitochondrial dysfunction, redox imbalance, and inhibited energy metabolism pathways. These findings were consistent with the transcriptomic results. Hence, we concluded that DBDP accelerated spore rupture and death via ROS-mediated mitochondrial dysfunction, which does not depend on cell membranes.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| | - Mingming Yu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Xiao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
4
|
Cheng JH, Li J, Sun DW. In vivo biological analysis of cold plasma on allergenicity reduction of tropomyosin in shrimp. Food Chem 2024; 432:137210. [PMID: 37659333 DOI: 10.1016/j.foodchem.2023.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
In vivo biological regulations of the allergenicity of tropomyosin (TM) treated by cold plasma (CP) were investigated by in vivo mouse model. The sensitization models of Balb/c mice were successfully established. CP treatment reduced the allergic symptoms of mice and regulated the Th1/Th2 balance to prevent allergy by activating Treg cells, which was deduced by serum and cytokines analysis. For intestinal flora analysis, allergy occurrence was accompanied by the decreased species abundance and the increased species diversity of intestinal flora. The significant species composition difference between the TM group and the PBS group showed a possible connection between bacterial diversity and allergy. Furthermore, Firmicutes, Bacteroidetes, Parabacteroides, Alloprevotella, Bacteroides, and Lachnospiraceae could relate to allergy occurrence. Intestinal section analysis suggested that allergy occurrence was accompanied by the damaged intestinal structure, and CP treatment could relieve the damage caused by an allergy.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Boonmee T, Sinpoo C, Thayatham K, Suanpoot P, Disayathanoowat T, Pettis JS, Chaimanee V. Atmospheric non-thermal plasma inactivation of Ascosphaera apis, the causative agent of chalkbrood disease in honeybee. Sci Rep 2024; 14:1831. [PMID: 38246935 PMCID: PMC10800336 DOI: 10.1038/s41598-024-52221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Ascosphaera apis is a worldwide pathogenic fungi of honeybees that can cause a decline in bee populations. In this study, we investigated the antifungal activity of non-thermal plasma on fungal growth. Spore inactivation after exposure to gas plasma by liquid phase and plasma activated water (PAW) and pathogenicity of A. apis in vivo were also examined. The results demonstrated that the mycelial growth of fungi was completely inhibited after argon plasma treatment. Both gas plasma and PAW exposures resulted in a significant decrease of A. apis spore numbers, maximum reduction of 1.71 and 3.18-fold, respectively. Germinated fungal spores on potato dextrose agar were also reduced after plasma treatment. SEM analysis revealed a disruption in the morphological structure of the fungal spores. The pathogenicity of A. apis on honeybee larvae was decreased after spores treated by gas plasma and PAW with a disease inhibition of 63.61 ± 7.28% and 58.27 ± 5.87%, respectively after 7 days of cultivation. Chalkbrood in honey bees have limited control options and our findings are encouraging. Here, we demonstrate a possible alternative control method using non-thermal plasma for chalkbrood disease in honeybees.
Collapse
Affiliation(s)
- Thummanoon Boonmee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae, 54140, Thailand
| | - Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Kunlada Thayatham
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae, 54140, Thailand
| | - Pradoong Suanpoot
- Department of Forest Industry Technology, Maejo University Phrae Campus, Phrae, 54140, Thailand
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | | | - Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae, 54140, Thailand.
| |
Collapse
|
6
|
Guo L, Liang K, Huang X, Mai W, Duan X, Wu F. Morin Treatment Delays the Ripening and Senescence of Postharvest Mango Fruits. Foods 2023; 12:4251. [PMID: 38231649 DOI: 10.3390/foods12234251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
A 0.005% and 0.01% morin treatment was applied to treat mango fruits stored under ambient conditions (25 ± 1 °C) with 85-90% relative humidity, and the effects on quality indexes, enzyme activity related to antioxidation and cell wall degradation, and gene expressions involved in ripening and senescence were explored. The results indicate that a 0.01% morin application effectively delayed fruit softening and yellowing and sustained the nutritional quality. After 12 days of storage, the contents of soluble sugar and carotenoid in the treatment groups were 68.54 mg/g and 11.20 mg/100 g, respectively, lower than those in control, while the vitamin C content in the treatment groups was 0.58 mg/g, higher than that in control. Moreover, a morin application successively enhanced the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), but reduced the activity of polygalacturonase (PG) and pectin lyase (PL). Finally, real-time PCR and correlation analysis suggested that morin downregulated the ethylene biosynthesis (ACS and, ACO) and signal transduction (ETR1, ERS1, EIN2, and ERF1) genes, which is positively associated with softening enzymes (LOX, EXP, βGal, and EG), carotenoid synthesis enzymes (PSY and, LCYB), sucrose phosphate synthase (SPS), and uncoupling protein (UCP) gene expressions. Therefore, a 0.01% morin treatment might efficiently retard mango fruit ripening and senescence to sustain external and nutritional quality through ethylene-related pathways, which indicates its preservation application.
Collapse
Affiliation(s)
- Lihong Guo
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Kaiqi Liang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Xiaochun Huang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Weiqian Mai
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| |
Collapse
|
7
|
Wang Y, Liu Y, Zhao Y, Sun Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Food Res Int 2023; 173:113204. [PMID: 37803533 DOI: 10.1016/j.foodres.2023.113204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
As an emerging food processing technology, cold atmospheric plasma (CAP) has attracted great attention in the field of microbial inactivation. Although CAP has been proven to effectively inactivate a variety of foodborne pathogens, there is less research on the inactivation of Bacillus cereus, and the exact inactivation mechanism is still unclear. Elucidating the inactivation mechanism will help to develop and optimize this sterilization method, with the prospective application in industrialized food production. This study aims to explore the bactericidal efficacy difference between air and nitrogen CAP on B. cereus, a typical Gram-positive bacterium, and reveals the inactivation mechanism of CAP at the cellular and molecular level, by observing the change of the cell membrane, cell morphological damage, intracellular antioxidant enzyme activity and cellular biomacromolecules changes. The results showed that both air CAP and nitrogen CAP could effectively inactivate B. cereus, which was due to the reactive oxygen and nitrogen species (RONS) generated by the plasma causing bacterial death. The damage pathways of CAP on Gram-positive bacteria could be explained by disrupting the bacterial cell membrane and cell morphology, disturbing the intracellular redox homeostasis, and destroying biomacromolecules in the cells. The differences in active species generated by the plasma were the main reason for the different bactericidal efficiencies of air CAP and nitrogen CAP, where air CAP producing RONS with stronger oxidative capacity in a shorter time. This study indicates that air CAP is an effective, inexpensive and green technology for B. cereus inactivation, providing a basis for industrial application in food processing.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
8
|
Zhang S, Wang J, Sun H, Yang J, Zhao J, Wang Y. Inhibitory effects of hinokitiol on the development and pathogenicity of Colletotrichum gloeosporioides. World J Microbiol Biotechnol 2023; 39:356. [PMID: 37878063 DOI: 10.1007/s11274-023-03810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides is a devastating fungal disease, which causes tremendous quality deterioration and economic losses. Hinokitiol, an environmentally friendly natural compound, is effective in controlling a variety of postharvest fungal diseases. However, there is still a lack of research on the inhibitory effect of hinokitiol on C. gloeosporioides and its possible modes of action. In the present study, the activity of hinokitiol against C. gloeosporioides and its potential mechanisms involved have been investigated. We found that hinokitiol treatment could effectively inhibit the virulence of C. gloeosporioides to harvested mango fruit. After treatment with 8 mg/L hinokitiol, the mycelial growth of C. gloeosporioides was completely inhibited. When the concentration of hinokitiol reached 9 mg/L, the spore germination rate of C. gloeosporioides decreased to 2.43% after 9 h of cultivation. The inhibitory effect is mainly due to the attenuation in cell viability, and impairment in plasma membrane followed by leakage of cytoplasmic contents such as nucleic acids, proteins, and soluble carbohydrates, which ultimately leads to the destruction of cell structure. Furthermore, hinokitiol suppressed the expression of pathogenicity-related genes, leading to reduced infection activity. Collectively, these results suggest that hinokitiol may be an excellent bio-fungicides for the management of mango anthracnose.
Collapse
Affiliation(s)
- Shen Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jingyi Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Huimin Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jiajia Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Ying Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
9
|
Dofuor AK, Quartey NKA, Osabutey AF, Antwi-Agyakwa AK, Asante K, Boateng BO, Ablormeti FK, Lutuf H, Osei-Owusu J, Osei JHN, Ekloh W, Loh SK, Honger JO, Aidoo OF, Ninsin KD. Mango anthracnose disease: the current situation and direction for future research. Front Microbiol 2023; 14:1168203. [PMID: 37692388 PMCID: PMC10484599 DOI: 10.3389/fmicb.2023.1168203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Mango anthracnose disease (MAD) is a destructive disease of mangoes, with estimated yield losses of up to 100% in unmanaged plantations. Several strains that constitute Colletotrichum complexes are implicated in MAD worldwide. All mangoes grown for commercial purposes are susceptible, and a resistant cultivar for all strains is not presently available on the market. The infection can widely spread before being detected since the disease is invincible until after a protracted latent period. The detection of multiple strains of the pathogen in Mexico, Brazil, and China has prompted a significant increase in research on the disease. Synthetic pesticide application is the primary management technique used to manage the disease. However, newly observed declines in anthracnose susceptibility to many fungicides highlight the need for more environmentally friendly approaches. Recent progress in understanding the host range, molecular and phenotypic characterization, and susceptibility of the disease in several mango cultivars is discussed in this review. It provides updates on the mode of transmission, infection biology and contemporary management strategies. We suggest an integrated and ecologically sound approach to managing MAD.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Kwasi Asante
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Fred Kormla Ablormeti
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Okani Honger
- Soil and Irrigation Research Centre, College of Basic and Applied Sciences, School of Agriculture, University of Ghana, Accra, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
10
|
Cheng JH, He L, Sun DW, Pan Y, Ma J. Inhibition of cell wall pectin metabolism by plasma activated water (PAW) to maintain firmness and quality of postharvest blueberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107803. [PMID: 37406406 DOI: 10.1016/j.plaphy.2023.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
Blueberry is a class of berries with high nutritional and economic value but has short shelf life due to its rapid softening at room temperature. This study investigated the effects of plasma-activated water (PAW) treatment on the softening quality and cell wall pectin metabolism of blueberries stored for 10 d at 25 °C after being immersed in PAW for 10 min. PAW was generated by plasma with different times (1 and 2 min), fixed frequency (10 kHz) and fixed voltage (50 kV). The analysis showed that the firmness of PAW-treated fruit significantly increased (P < 0.05) by 36.4% after 10 d storage. PAW treatment controlled the solubilization of pectin from water-insoluble to water-soluble. The activities of cell wall pectin-degrading enzymes like polygalacturonase (PG), β-galactosidase (β-Gal) and pectin methylesterase (PME) in PAW-treated blueberries decreased by 15.7%, 18.3%, and 27.9%, respectively, on day 10. After PAW treatment, blueberries also maintained better postharvest quality (firmness, colour, soluble solid content and anthocyanin content) and intact epidermal waxy and cell wall structure. These results suggested that PAW showed great potential for postharvest fresh-keeping of blueberry.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ling He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Yawen Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
11
|
Zhao Y, Bhavya ML, Patange A, Sun DW, Tiwari BK. Plasma-activated liquids for mitigating biofilms on food and food contact surfaces. Compr Rev Food Sci Food Saf 2023; 22:1654-1685. [PMID: 36861750 DOI: 10.1111/1541-4337.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Plasma-activated liquids (PALs) are emerging and promising alternatives to traditional decontamination technologies and have evolved as a new technology for applications in food, agriculture, and medicine. Contamination caused by foodborne pathogens and their biofilms has posed challenges and concerns to the food industry in terms of safety and quality. The nature of the food and the food processing environment are major factors that contribute to the growth of various microorganisms, followed by the biofilm characteristics that ensure their survival in severe environmental conditions and against traditional chemical disinfectants. PALs show an efficient impact against microorganisms and their biofilms, with various reactive species (short- and long-lived ones), physiochemical properties, and plasma processing factors playing a crucial role in mitigating biofilms. Moreover, there is potential to improve and optimize disinfection strategies using a combination of PALs with other technologies for the inactivation of biofilms. The overarching aim of this study is to build a better understanding of the parameters that govern the liquid chemistry generated in a liquid exposed to plasma and how these translate into biological effects on biofilms. This review provides a current understanding of PALs-mediated mechanisms of action on biofilms; however, the precise inactivation mechanism is still not clear and is an important part of the research. Implementation of PALs in the food industry could help overcome the disinfection hurdles and can enhance biofilm inactivation efficacy. Future perspectives in this field to expand existing state of the art to seek breakthroughs for scale-up and implementation of PALs technology in the food industry are also discussed.
Collapse
Affiliation(s)
- Yunlu Zhao
- Teagasc Food Research Centre, Dublin, Ireland.,Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | | | | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | |
Collapse
|
12
|
Zhu H, Cheng JH, Ma J, Sun DW. Deconstruction of pineapple peel cellulose based on Fe2+ assisted cold plasma pretreatment for cellulose nanofibrils preparation. Food Chem 2023; 401:134116. [DOI: 10.1016/j.foodchem.2022.134116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
|
13
|
Cheng JH, Zou S, Ma J, Sun DW. Toxic reactive oxygen species stresses for reconfiguring central carbon metabolic fluxes in foodborne bacteria: Sources, mechanisms and pathways. Crit Rev Food Sci Nutr 2023; 63:1806-1821. [PMID: 36688292 DOI: 10.1080/10408398.2023.2169245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and β-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Sang Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
14
|
Wang J, Cheng JH, Sun DW. Enhancement of Wheat Seed Germination, Seedling Growth and Nutritional Properties of Wheat Plantlet Juice by Plasma Activated Water. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:2006-2022. [PMID: 35668726 PMCID: PMC9152647 DOI: 10.1007/s00344-022-10677-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
UNLABELLED Previous studies have shown the great potential of using plasma-activated water (PAW) on improving agriculture seed germination, however, information on the influence of PAW on crop plantlet juice remains scanty. In this research, the effect of PAW generated by atmosphere pressure Ar-O2 plasma jet for 1-5 min on wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice was investigated. Results revealed that all PAWs could enhance wheat seed germination and seedling growth in 7 days by improving the germination rate, germination index, fresh weight, dry weight and vigour index, and especially that PAW activated for 3 min (PAW-3) showed the best overall performance. In addition, the application of PAWs enhanced the nutritional properties of wheat plantlet juice from those grown for 14 days by improving total soluble solids, protein content, photosynthetic pigments, total phenolic content, antioxidant activity, enzyme activity, free amino acids and minerals content, and the best enhancement was also observed in PAW-3. It was concluded that PAWs would be an effective technique to enhance the growth and nutritional properties of crop sprouts, which could be served as functional foods in many forms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00344-022-10677-3.
Collapse
Affiliation(s)
- Junhong Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Evaluation of storage quality of vacuum-packaged silver Pomfret (Pampus argenteus) treated with combined ultrasound and plasma functionalized liquids hurdle technology. Food Chem 2022; 391:133237. [DOI: 10.1016/j.foodchem.2022.133237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
|
16
|
Pan Y, Cheng J, Sun D. Oxidative lesions and post-treatment viability attenuation of listeria monocytogenes triggered by atmospheric non-thermal plasma. J Appl Microbiol 2022; 133:2348-2360. [PMID: 35751464 PMCID: PMC9805074 DOI: 10.1111/jam.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
Abstract
AIMS The aim of the current study was to investigate the effect of plasma-mediated oxidative stress on the post-treatment viability of Listeria monocytogenes at the physiological and molecular levels. METHODS AND RESULTS 107 CFU/ml L. monocytogenes in 10 ml phosphate-buffered saline (PBS) was treated with atmospheric non-thermal plasma for 0, 30, 60, 90 and 120 s respectively. Optical diagnostics using optical emission spectroscopy (OES) confirmed that dielectric barrier discharge (DBD) plasma was a significant source of ample exogenous reactive oxygen and nitrogen species (RONS). The development of extracellular main long-lived species was associated with plasma exposure time, accompanied by a massive accumulation of intracellular ROS in L. monocytogenes (p < 0.01). With the exception of virulence genes (hly), most oxidation resistance genes (e.g. sigB, perR, lmo2344, lmo2770 and trxA) and DNA repair gene (recA) were upregulated significantly (p < 0.05). A visible fragmentation in genomic DNA and a decline in the secretion of extracellular proteins and haemolytic activity (p < 0.01) were noticed. The quantitate oxygen consumption rates (OCRs) and extracellular acidification rates (ECARs) confirmed the viability attenuation from the aspect of energy metabolism. Survival assay in a real food system (raw milk) further suggested not only the viability attenuation, but also the resuscitation potential and safety risk of mild plasma-treated cells during post-treatment storage. CONCLUSION DBD plasma had the potential to inactivate and attenuate the virulence of L. monocytogenes, and it was recommended that plasma exposure time longer than 120 s was more suitable for attenuating viability and avoiding the recovery possibility of L. monocytogenes in raw milk within 7 days. SIGNIFICANCE AND IMPACT OF THE STUDY The current results presented a strategy to inactivate and attenuate the viability of L. monocytogenes, which could serve as a theoretical basis for better application of non-thermal plasma in food in an effort to effectively combat foodborne pathogens.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina,Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural ProductsGuangzhou Higher Education Mega CentreGuangzhouChina
| | - Jun‐Hu Cheng
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina,Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural ProductsGuangzhou Higher Education Mega CentreGuangzhouChina
| | - Da‐Wen Sun
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina,Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural ProductsGuangzhou Higher Education Mega CentreGuangzhouChina,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science CentreUniversity College Dublin, National University of IrelandDublinIreland
| |
Collapse
|
17
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
18
|
Hybridising plasma functionalized water and ultrasound pretreatment for enzymatic protein hydrolysis of Larimichthys polyactis: Parametric screening and optimization. Food Chem 2022; 385:132677. [PMID: 35334341 DOI: 10.1016/j.foodchem.2022.132677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Hybridising plasma functionalized water and ultrasound pretreatment for the enzymatic hydrolysis (HPUEH) of Larimichthys polyactis was evaluated by adopting Plackett-Burman design for parametric screening of six key variables, and Box-Behnken design for optimizing three most significant variables including plasma generating voltage (PV), ultrasound treatment time (UT), and enzyme concentration (EC). The models developed for predicting the degree of hydrolysis (DoH), protein recovery (PVY), and soluble protein content (SPC) were sufficiently fitted to the experimental data (R2 ≥ 0.966) with non-significant lack of fit and used for determining the optimum conditions as PV of 70 V, UT of 15 min, and EC of 1.787%, with predictive values of 27.74%, 85.62%, and 3.28 mg/mL for DoH, PVY, and SPC, respectively. HPUEH presented hydrolysates with smaller peptide sizes and molecular weights, enhanced DoH, PVY, SPC, amino acids and antioxidant activity, but reduced emulsifying and foaming properties when compared with conventional enzymatic hydrolysis.
Collapse
|
19
|
Johnson Esua O, Sun DW, Ajani CK, Cheng JH, Keener KM. Modelling of inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by combining ultrasound with plasma functionalized buffer. ULTRASONICS SONOCHEMISTRY 2022; 88:106086. [PMID: 35830785 PMCID: PMC9287556 DOI: 10.1016/j.ultsonch.2022.106086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Linear (first-order) and non-linear (Weibull, biphasic, and log-logistic) models were evaluated for predicting the inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by a novel technique (UPFB) combining ultrasound (US) with plasma functionalized buffer (PFB). Results showed that UPFB was more effective for inactivating bacteria when compared with individual applications of US or PFB with reductions of 3.92 and 3.70 log CFU/g for Escherichia coli and Listeria monocytogenes, respectively. Compared with the linear model, the three non-linear models presented comparable performances and were more suitable for describing the inactivation kinetics with superior adj-R2 (0.962-0.999), accuracies (0.970-1.006) and bias factors (0.995-1.031), and by assessing the strengths of evidence, weights of evidence and evidence ratios for the models, the biphasic model was identified as the best fit model. The current study provided new insights into the effective evaluation of decontamination methods.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | | |
Collapse
|
20
|
Johnson Esua O, Sun DW, Cheng JH, Wang H, Lv M. Functional and bioactive properties of Larimichthys polyactis protein hydrolysates as influenced by plasma functionalized water-ultrasound hybrid treatments and enzyme types. ULTRASONICS SONOCHEMISTRY 2022; 86:106023. [PMID: 35561594 PMCID: PMC9112016 DOI: 10.1016/j.ultsonch.2022.106023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 05/04/2023]
Abstract
The effects of plasma functionalized water (PFW) and its combination with ultrasound (UPFW) on the functional and bioactive properties of small yellow croaker protein hydrolysates (SYPHs) produced from three enzymes were investigated. Fluorescence and UV-Vis spectroscopy indicated that SYPHs tended to unfold with increasing intensity and shift in wavelengths to more flexible conformations under PFW and UPFW treatments. Particle size distribution and microstructure analysis revealed that treatments could disrupt aggregation of protein molecules to increase the roughness, specific surface area, and decrease the particle size of peptides during hydrolysis. The partially denatured structure of SYPHs induced by treatments increased the susceptibility of the fish proteins to exogenous enzymes, thereby accelerating the hydrolytic process to yield peptides with improved solubility, decreased emulsifying and foaming properties, and improved enzyme-specific antioxidant properties. The results revealed that the functionality of SYPHs was influenced by the treatment method and the enzyme type employed.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
- Corresponding author. http://www.ucd.ie/refrighttp://www.ucd.ie/sun
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
21
|
Effect of the Application of Cold Plasma Energy on the Inactivation of Microorganisms, Proteins, and Lipids Deterioration in Adobera Cheese. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8230955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cheeses are perishable foods that must fulfill sanitary and quality requirements according to the parameters established globally. Plasma as a nonthermal inactivation technique has been a current research topic for food preservation, so the objective of this work was to study the effect of plasma energy against microorganisms in Adobera cheese (traditional Mexican cheese) as well as evaluate the possible degradation of lipids and protein. 108 CFU/mL of Escherichia coli ATCC 25922, Salmonella ATCC13076, and Staphylococcus aureus ATCC 6538 were inoculated at 0.5 g of Adobera cheese and were subjected to an energy of 30 volts, in a dielectric barrier discharge reactor (DBDR) at intervals of times 1, 3, 5, 7, 10, and 15 min. A flow of a mixture of air and helium at 96% purity was used. The decimal reduction time (D) was determined, and the oxidation of proteins and lipids was analyzed after each treatment. The results showed an annihilating effect of plasma on the indicator bacteria under study, and a reduction of 5 logarithmic cycles was obtained. The maximum degree of lipid oxidation was 23 acid degree values (ADV) after 7 min of exposure to plasma. The oxidation of proteins showed a direct and proportional relationship between the formation of carbonyl groups with the percentage significant loss to the concentration of carbonyl groups with the concentration of protein oxidation, after 3 min of exposure to cold plasma levels of 82% and 99% oxidation of Adobera cheese protein and free casein, respectively. We conclude that the plasma energy applied to Adobera cheese is an effective treatment to inactivate bacteria. However, there is the possibility of causing changes in taste and odor, due to the release of fatty acids and the oxidation of proteins.
Collapse
|