1
|
Qiu L, Zhu Y, Zhu X, Liu L, Lv M, Huang Y, Sun B, Qu M. Effect of freeze-thaw cycles on the quality of Yuba with different protein-lipid ratios on its protein-lipid network system. Food Chem 2025; 465:142096. [PMID: 39571443 DOI: 10.1016/j.foodchem.2024.142096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
We investigated the effects of freeze-thaw (FT) cycles on the quality of Yuba with different protein-lipid ratios and on its protein-lipid network system in this study. The water holding capacity (WHC), tensile strength (TS), and L* values decreased significantly and elongation at break (EAB), b* values, carbonyl and Thiobarbituric acid value (TBARS) increased significantly after FT treatment. The variation in Yuba quality weakened after the 4 FT. Ice crystals disrupt the structure of the protein network, resulting in a degradation of Yuba quality. The degradation of Yuba quality was slowed by the influence of the contraction of the protein network at a later period. The formation of a weaker protein network and the high lipid content in low protein-lipid ratios led to a new trend of higher L* than the high protein-lipid. The results showed that a high protein-lipid ratio improved the FT stability of Yuba.
Collapse
Affiliation(s)
- Lidan Qiu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Mingshou Lv
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Bingyu Sun
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Min Qu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
2
|
Chen L, Yu Z, Dong S, Li Z, Liu Y, Xiang X, Huang Q, Li S, Ye L. Differential contribution of Cu 2+ and OH - to the formation of N ε-carboxymethyllysine and N ε-carboxyethyllysine in preserved egg white during pickling. Food Chem 2025; 465:141837. [PMID: 39531965 DOI: 10.1016/j.foodchem.2024.141837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
In this study, the relationship between advanced glycosylation end products (AGEs) in preserved egg white (PEW) with protein oxidation and precursors induced by OH- and Cu2+ were performed to clarify the differential contribution of OH- and Cu2+ on the formation of AGEs during pickling. It was found that AGEs were more easily formed in PEW rather than yolk, and the accumulation of Nε-carboxymethyllysine (CML) could be promoted through protein oxidation related to carbonyl compounds, tryptophan induced by Cu2+ at early stage, while carbonyl compounds were more conducive to form Nε-carboxyethyllysine (CEL) under synergistic action of Cu2+ and OH-. At later period, Schiff base promoted the formation of CEL and CML in the presence of Cu2+. Meanwhile, the enrichment of CEL and CML could both be promoted by α-dicarbonyl compounds in presence of Cu2+ and/or OH-. This manuscript will provide theoretical guidance for reducing and limiting hazardous compounds in preserved eggs.
Collapse
Affiliation(s)
- Le Chen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Zhuosi Yu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Shiqin Dong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Zixiao Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China..
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Shugang Li
- Engineering Research Center of Bio-Process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, 843300, China
| |
Collapse
|
3
|
Wu W, Gao P, Jiang Q, Yang F, Yu D, Yu P, Xia W, Yu D. Kinetics and mechanisms of thermal deterioration in silver carp (Hypophthalmichtys molitrix) surimi gel quality under high-temperature sterilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9240-9254. [PMID: 39017461 DOI: 10.1002/jsfa.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The gelation properties of surimi gel under various high temperatures (115, 118, and 121 °C) and sterilization intensities (F0 values of 3-7 min) were systematically investigated. A kinetic model detailed quality changes during heat treatment through mathematical analysis, elucidating mechanisms for gel quality degradation. RESULTS Increased sterilization intensity significantly reduced the quality characteristics of surimi gel. Compared to the gel without sterilization treatment, when the sterilization intensity was increased to 7 min, the gel strength of the groups treated at 115 °C, 118 °C, and 121 °C decreased by 68.35%, 51.4%, and 51.71%, respectively, and the water-holding capacity decreased by 24.87%, 16.85%, and 22.5%, respectively. The hardness, chewiness, and whiteness of the gel also significantly decreased, and the changes in these indicators all conformed to a first-order kinetic model. Activation energy of 291.52 kJ mol-1 highlighted gel strength as the least heat-resistant. At equivalent sterilization intensities, 115 °C exhibited the poorest gel quality, followed by 121 °C, with 118 °C showing relatively better gel quality. Increased T22 and decreased PT22 suggested heightened water mobility and transition of immobilized water within the gel into free water. Protein degradation, weakened disulfide bonds and hydrophobic interaction, and protein conformation changes collectively led to a rough and incoherent gel network structure with large fissures, as verified by the results of scanning electron microscopy. Correlation analysis indicated potential for precise control over surimi gel quality by modulating physicochemical attributes. CONCLUSION The outcomes may be beneficial to improve the production and quality control of ready-to-eat surimi-based products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenmin Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
- SoHao Fd-Tech Co., Ltd., QingDao, China
| | | |
Collapse
|
4
|
Zhou Y, Xu Y, Xia W, Yu D, Wang B, Xu J. Insight into the role of lipids in odor changes of frozen grass carp (Ctenopharyngodon idella) based on lipidomics and GC-MS analysis: Impact of freeze-thaw cycles and heat treatment. Food Chem 2024; 459:140436. [PMID: 39029423 DOI: 10.1016/j.foodchem.2024.140436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
The role of lipids in changes of volatile organic compounds (VOCs) in grass carp during 1 month of frozen storage with different freeze-thaw cycles and subsequent heat treatment was investigated. Sixty VOCs were identified in all groups by SPME-GC-MS. Odor contents fluctuated along with the freeze-thaw cycles and heat treatment, and the highest odor content was observed in frozen sample without freeze-thaw cycles. Freeze-thaw and heat treatment significantly promoted the lipid oxidation and hydrolysis for all the groups(p<0.05). Lipid metabolites were analyzed using non-targeted lipidomics and could be well distinguished among different freeze-thaw groups and heat-treatment groups. A total of 10 key differential lipid molecules were annotated, involving 4 metabolic pathways related to lipid degradation and odor formation. Spearman correlation analysis showed that these key differential lipids were significantly related to the formation of key VOCs (p<0.05).
Collapse
Affiliation(s)
- Yunyun Zhou
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Bin Wang
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Junmin Xu
- Mekong Fishery Industry Co., Ltd, Veun Kham Village, Don Khong, Champassak, Laos
| |
Collapse
|
5
|
Zhu H, Liu F, He L, Wang X, Li C. Effect of Zanthoxylum bungeanum extract on the quality and cathepsin L activity of Niuganba. Meat Sci 2024; 217:109594. [PMID: 39002357 DOI: 10.1016/j.meatsci.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Niuganba (NGB) is a traditional fermented beef product. Protease activity typically significantly affects the quality of NGB. Some natural food extracts may markedly influence NGB's protease activity and performance. This study aims to investigate the effect of Zanthoxylum bungeanum extract (ZBE) on the quality and cathepsin L activity of NGB. Following ZBE treatment, the myofibril fragmentation index (MFI), the content of TCA-soluble peptides, surface hydrophobicity, disulfide bond content, and cathepsin L activity of NGB significantly decrease. The content of free thiol groups and β-sheet significantly increases. Scanning electron microscopy (SEM) reveals that the arrangement of muscle fibers in the cross-section of NGB is more compact after ZBE treatment. The research results indicate that ZBE effectively inhibits cathepsin L activity, alleviates the degradation of myofibrillar proteins, improves the physicochemical characteristics of NGB, and enhances its structural stability.
Collapse
Affiliation(s)
- Hong Zhu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Fangrui Liu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
6
|
Fan X, Geng W, Li M, Wu Z, Li Y, Yu S, Zhao G, Zhao Q. Performance and protein conformation of thermally treated silver carp (Hypophthalmichthys molitrix) and scallop (Argopecten irradians) blended gels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7797-7808. [PMID: 38821885 DOI: 10.1002/jsfa.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The quality of surimi-based products can be improved by combining the flesh of different aquatic organisms. The present study investigated the effects of incorporating diverse ratios of unwashed silver carp (H) and scallop (A) and using various thermal treatments on the moisture, texture, microstructure, and conformation of the blended gels and myofibrillar protein of surimi. RESULTS A mixture ratio of A:H = 1:3 yielded the highest gel strength, which was 60.4% higher than that of scallop gel. The cooking losses of high-pressure heating and water-bath microwaving were significantly higher than those of other methods (P < 0.05). Moreover, the two-step water bath and water-bath microwaving samples exhibited a more regular spatial network structure compared to other samples. The mixed samples exhibited a microstructure with a uniform and ordered spatial network, allowing more free water to be trapped by the internal structure, resulting in more favorable gel properties. The thermal treatments comprehensively modified the tertiary and quaternary structures of proteins in unwashed mixed gel promoted protein unfurling, provided more hydrophobic interactions, enhanced protein aggregation and improved the gel performance. CONCLUSION The findings of the present study improve our understanding of the interactions between proteins from different sources. We propose a new method for modifying surimi's gel properties, facilitating the development of mixed surimi products, as well as enhancing the efficient utilization of aquatic resources. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinru Fan
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Wenhao Geng
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Zixuan Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Shuang Yu
- Dalian Ping Island Natural Product Technology Co., Ltd, Dalian, China
| | - Guanhua Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| |
Collapse
|
7
|
Mo Y, Zhang X, Zhang L, Guo X, Lin Y, Ren J, Ding Y. Cryoprotective effects and mechanisms of soybean oligosaccharides on the grass carp (Ctenopharyngodon idellus) surimi during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6518-6530. [PMID: 38517154 DOI: 10.1002/jsfa.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Conventional cryoprotectant mixtures (sucrose and sorbitol) impart excessive sweetness and calories to surimi. Therefore, there is a need to explore alternative cryoprotectants with low sweetness and low-calorie content. The cryoprotective effects and possible mechanisms of soybean oligosaccharides (SBOS) on the frozen stability of grass carp (Ctenopharyngodon idellus) surimi were investigated during 120 days of frozen storage in a comparison with commercial cryoprotectants (4% sucrose and 4% sorbitol, w/w). RESULTS SBOS at 6-8% (w/w) and commercial cryoprotectants could restrain water mobility and reduce thawing loss of frozen surimi by increasing non-freezable water content. SBOS could maintain the structural stability of proteins by preventing sulfhydryl groups from being rapidly oxidized to disulfide bonds, retarding the reduction of the solubility, Ca2+-ATPase activity and α-helix content of myofibrillar proteins (MP), as well as hindering the increasing surface hydrophobicity of MP of surimi during 120 days of frozen storage. The introduction of SBOS increased the gel strength and water-holding capacity of frozen-stored surimi. Compared with commercial cryoprotectants, 8% SBOS was more effective in stabilizing protein structure, whereas it was slightly less effective with respect to ice-forming inhibition. CONCLUSION The results obtained in the present study suggest that 8% SBOS could be potentially developed as a new cryoprotectant for surimi as a result of its ice-forming inhibition abilities and protein structure stability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yijie Mo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Xia Zhang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Lingzhi Zhang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Xiao Guo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yanxin Lin
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jing Ren
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yuqin Ding
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
8
|
Gao Z, Zhang D, Wu R, He J, Ma J, Sun X, Gu M, Wang Z. Fluctuation of flavor quality in roasted duck: The consequences of raw duck preform's repetitive freeze-thawing. Food Res Int 2024; 187:114424. [PMID: 38763675 DOI: 10.1016/j.foodres.2024.114424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 ∼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 ∼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 ∼ 30.65 μmol/g), but lower total sulfhydryl (73.37 ∼ 88.94 μmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to β-sheets and random coils were observed in FT-3 ∼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.
Collapse
Affiliation(s)
- Ziwu Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ruiyun Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jinhua He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jiale Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiangxiang Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
9
|
Luo X, Huang K, Niu Y, Zhang X, An Y, Liu R, Xiong S, Hu Y. Effects of freezing methods on physicochemical properties, protein/fat oxidation and odor characteristics of surimi gels with different cross-linking degrees. Food Chem 2024; 432:137268. [PMID: 37657334 DOI: 10.1016/j.foodchem.2023.137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This work investigated the effects of liquid nitrogen immersion freezing (LNF), -35 °C air freezing (AF-35℃) and -18 °C air freezing (AF-18℃) on the physical and chemical characteristics and flavor quality of surimi gels with different cross-linking degrees. Compared to AF-35 °C and AF-18 °C, LNF was shown to considerably delay the texture deterioration and water migration of frozen gels, as well as the accumulation of thiobarbituric acid reactive substance values and carbonyl contents. Additionally, an appropriate increase of cross-linking degree (45.83 to 62.99%) was found able to improve gel properties and inhibit quality deterioration during freezing. Moreover, LNF-treated gels were closer to fresh gels in the amount of volatile compounds, in contrast to most significant negative aroma changes in AF-18℃-treated gels. Furthermore, 29, 29 and 31 key differential volatile compounds were screened for gels with a cross-linking degree of 29.66, 45.83 and 62.99%, respectively, mainly including aldehydes, alcohols and esters.
Collapse
Affiliation(s)
- Xiaoying Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Yongxin Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Zhang
- Guangdong Medical Devices Quality Surveillance and Test Institute, Guangzhou, Guangdong 510663, China
| | - Yueqi An
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Zhai Y, Peng W, Luo W, Wu J, Liu Y, Wang F, Li X, Yu J, Wang S. Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi. Food Chem 2024; 431:137114. [PMID: 37595381 DOI: 10.1016/j.foodchem.2023.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
This study investigated the cryoprotective mechanism of ultrafiltration membrane-separated fractions (>10 kDa, UF-1; 3-10 kDa, UF-2; and <3 kDa, UF-3) derived from silver carp hydrolysates on frozen surimi. The surimi gel incorporating UF-3 exhibited a compact, continuous structure with uniform pores, even after undergoing six freeze-thaw (F-T) cycle, with the minimal reduction in entrapped water (from 95.1 % to 91.1 %) and least increase in free water (from 4.5 % to 6.6 %) as revealed by SEM and LF-NMR analysis. Through molecular docking analysis, three major peptides in UF-3 were identified to form robust interactions with the myosin head pocket, facilitated by hydrogen bonds, electrostatic forces, and hydrophobic interactions. Furthermore, molecular dynamics simulations demonstrated that the three peptides effectively prevented myosin from unfolding and aggregating by tightly binding to basic amino acids (Arg, Lys) and hydrophobic amino acids (Phe, Leu, Ile, Met, and Val) residues in the myosin head pocket, primarily governed by electrostatic energies (-156.95, -321.38, and -267.53 kcal/mol, respectively) and van der Waals energies (-395.05, -347.46, and -319.16 kcal/mol, respectively). Notably, the key action site was identified as Lys599 on myosin. The hydrophilic and hydrophobic hotspot residues of the peptides worked synergistically to stabilize the myosin structure in frozen surimi.
Collapse
Affiliation(s)
- Yueying Zhai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Wei Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| | - Jian Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China.
| |
Collapse
|
11
|
Shen Z, Gao H, Peng W, Wang F, Liu Y, Wu J, Wang S, Li X. Cryoprotective effect of soybean oil on surimi gels and the mechanism based on molecular dynamics simulation. J Texture Stud 2023. [PMID: 37968073 DOI: 10.1111/jtxs.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The effect of soybean oil (SO) on freeze-thaw (F-T)-treated surimi was investigated and its related mechanism was revealed by molecular dynamics (MD) simulations. The results displayed that SO has a disrupting effect on the structure of fresh samples. However, in the F-T-treated samples, surimi gels supplemented with SO had a more uniform microstructure. Simultaneously, when SO was added from 0% to 7% in the F-T-treated samples, the gel strength increased from46.66 to 51.86 N · mm $$ 46.66\ \mathrm{to}\ 51.86\;\mathrm{N}\cdotp \mathrm{mm} $$ (p < .05), the physically bound water was increased from 92.90% to 94.15% (p < .05), and storage modulus was increased from 5939 to 6523 Pa. Triglycerides of SO generated hydrophobic interactions with myosin mainly in carbon chains. Computational results from MD simulations illustrated that the structure of myosin combined with triglycerides was more stable than that of myosin alone during temperature fluctuations (-20 to 4°C). During ice crystal growth, triglycerides absorbed on the myosin surface inhibited the growth of surrounding ice crystals and mitigated the ice crystal growth rate (from 7.54 to 5.99 cm/s). The addition of SO during the F-T treatments allowed myosin to be less negatively affected by ice crystal formation and temperature fluctuations and ultimately contributed to the formation of a more uniform network gel structure.
Collapse
Affiliation(s)
- Zhiwen Shen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Huaqian Gao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha, Hunan Province, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha, Hunan Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Li H, Wang Q, Li W, Xia X. Cryoprotective Effect of NADES on Frozen-Thawed Mirror Carp Surimi in Terms of Oxidative Denaturation, Structural Properties, and Thermal Stability of Myofibrillar Proteins. Foods 2023; 12:3530. [PMID: 37835183 PMCID: PMC10572836 DOI: 10.3390/foods12193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Quality degradation due to the formation and growth of ice crystals caused by temperature fluctuations during storage, transportation, or retailing is a common problem in frozen surimi. While commercial antifreeze is used as an ingredient in frozen surimi, its high sweetness does not meet the contemporary consumer demand for low sugar and low calories. Therefore, the development of new green antifreeze agents to achieve an enhanced frozen-thawed stability of surimi has received more attention. The aim of this study was to develop a cryoprotectant (a mixture of citric acid and trehalose) to enhance the frozen-thawed stability of surimi by inhibiting the oxidative denaturation and structural changes of frozen-thawed mirror carp (Cyprinus carpio L.) surimi myofibrillar protein (MP). The results showed that the amounts of free amine, sulfhydryl, α-helix, intrinsic fluorescence intensity, and thermal stability in the control significantly decreased after five F-T cycles, while the Schiff base fluorescence intensity, amounts of disulfide bonds and surface hydrophobicity significantly increased (p < 0.05). Compared to sucrose + sorbitol (SS), the natural deep eutectic solvents (NADES) effectively inhibited protein oxidation. After five F-T cycles, the α-helix content and Ca2+-ATPase activity of the NADES samples were 4.32% and 80.0%, respectively, higher, and the carbonyl content was 17.4% lower than those of the control. These observations indicate that NADES could inhibit oxidative denaturation and enhance the structural stability of MP.
Collapse
Affiliation(s)
| | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (Q.W.); (W.L.)
| |
Collapse
|
13
|
Wang Q, Zhu Z, Huang T, Huang M, Huang J. Changes in glycated myofibrillar proteins conformation on the formation of Nε-carboxymethyllysine under gradient thermal conditions. Food Chem 2023; 418:136005. [PMID: 37001357 DOI: 10.1016/j.foodchem.2023.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Nε-carboxymethyllysine (CML), a frequently used marker of advanced glycation end products (AGEs) in food, was generated in food processing easily and caused changes in myofibrillar proteins (MPs) characterization. The relevance between glycosylated MPs structure alternation and CML formation under thermal conditions have been reported. However, the correlation mechanism was not clear yet. In this work, the influence of gradient heating (50℃, 60℃, 70℃, 80℃, and 90℃) on the different degrees of glycated MPs, which determined the correlation with CML formation in protein structural changes of MPs. In the rising stage of the CML level, glycation accelerated the fibrillation and aggregation behavior of MPs during heating and increased surface hydrophobicity and particle size. The protein cross-linking affected the protein modification caused by heating and glycation. This work highlights the substantial influences of glycosylation and thermal treatments on MPs, which transformed the MPs structural characteristics and CML level.
Collapse
|
14
|
Inhibition mechanism of membrane-separated silver carp hydrolysates on ice crystal growth obtained through experiments and molecular dynamics simulation. Food Chem 2023; 414:135695. [PMID: 36809728 DOI: 10.1016/j.foodchem.2023.135695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The membrane-separated silver carp hydrolysates (>10 kD, 3-10 kD and < 3 kD) displayed abilities to mitigate oxidation and denaturation of myofibrillar protein and cryoprotective activities for frozen surimi. However, the mechanism of the membrane-separated fractions on ice crystal growth in the system is still unknown. Therefore, the cryoprotective activities (recrystallization inhibition, RI and thermal hysteresis activity, THA) of the fractions were investigated and the mechanism was explored by molecular dynamics (MD) simulation to predict the probable binding sites and model the possible interactions between the peptides and water/ice. The fractions < 3 kD displayed remarkable RI activity, with significantly higher THA (0.60 ± 0.13 °C) and lower amount of ice nuclei (4.74 ± 0.53%) than that of fractions > 10 kD and 3-10 kD. The results of MD simulation certified that the main peptides in the fractions < 3 kD interacted firmly with water molecules and inhibited growth of ice crystals with mechanism compatible with Kelvin effect. Hydrophilic and hydrophobic amino acid residues in the membrane-separated fractions offered synergistic effects on the inhibition of ice crystals.
Collapse
|
15
|
Chu F, Liu Z, Miao J, Huang Y, Niu L, Lai K. Formation of advanced glycation end-products in minced pork during frozen-then-chilled storage and subsequent heating. Food Chem 2023; 426:136616. [PMID: 37354580 DOI: 10.1016/j.foodchem.2023.136616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
The influences of frozen-then-chilled storage of minced pork on the formation of advanced glycation end-products (AGEs) including Nε-carboxymethyllysine and Nε-carboxyethyllysine, and their corresponding α-dicarbonyl precursors (α-DPs; glyoxal and methylglyoxal) during storage and subsequent heating were investigated in comparison with chilled storage. During cold storage, the levels of AGEs, trichloroacetic acid-soluble peptides, and Schiff bases in minced pork continuously increased while α-DPs decreased. The 30 min heating (100 °C) resulted in 64-560% increase of AGEs in pork, corresponding with an increase of Schiff bases and decreases of α-DPs. Compared to the chilled storage, the frozen-then-chilled storage led to no significant difference (P > 0.05) on the levels of AGEs and α-DPs in raw or heat-treated pork, implying that the formation and thawing of ice crystals in pork during the frozen-then-chilled storage had minor to no effects on the formation of AGEs and their α-DPs.
Collapse
Affiliation(s)
- Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China
| | - Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China.
| | - Lihong Niu
- School of Food Engineering, Ludong University, No. 186, Middle Hongqi Road, Yantai 264025, Shandong, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Bai X, Li Y, Liang W, Xia X, Bian C. Formation of advanced glycation end products of chicken breast meat induced by freeze-thaw cycles and subsequent cooking. Int J Biol Macromol 2023; 244:125387. [PMID: 37330105 DOI: 10.1016/j.ijbiomac.2023.125387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The impacts of freeze-thaw (F-T) cycles and cooking on the basic composition, protein and lipid oxidation, and advanced glycation end products (AGEs) of chicken breasts were studied. During F-T cycles, the moisture and protein contents of raw and cooked chicken breasts decreased, and protein and lipid oxidation occurred, increasing carbonyl and TBARS contents. Meanwhile, the contents of methylglyoxal, glyoxal, and hydroxymethylfurfural in raw meat increased by 2.27, 2.27, and 5 times, respectively, whereas glyoxal and hydroxymethylfurfural contents increased by 2.73 and 3 times, respectively, after cooking as F-T cycles increased. The formation of carboxymethyl lysine, pentosidine, and fluorescent AGEs in cooked samples was confirmed using an ELISA kit and fluorescent intensity. The study also revealed that AGEs contents of chicken meat were negatively correlated with moisture contents and positively correlated with carbonyl and TBARS levels. Therefore, F-T cycles and subsequent cooking promoted AGEs formation in cooked meat.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Weiwei Liang
- School of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Chun Bian
- School of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
17
|
Formation of N-carboxymethyllysine in raw and heat-treated hen eggs: Effects of egg freshness. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Yu L, Zhang X, Sun W, Shen G, Yang Y, Zeng M. The influence of piperine on oxidation-induced porcine myofibrillar protein gelation behavior and fluorescent advanced glycation end products formation in model systems. Food Chem 2023; 420:136119. [PMID: 37060667 DOI: 10.1016/j.foodchem.2023.136119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
This study investigated the effects of piperine on oxidation-induced porcine myofibrillar protein (MP) gelation behavior and fluorescent advanced glycation end products (fAGEs) formation. Model systems were prepared, lipid oxidation, MP gelling behavior, and fAGEs content were determined daily. The results indicated that lipid oxidation, carbonyl content, S0, cooking loss, and tryptophan fluorescence intensity of MP significantly decreased, whereas gel strength, WHC, and whiteness markedly increased as the concentration of piperine increased (from 0 to 30 μM/g protein), indicating that piperine could reduce lipid oxidation and oxidative damage to MP. The fluorescence intensity of fAGEs markedly decreased (P < 0.05), from 93.1 ± 4.4 to 61.2 ± 3.0, as the concentration of piperine increased from 0 μM/g protein to 30 μM/g protein after 5 days of incubation. These results in model systems suggest that the presence of piperine has an important role in the inhibition of MP oxidation and fAGEs formation.
Collapse
Affiliation(s)
- Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan 030006, China.
| | - Xiaoyue Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wenyan Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Guang Shen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan 030006, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Hu X, Jiang Q, Wang H, Li J, Tu Z. Insight into the effect of traditional frying techniques on glycosylated hazardous products, quality attributes and flavor characteristics of grass carp fillets. Food Chem 2023; 421:136111. [PMID: 37087991 DOI: 10.1016/j.foodchem.2023.136111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to evaluate the evolution of quality attributes, oxidation index, glycosylated hazardous products, aroma characteristics of grass carp fillets and their relationship under air-frying, roast-frying and pan-frying. With frying progressed, the level of carbonyl protein and lipid oxidation products increased significantly (following air-frying > pan-frying > roast-frying), and the latter decreased subsequently after 6 min. Fillets possessed by frying increased significantly Nε-carboxymethyl-lysines (CML) and 5-hydroxymethylfurfural (5-HMF) levels, whose increment was pan-frying > air-frying > roast-frying. Compared to raw, eighty-seven volatiles were identified and the total concentrations of those increased gradually in air-frying, but then decreased up to 6 min in roast-frying and pan-frying. Furthermore, significant correlations between CML, TBARS and 5-HMF, quality attributes, oxidation index; volatiles (VIP and/or OAV > 1) and lipid oxidation index were obtained. Conclusively, fillets possessed by air-/roast-frying showed more lipid oxidation and alcohols/aldehydes, while pan-fried enriched CML and pyrazines.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jinlin Li
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
20
|
Cao G, Chen X, Hu B, Yang Z, Wang M, Song S, Wang L, Wen C. Effect of ultrasound-assisted resting on the quality of surimi-wheat dough and noodles. ULTRASONICS SONOCHEMISTRY 2023; 94:106322. [PMID: 36774672 PMCID: PMC9945798 DOI: 10.1016/j.ultsonch.2023.106322] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 05/09/2023]
Abstract
In this study, the influence of ultrasound-assisted resting at different power on the rheological properties, water distribution and structural characteristics of dough with 50 % surimi as well as the texture, cooking and microstructure characteristics of the surimi-wheat noodles were investigated. Compared with the fermentation control (FC) noodles, the microstructure, cooking and texture characteristics of noodles (≤24.00 W/L) were significantly (p < 0.05) improved after ultrasonic treating. As the increasing of ultrasonic power, compared to FC, the creep strain, recovery strain, semi-bound water, and free sulfhydryl (SH) contents of surimi-wheat dough decreased at first and then increased significantly (p < 0.05). The α-helix and β-turn content of dough increased at first and then decreased after ultrasonic treatment, while the β-sheet was reversed. The surimi-wheat dough network structure was improved by ultrasonic treatment, with the densest and continuous pore size in 21.33 W/L, but the dough structure was broken and loose (>21.33 W/L), which consisted of the hardness, elasticity, chewiness, resistant and cooked quality of surimi-wheat noodles. This work elucidated the effect of ultrasonic power on the performance of surimi-wheat dough, and the optimal ultrasound power was obtained, thereby improving the nutritional properties and the quality of surimi-wheat noodles.
Collapse
Affiliation(s)
- Geng Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xueting Chen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bingbing Hu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoqian Yang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Man Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin 573000, China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Chu F, Lin Y, Huang Y, Niu L, Lai K. Effect of Sucrose on the Formation of Advanced Glycation End-Products of Ground Pork during Freeze-Thaw Cycles and Subsequent Heat Treatment. Foods 2023; 12:foods12051024. [PMID: 36900541 PMCID: PMC10001163 DOI: 10.3390/foods12051024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The changes in protein degradation (TCA-soluble peptides), Schiff bases, dicarbonyl compounds (glyoxal-GO, methylglyoxal-MGO) and two typical advanced glycation end-products (AGEs) including Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) levels in ground pork supplemented with sucrose (4.0%) were investigated under nine freeze-thaw cycles and subsequent heating (100 °C/30 min). It was found that increase in freeze-thaw cycles promoted protein degradation and oxidation. The addition of sucrose further promoted the production of TCA-soluble peptides, Schiff bases and CEL, but not significantly, ultimately leading to higher levels of TCA-soluble peptides, Schiff bases, GO, MGO, CML, and CEL in the ground pork with the addition of sucrose than in the blank groups by 4%, 9%, 214%, 180%, 3%, and 56%, respectively. Subsequent heating resulted in severe increase of Schiff bases but not TCA-soluble peptides. Contents of GO and MGO all decreased after heating, while contents of CML and CEL increased.
Collapse
Affiliation(s)
- Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yi Lin
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, China
| | - Lihong Niu
- School of Food Engineering, Ludong University, No. 186, Middle Hongqi Road, Yantai 264025, China
- Correspondence: (L.N.); (K.L.); Tel.: +86-535-669-5491 (L.N.); +86-21-6190-0754 (K.L.); Fax: +86-21-6190-0365 (K.L.)
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.N.); (K.L.); Tel.: +86-535-669-5491 (L.N.); +86-21-6190-0754 (K.L.); Fax: +86-21-6190-0365 (K.L.)
| |
Collapse
|
22
|
Investigation on the Contents of N ε-carboxymethyllysine, N ε-carboxyethyllysine, and N-nitrosamines in Commercial Sausages on the Chinese Market. Foods 2023; 12:foods12040724. [PMID: 36832798 PMCID: PMC9955857 DOI: 10.3390/foods12040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Sausages are among the most popular meat products worldwide. However, some harmful products, such as advanced glycation end-products (AGEs) and N-nitrosamines (NAs), can be formed simultaneously during sausage processing. In this study, the contents of AGEs, NAs, α-dicarbonyls and the proximate composition were investigated in two kinds of commercial sausages (fermented sausages and cooked sausages) in the Chinese market. The correlations among them were further analyzed. The results showed that the fermented and cooked sausages had different in protein/fat contents and pH/thiobarbituric acid reactive substance values due to their different processing technologies and added ingredients. The Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) concentrations varied from 3.67 to 46.11 mg/kg and from 5.89 to 52.32 mg/kg, respectively, and the NAs concentrations ranged from 1.35 to 15.88 µg/kg. The contents of some hazardous compounds, such as CML, N-nitrosodimethylamine, and N-nitrosopiperidine, were observed to be higher in the fermented sausages than in the cooked sausages. Moreover, levels of NAs in some sausage samples exceeded the limit of 10 µg/kg issued by the United States Department of Agriculture, suggesting that particular attention should be paid to mitigating NAs, especially in fermented sausages. The correlation analysis suggested that the levels of AGEs and NAs were not significantly correlated in both kinds of sausages.
Collapse
|
23
|
Hu B, Wu R, Sun J, Shi H, Jia C, Liu R, Rong J. Monitoring the oxidation process of soybean oil during deep-frying of fish cakes with 1H nuclear magnetic resonance. Food Chem X 2023; 17:100587. [PMID: 36845470 PMCID: PMC9944498 DOI: 10.1016/j.fochx.2023.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
The oxidation process of soybean oil (SBO) during frying fish cakes was investigated. The TOTOX value of before frying (BF) and after frying (AF) was significantly higher than control (CK). However, the total polar compound (TPC) content of AF reached 27.67% in frying oil continuously frying at 180℃ for 18 h, and 26.17% for CK. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) loss in isooctane and methanol significantly decreased with the extension of frying time and then tended to be stable. The decrease of DPPH loss was related to the increase of TPC content. Antioxidant and prooxidant balance (APB) value below 0.5 was obtained after 12 h for heated oil. (E)-2-alkenals, (E, E)-2,4-alkadienals, and n-alkanals were dominant ingredients among the secondary oxidation products. Traces of monoglycerides (MAG) and diglycerides (DAG) were also detected. These results may improve our understanding of the oxidation deterioration in SBO during frying.
Collapse
|
24
|
Zhao M, Li Y, Bai X, Feng J, Xia X, Li F. Inhibitory Effect of Guava Leaf Polyphenols on Advanced Glycation End Products of Frozen Chicken Meatballs (-18 °C) and Its Mechanism Analysis. Foods 2022; 11:foods11162509. [PMID: 36010509 PMCID: PMC9407430 DOI: 10.3390/foods11162509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
The inhibitory effect of guava leaf polyphenols (GLP) on advanced glycation end products (AGEs) of frozen chicken meatballs (−18 °C) and its possible inhibitory mechanism was investigated. Compared with control samples after freezing for 6 months, acidic value (AV), lipid peroxides, thiobarbituric acid reactive substance (TBARS), A294, A420, glyoxal (GO), Nε-carboxymethyl-lysine (CML), pentosidine, and fluorescent AGEs of chicken meatballs with GLP decreased by 11.1%, 22.3%, 19.5%, 4.30%, 8.66%, 8.27%, 4.80%, 20.5%, and 7.68%, respectively; while free sulfhydryl groups the content increased by 4.90%. Meanwhile, there was no significant difference between meatballs with GLP and TP in AV, A294, GO, and CML (p > 0.05). Correlation analysis indicated that GO, CML, pentosidine, and fluorescent AGEs positively correlated with AV, TBARS, A294, and A420, while GO, CML, pentosidine, and fluorescent AGEs negatively correlated with free sulfhydryl groups. These results manifested GLP could inhibit AGEs formation by inhibiting lipid oxidation, protein oxidation, and Maillard reaction. The possible inhibitory mechanism of GLP on the AGEs included scavenging free radicals, capturing dicarbonyl compounds, forming polyphenol−protein compounds, and reducing the formation of glucose. Therefore, the work demonstrated that the addition of plant polyphenols may be a promising method to inhibit AGEs formation in food.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.X.); (F.L.); Tel.: +86-451-55191289 (X.X.); +86-451-82190222 (F.L.)
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: (X.X.); (F.L.); Tel.: +86-451-55191289 (X.X.); +86-451-82190222 (F.L.)
| |
Collapse
|
25
|
Effect of Washing Times on the Quality Characteristics and Protein Oxidation of Silver Carp Surimi. Foods 2022; 11:foods11162397. [PMID: 36010395 PMCID: PMC9407351 DOI: 10.3390/foods11162397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this work is to evaluate the effects of different washing times (zero (W0), one (W1), two (W2), and three (W3) times) on the physicochemical characteristics, gel property, and protein oxidation of silver carp surimi during 4 °C refrigeration. The results showed that the yield, types of fatty acids, redness (a*), total volatile basic nitrogen, and thiobarbituric acid reactive substances of the surimi tended to decrease, and the whiteness, pH, gel strength, and water retention tended to increase with the increase of washing times. Meanwhile, washing removed some fatty acids and the fatty acid species showed a decreasing trend. The FTIR spectra showed that washing did not change the functional group composition but changed the content of each group of the functional groups, while decreasing the proportion of β-sheet structures. Compared with the unwashed surimi, washing caused some of the immobilized water in the minced fish to be transferred to free water, and the water fluidity was enhanced. The washing enhanced the water holding capacity in the surimi gels, and the microstructure of the surimi gels was denser and delayed the protein oxidation during refrigeration. However, the difference between W2 and W3 surimi was not significant (p > 0.05). In practice, W2 can be used to produce surimi to improve its yield and reduce water consumption.
Collapse
|