1
|
Wakhungu C, Okoth S, Amimo N, Wachira P, Amakhobe T, Owiti A, Wachira P. Screening of mycoflora and ochratoxin A on common culinary herbs and spices in Kenya. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1003-1017. [PMID: 38870338 DOI: 10.1080/19440049.2024.2367212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
The study aimed to screen fungal diversity and ochratoxin A levels on culinary spice and herb samples sold in open-air markets and supermarkets in Nairobi County, Kenya. All herbs were grown in Kenya, while locally-produced and imported spices were purchased from both types of retail outlet. The results showed a high frequency of Aspergillus and Penicillium species contaminating the samples. The isolated species included Aspergillus ochraceous, Aspergillus nomiae, Aspergillus niger, Aspergillus flavus, Aspergillus ustus, Aspergillus terrus, Aspergillus nidulans, Aspergillus clavutus, Penicillium crustosum, Penicillium expansum, Penicillium brevicompactum, Penicillium glabrum, Penicillium thomii, Penicillium citrinum, Penicillium polonicum, and Cladosporium cladosporioides. Total fungal count on spice and herb samples collected from various sources varied between 6 and 7 CFU/mL. Of imported spices, garlic had the highest fungal diversity, while cardamom had the least. For spices from both open market and supermarket outlets, cloves had the highest fungal diversity, while white pepper had the least. For the herbs sampled from the open markets, basil was the most contaminated, while sage was the least. In supermarket samples, parsley, sage, and mint had the highest fungal diversity, and bay had the least. The results indicate the contamination of spices and herbs with OTA at high concentrations. The calibration curve was saturated at 40 µg/kg; with samples of garlic, cinnamon, red chili, basil, thyme, mint, sage, and parsley having levels above this. Of the spices, imported ginger had the highest OTA levels (28.7 µg/kg), while turmeric from the open market had the least, 2.14 µg/kg. For herb samples, parsley from the open market had the highest OTA levels at 29.4 µg/kg, while marjoram from the open market had the lowest at 6.35 µg/kg. The results demonstrate the presence of mycotoxigenic fungi and OTA contamination of marketed culinary herbs and spices beyond acceptable limits. Hence, there is a need for informed and sustainable mitigation strategies aimed at reducing human exposure in Kenya to OTA mycotoxicosis through dietary intake of spices and herbs.
Collapse
Affiliation(s)
- Cynthia Wakhungu
- Department of Applied and Technical Biology, Technical University of Kenya, Nairobi, Kenya
| | - Sheila Okoth
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Nicholas Amimo
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Peter Wachira
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | | | - Ann Owiti
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Patrick Wachira
- Department of Biology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
2
|
Lim GS, Er JC, Bhaskaran K, Sin P, Shen P, Lee KM, Teo GS, Chua JMC, Chew PCF, Ang WM, Lee J, Wee S, Wu Y, Li A, Chan JSH, Aung KT. Singapore's Total Diet Study (2021-2023): Study Design, Methodology, and Relevance to Ensuring Food Safety. Foods 2024; 13:511. [PMID: 38397488 PMCID: PMC10887509 DOI: 10.3390/foods13040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.
Collapse
Affiliation(s)
- Geraldine Songlen Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kalpana Bhaskaran
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Paul Sin
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Ping Shen
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kah Meng Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Guat Shing Teo
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joachim Mun Choy Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Peggy Chui Fong Chew
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Wei Min Ang
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanna Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Sheena Wee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| |
Collapse
|
3
|
Sadef Y, Shakil S, Majeed D, Zahra N, Ben Abdallah F, Ben Ali M. Evaluating aflatoxins and Sudan dyes contamination in red chili and turmeric and its health impacts on consumer safety of Lahore, Pakistan. Food Chem Toxicol 2023; 182:114116. [PMID: 37923193 DOI: 10.1016/j.fct.2023.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Spices are contaminated with aflatoxins (AFs) and Sudan dyes which are classified as class Group 1 and Group 3 human carcinogens by the International Agency for Research on Cancer (IARC) respectively and their prolonged exposure may raise a human health concern. A total of 474 samples of red chili and turmeric were collected from Lahore city and were subjected to quantitative and qualitative AFs and Sudan dyes analysis by thin layer chromatography (TLC) respectively. The number of red chili and turmeric samples with ≥10 μg/kg of total AFs (European Union standard limit) were 70% and 33% respectively and considered unfit for human consumption. The presence of Sudan dyes in red chili and turmeric samples was 67% and 27% respectively. The mean estimated daily intake (EDI) among females and males was 0.0019 μg/kg bw/day, 0.0012 μg/kg bw/day for red chili, and 0.0008 μg/kg bw/day, 0.0006 μg/kg bw/day for turmeric respectively. The mean value of margin of exposure (MOE) among females and males for ingestion of AFs-contaminated red chili and turmeric was 210.25, 332.13, 501.02, and 699.31 respectively. Therefore, the current study demands a continuous monitoring plan and the implementation of novel techniques to enhance the product's quality and protect public health.
Collapse
Affiliation(s)
- Yumna Sadef
- College of Earth and Environmental Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54000, Pakistan
| | - Sidra Shakil
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| | - Dania Majeed
- College of Earth and Environmental Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54000, Pakistan
| | - Naseem Zahra
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore, 54600, Pakistan
| | - Fethi Ben Abdallah
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
4
|
Ashraf W, Rehman A, Rabbani M, Shaukat W, Wang JS. Aflatoxins posing threat to food safety and security in Pakistan: Call for a one health approach. Food Chem Toxicol 2023; 180:114006. [PMID: 37652127 DOI: 10.1016/j.fct.2023.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Aflatoxins are among the most important mycotoxins due to their widespread occurrence and adverse impacts on humans and animals. These toxins and/or their metabolites cannot be destroyed with cooking or boiling methods. Therefore, consumption of aflatoxin-contaminated food may lead to impaired growth, compromised immunity, stomach and liver cancer, and acute toxicity. These adverse effects along with food wastage might have detrimental consequences on a country's economy. Several studies from Pakistan reported a high prevalence of aflatoxins in food and feed commodities (Range; milk = 0.6-99.4%, cereals, and grains = 0.38-41%, animal feed = 31-100%). Notably, Pakistan reported very high figures of impaired child growth-stunted 40.2%, wasted 17.7% and underweight 28.9%-that could be associated with the higher aflatoxin prevalence in food items. Importantly, high aflatoxins prevalence, i.e. 100%, 69% and 60.5%, in children has been reported in Pakistan. Food and feed are more prone to aflatoxin contamination due to Pakistan's hot and humid climate; however, limited awareness, inadequate policy framework, and weak implementation mechanisms are the major obstacles to effective control. This review will discuss aflatoxins prevalence, associated risk factors, adverse health effects, required regulatory regime, and effective control strategies adopting the One Health approach to ensure food safety and security.
Collapse
Affiliation(s)
- Waseela Ashraf
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences Lahore, 54000, Pakistan; Department of Environmental Health Science, The University of Georgia, Athens, GA, USA; Health Services Academy, Islamabad, 44000, Pakistan
| | - Abdul Rehman
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences Lahore, 54000, Pakistan.
| | - Masood Rabbani
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Waseem Shaukat
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, T2N4N1, Alberta, Canada
| | - Jia-Sheng Wang
- Department of Environmental Health Science, The University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
6
|
Chen J, Wang H, Chen Y, Zhu Q, Wan J. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies. Food Res Int 2023; 168:112794. [PMID: 37120239 DOI: 10.1016/j.foodres.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Mould and mycotoxin contamination is an ongoing issue in agriculture and food industry. Production by Aspergillus niger DTZ-12 in Guizhou dried red chilies was found, leading to significant economic losses. In this study, the inhibitive efficacy (Effective Concentration, EC) of cinnamaldehyde (CIN), eugenol (EUG), carvacrol (CAR), and linalool (LIN) against A. niger DTZ-12 were evaluated. CIN with the best antifungal capacity was then investigated for the comprehensive inhibitory activity against A. niger DTZ-12 including mycelia, spores, and physiological activities. Results showed that CIN can effectively retard mycelial growth, spore germination, and OTA production of A. niger DTZ-12 in vitro and in dried red chilies during storage. At physiological level, CIN can increase cell membrane permeability by reducing the ergosterol, decrease ATP content and ATPase activity, and promote the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in cell. These results suggested that CIN displayed a great potential to be employed as a natural and effective alternative preservative during dried red chili storage.
Collapse
Affiliation(s)
- Jiang Chen
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Hua Wang
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Yuanshan Chen
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Qiujin Zhu
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Jing Wan
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
7
|
Kortei NK, Oman Ayiku P, Nsor-Atindana J, Owusu Ansah L, Wiafe-Kwagyan M, Kyei-Baffour V, Kottoh ID, Odamtten GT. Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon 2023; 226:107085. [PMID: 36921906 DOI: 10.1016/j.toxicon.2023.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Maize (Zea mays) is an important staple food crop for the majority of Ghanaians. Maize is mostly contaminated by fungal species and particularly mycotoxins. This work aimed to identify and quantify the incidence of fungal infection and exposure to Ochratoxin A (OTA) as well as the health risk characterization in different age populations due to maize consumption in the Volta region. Maize samples were plated on Dichloran Rose Bengal Chloramphenicol (DRBC) agar, and Oxytetracycline Glucose Yeast Extract (OGYE) agar. All media were prepared in accordance with the manufacturers' instructions. The plates were incubated at 28 ± 2 °C for 5-7 days. High-Performance Liquid Chromatography connected to a fluorescence detector (HPLC-FLD) was used to analyze the ochratoxin A (OTA) levels in maize. Cancer risk assessments were also conducted using models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). The maize samples collected from the Volta region contained fungal population between the range of 3.08-4.58 log10 CFU/g. Eight (8) genera were recorded belonging to Aspergillus, Trichoderma, Penicillium, Fusarium, Saccharomyces, Mucor, Rhodotorula and Rhizopus. The species diversity includes A. flavus, A. niger, T. harzianum, P. verrucosum, F. oxysporum, Yeast, F. verticillioides, Rhodotorulla sp, A. fumigatus, R. stolonifer, M. racemosus species. Additionally, the ochratoxins level contained in the samples were very noteworthy and ranged from 1.22 to 28.17 μg/kg. Cancer risk assessments of OTA produced outcomes also ranged between 2.15 and 524.54 ng/kg bw/day, 0.03-8.31, 0.0323, and 0.07-16.94 for cases/100,000 person/yr for Estimated Daily Intake (EDI), Margin of Exposure (MOE), Average Potency, and Cancer Risks respectively for all age categories investigated. There was very high mycoflora load on the maize sampled from the Volta region, likewise the range of mycotoxins present in the maize grains, suggesting the potential to pose some adverse health effects with the populace of the Volta region.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Peter Oman Ayiku
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - John Nsor-Atindana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Leslie Owusu Ansah
- Department of Food Laboratory, Food and Drugs Authority, P.O. Box CT 2783, Cantonments, Accra, Ghana
| | - Michael Wiafe-Kwagyan
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Isaac Delali Kottoh
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana
| | - George Tawia Odamtten
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
8
|
Chen J, Chen Y, Zhu Q, Wan J. Ochratoxin A contamination and related high-yield toxin strains in Guizhou dried red chilies. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Pisuttu C, Risoli S, Moncini L, Nali C, Pellegrini E, Sarrocco S. Sustainable Strategies to Counteract Mycotoxins Contamination and Cowpea Weevil in Chickpea Seeds during Post-Harvest. Toxins (Basel) 2023; 15:61. [PMID: 36668881 PMCID: PMC9865523 DOI: 10.3390/toxins15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Mycotoxins contamination and pest infestation of foods and feeds represent a pivotal threat for food safety and security worldwide, with crucial implications for human and animal health. Controlled atmosphere could be a sustainable strategy to reduce mycotoxins content and counteract the vitality of deleterious organisms in foodstuff. Ozone treatment (O3, 500 ppb for 30, 60 or 90 min) and high nitrogen concentration (N2, 99% for 21 consecutive days) were tested in the post-harvest management of four batches of Cicer arietinum grains to control the presence of mycotoxigenic fungi and their secondary metabolites, as well as pest (i.e., Callosobruchus maculatus) infestation. At the end of the treatment, O3 significantly decreased the incidence of Penicillium spp. (by an average of -50%, independently to the time of exposure) and reduced the patulin and aflatoxins content after 30 min (-85 and -100%, respectively). High N2 concentrations remarkably reduced mycotoxins contamination (by an average of -94%) and induced pest mortality (at 100% after 5 days of exposure). These results confirm the promising potential of O3 and N2 in post-harvest conservation strategies, leading to further investigations to evaluate the effects on the qualitative characteristics of grains.
Collapse
Affiliation(s)
- Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- University School for Advanced Studies IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Lorenzo Moncini
- Biotechnical Instruments in Agriculture and Forestry Research Centre (CRISBA), ISIS “Leopoldo II di Lorena”, Cittadella dello Studente, 58100 Grosseto, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| |
Collapse
|
10
|
Biocontrol potential of 1-pentanal emitted from lactic acid bacteria strains against Aspergillus flavus in red pepper (Capsicum annuum L.). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Luo D, Guan J, Dong H, Chen J, Liang M, Zhou C, Xian Y, Xu X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front Nutr 2022; 9:1001671. [PMID: 36245528 PMCID: PMC9555343 DOI: 10.3389/fnut.2022.1001671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A solid phase extraction-high-performance liquid chromatography-tandem Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was established for the determination of 12 mycotoxins (ochratoxin A, ochratoxin B, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, HT-2 toxin, sterigmatocystin, diacetoxysciroenol, penicillic acid, mycophenolic acid, and citreoviridin) in edible oil, soy sauce, and bean sauce. Samples were extracted by 80:20 (v:v) acetonitrile-water solution, purified by PRiME HLB column, separated by aQ C18 column with mobile phase consisting of 0.5 mmol/L ammonium acetate-0.1% formic acid aqueous solution and methanol. The results showed that the limits of detection (LODs) and limits of quantification (LOQs) of 12 mycotoxins were 0.12–1.2 μg/L and 0.40–4.0 μg/L, respectively. The determination coefficients of 12 mycotoxins in the range of 0.20–100 μg/L were > 0.998. The average recoveries in soy sauce and bean sauce were 78.4–106.8%, and the relative standard deviations (RSDs) were 1.2–9.7% under three levels, including LOQ, 2× LOQ and 10 × LOQ. The average recoveries in edible oil were 78.3–115.6%, and the precision RSD (n = 6) was 0.9–8.6%. A total of 24 edible oils, soy sauce and bean sauce samples were analyzed by this method. AFB1, AFB2, sterigmatocystin and mycophenolic acid were detected in several samples at concentrations ranging from 1.0 to 22.1 μg/kg. The method is simple, sensitive, and rapid and can be used for screening and quantitative analysis of mycotoxin contamination in edible oil, soy sauce, and bean sauce.
Collapse
Affiliation(s)
- Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Hao Dong
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Sciences, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Hao Dong
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Chunxia Zhou
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Xiaofei Xu
| |
Collapse
|
12
|
Iqbal SZ, Waqas M, Razis AFA, Usman S, Ali NB, Asi MR. Variation of Aflatoxin Levels in Stored Edible Seed and Oil Samples and Risk Assessment in the Local Population. Toxins (Basel) 2022; 14:toxins14090642. [PMID: 36136580 PMCID: PMC9501980 DOI: 10.3390/toxins14090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 01/09/2023] Open
Abstract
Five hundred and twenty samples of edible seeds and oilseeds (sunflower, palm, peanut, sesame, cotton, and grapeseed) were purchased from markets, farmers, and superstores in the central cities of Punjab, Pakistan. A total of 125 (48.1%) edible seed samples from a 6 ≤ months storage period, and 127 (48.8%) from a 2 ≥ years storage period were found to be infested with AFs. The average elevated amount of AFB1 and total AFs was observed in a 2 ≥ years storage period, i.e., 28.6 ± 4.5 and 51.3 ± 10.4 µg/kg, respectively, in sesame seeds. The minimum amount of AFB1 and total AFs was observed in palm seed samples with a storage period of 6 ≤ months, i.e., 9.96 ± 2.4, and 11.7 ± 1.90 µg/kg, respectively. The maximum amount of AFB1 and total AFs were observed in peanut oil samples, i.e., 21.43 ± 2.60 and 25.96 ± 4.30 µg/kg, respectively, with a storage period of 2 ≥ years. Therefore, the maximum dietary intake of 59.60 ng/kg/day was observed in oil samples stored at a ≥ 2 years storage period. The results of the present study concluded that a significant difference was found in the amounts of total AFs in edible seed samples stored at 6 ≤ months and 2 ≥ years storage periods (p < 0.05).
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Laboratory of Food Security and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-397-693073
| | - Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Rafique Asi
- Food Toxicology Lab, Nuclear Institute for Agriculture & Biology, Faisalabad 38950, Pakistan
| |
Collapse
|
13
|
Seasonal Variation of Aflatoxin Levels in Selected Spices Available in Retail Markets: Estimation of Exposure and Risk Assessment. Toxins (Basel) 2022; 14:toxins14090597. [PMID: 36136535 PMCID: PMC9501981 DOI: 10.3390/toxins14090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 603 samples of selected spices from different seasons (winter and summer) were analyzed for the occurrence of aflatoxin B1 (AFB1), total AFs, and tocopherols. The findings revealed that 120 (38.7%) samples from the summer and 136 (46.4%) samples from the winter season were observed to be infected with AFB1 and a large amount of AFs. The highest means of both AFB1 and total Afs were observed in red pepper, i.e., 15.5 ± 3.90 µg/kg and 22.90 ± 4.10 µg/kg, respectively. The minimum averages of AFB1 and total AFs were observed in cloves of 6.32 ± 1.8 and 8.40 ± 1.60 µg/kg, respectively (from the winter season). The seasonal variations in the levels of the total AFs in selected spices were observed to be nonsignificant (p ≥ 0.05), except for the levels in red pepper and ginger samples, which showed significant differences (p ≤ 0.05). The maximum average of the dietary intake of Afs, 4.80 µg/day/kg, was found in ginger from the winter season in individual females. Furthermore, the findings document that the maximum level of total tocopherol, i.e., 44.8 ± 9.3 mg/100 g, was observed in black pepper from the winter season. A significant difference in the concentration of total tocopherols was observed in selected spices from the summer and the winter seasons (p ≤ 0.05).
Collapse
|
14
|
Gillani SWUHS, Sadef Y, Imran M, Raza HMF, Ghani A, Anwar S, Ashraf MY, Hussain S. Determination and detoxification of aflatoxin and ochratoxin in maize from different regions of Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:613. [PMID: 35882690 DOI: 10.1007/s10661-022-10197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The contamination of food commodities with mycotoxins could be a serious health threat to humans and animals. Therefore, identification, quantification and reduction of mycotoxins in food commodities, particularly of aflatoxins (AFs) and ochratoxin A (OTA) in grain foods, is essentially required to guarantee safe food. This study determined the levels of AFs and OTA in 135 maize grains samples belonging to eight salient maize varieties cultivated in Pakistan, and evaluated the usefulness of radiations and adsorbents to reduce their levels. High performance liquid chromatography (HPLC)-based method was validated for the determination of AFs and OTA in maize grains. The results showed that 69 and 61% samples were positive for AFs and OTA, respectively and 54 and 22% of the respective samples had AFs and OTA above the permissible limits set by Pakistan Standards and Quality Control Authority. The concentration of AFs, AFB1and OTA in grains ranged from 14.5 to 92.4, 1.02 to 2.46 and 1.41 to 53.9 μg kg-1, respectively. Among the varieties, Pearl had the highest level of total AFs and OTA, whereas YH-5427 had the highest AFB1 level. The lowest concentration of AFs and OTA was found in Malaka and 30Y87, respectively. The use of 15 kGy gamma irradiation for 24 h, sunlight-drying for 20 h and UV irradiation for 12 h almost completely degraded the mycotoxins. The microwave heating for 120 s resulted in 9-33% degradation of mycotoxins. Moreover, the treatment of grains' extract with activated charcoal (5% w/w) removed > 96% of total AFs and AFB1, and up to 43% of OTA. The use of bentonite at the same rate removed OTA, total AFs and AFB1 by 93, 73 and 92%, respectively. Thus, it is concluded that contamination of maize grains with mycotoxins was fairly high in the collected maize grain samples in Pakistan, and treatment with radiations and adsorbents can effectively reduce mycotoxins contamination level in maize grains.
Collapse
Affiliation(s)
- Syed Wajih Ul Hassan Shah Gillani
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan.
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, 54590, Pakistan.
| | - Yumna Sadef
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Imran
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | | | - Aamir Ghani
- Maize and Millet Research Institute (MMRI), Ayub Agricultural Research Institute, Sahiwal, 57000, Pakistan
| | - Sumera Anwar
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Yasin Ashraf
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Lahore, 54000, Pakistan
| | - Shabbir Hussain
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
- Central Analytical Facility Division, PINSTECH, Islamabad, 45650, Nilore, Pakistan
| |
Collapse
|
15
|
Dhanshetty M, Shinde R, Goon A, Oulkar D, Elliott CT, Banerjee K. Analysis of aflatoxins and ochratoxin a in chilli powder using ultrahigh performance liquid chromatography with fluorescence detection and tandem mass spectrometry. Mycotoxin Res 2022; 38:193-203. [PMID: 35834161 DOI: 10.1007/s12550-022-00460-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Chilli powder, a popular spice, is predominantly contaminated with aflatoxins (AFs) and ochratoxin A (OTA), posing a menace to public health. As no validated method exists for the simultaneous and direct analysis of AFs and OTA in chilli powder, it was imperative to develop one to ensure their effective monitoring and promote trade. In this research, we developed and validated a multi-mycotoxin analysis method that allows the simultaneous determination of AFs (AFB1, AFB2, AFG1 and AFG2) and OTA in chilli powder with high sensitivity, accuracy and precision. The optimised sample preparation workflow started with the extraction of chilli powder (25 g) with methanol-water (100 mL, 80:20). An aliquot (3 mL) was cleaned on a multi-mycotoxin, immunoaffinity column (AFLAOCHRA PREP®) and analysed using ultrahigh performance liquid chromatography with fluorescence (UHPLC-FLD) and tandem mass spectrometric (LC-MS/MS) detection in a single chromatographic run. The method performance was evaluated through intra- and inter-laboratory validation (ILV) studies, and also by analysing a certified reference material. A direct analysis using UHPLC-FLD (without derivatisation) provided the limits of quantification (LOQ) of 0.25 and 1 ng/g for AFs and OTA, respectively, while the LOQ for all these mycotoxins in LC-MS/MS was 0.5 ng/g. These LOQs are much lower than the maximum levels (MLs) specified by the European Commission. The recoveries of these analytes at LOQ and higher levels were above 75% (RSDr < 12%). The ILV study demonstrated satisfactory method-reproducibility (RSDR < 25%). The analysis of the certified reference material provided accuracies of AFs and OTA in the range of 83-101%. The analysis by UHPLC-FLD and LC-MS/MS provided very similar results. The incurred levels of B1 in market samples were estimated with a precision-RSD of < 6%. Considering its efficiency and alignment with the regulatory requirements, this method can be implemented for the routine analysis of AFs and OTA in chilli powder.
Collapse
Affiliation(s)
- Manisha Dhanshetty
- P.O. Manjri Farm, National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune, 412307, India
| | - Raviraj Shinde
- P.O. Manjri Farm, National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune, 412307, India
| | - Arnab Goon
- P.O. Manjri Farm, National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune, 412307, India
| | - Dasharath Oulkar
- P.O. Manjri Farm, National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune, 412307, India
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Kaushik Banerjee
- P.O. Manjri Farm, National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune, 412307, India.
| |
Collapse
|
16
|
Palma P, Godoy M, Vidal M, Rivera A, Calderón R. Adaptation, optimization, and validation of a sensitive and robust method for the quantification of total aflatoxins (B1, B2, G1, and G2) in the spice merkén by HPLC-FLD with post-column derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Rajendran S, Shunmugam G, Mallikarjunan K, Paranidharan V, Venugopal AP. Prevalence of aflatoxin contamination in red chilli pepper (
Capsicum annum
L.) from India. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sasireka Rajendran
- Department of Food Process Engineering Tamil Nadu Agricultural University Coimbatore Tamil Nadu 641003 India
| | - Ganapathy Shunmugam
- Department of Food Process Engineering Tamil Nadu Agricultural University Coimbatore Tamil Nadu 641003 India
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition University of Minnesota Eckles Ave Saint Paul MN 55108 USA
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering Tamil Nadu Agricultural University Coimbatore Tamil Nadu 641003 India
- Department of Food Process Engineering National Institute of Technology Rourkela India
| |
Collapse
|
18
|
Ayob O, Hussain PR, Naqash F, Riyaz L, Kausar T, Joshi S, Azad ZRAA. Aflatoxins: Occurrence in red chilli and control by gamma irradiation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Omeera Ayob
- Department of Food Technology School of Interdisciplinary Sciences and Technology Jamia Hamdard Hamdard Nagar New Delhi 110062 India
| | - Peerzada Rashid Hussain
- Astrophysical Sciences Division Nuclear Research Laboratory Bhabha Atomic Research Centre Srinagar 190006 India
| | - Farah Naqash
- Department of Food Technology Islamic University of Science and Technology Awantipora 192122 India
| | - Lubna Riyaz
- Department of Computer Science University of Kashmir Srinagar 190006 India
| | - Tahreem Kausar
- Department of Food Technology School of Interdisciplinary Sciences and Technology Jamia Hamdard Hamdard Nagar New Delhi 110062 India
| | - Sweta Joshi
- Department of Food Technology School of Interdisciplinary Sciences and Technology Jamia Hamdard Hamdard Nagar New Delhi 110062 India
| | | |
Collapse
|
19
|
Woldemariam HW, Harmeling H, Emire SA, Teshome PG, Toepfl S, Aganovic K. Pulsed light treatment reduces microorganisms and mycotoxins naturally present in red pepper (
Capsicum annuum
L.
) powder. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Henock Woldemichael Woldemariam
- Food Engineering Graduate Program, School of Chemical and Bioengineering, Addis Ababa Institute of Technology Addis Ababa University Addis Ababa Ethiopia
- Department of Food Engineering, College of Biological and Chemical Engineering Addis Ababa Science and Technology University Addis Ababa Ethiopia
| | - Hanna Harmeling
- Advanced Food Research DIL German Institute of Food Technologies e.V Quakenbrück Germany
| | - Shimelis Admassu Emire
- Food Engineering Graduate Program, School of Chemical and Bioengineering, Addis Ababa Institute of Technology Addis Ababa University Addis Ababa Ethiopia
| | - Paulos Getachew Teshome
- Center for Food Science and Nutrition, College of Natural and Computational Sciences Addis Ababa University Addis Ababa Ethiopia
| | - Stefan Toepfl
- Advanced Food Research DIL German Institute of Food Technologies e.V Quakenbrück Germany
- Faculty of Agricultural Sciences and Landscape Architecture Osnabrück University of Applied Sciences Osnabrück Germany
| | - Kemal Aganovic
- Advanced Food Research DIL German Institute of Food Technologies e.V Quakenbrück Germany
| |
Collapse
|
20
|
Pickova D, Toman J, Ostry V, Malir F. Natural Occurrence of Ochratoxin A in Spices Marketed in the Czech Republic during 2019-2020. Foods 2021; 10:2984. [PMID: 34945534 PMCID: PMC8701753 DOI: 10.3390/foods10122984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Spices are a popular ingredient in cuisine worldwide but can pose a health risk as they are prone to fungal infestation and mycotoxin contamination. The purpose of this study was to evaluate ochratoxin A (OTA) in 54 single-kind traditional and less traditional spices, each of which was purchased in six samples of different batches (324 samples in total) at the Czech market during 2019-2020. The HPLC-FLD method with pre-treatment by immunoaffinity columns was employed to determine OTA. The limits of detection and quantification were 0.03 ng g-1 and 0.10 ng g-1, respectively. A total of 101 (31%) samples of 19 spice kinds were positive at concentrations ranging from 0.11-38.46 ng g-1. Only turmeric was contaminated with an OTA level exceeding the European Union limits. However, most spices have no regulation, thus further extensive monitoring of various mycotoxins in various kinds of spices is necessary. Chilli and black pepper are the most studied spices for OTA contamination, however, many other kinds of spice can also be highly contaminated, but studies on them are less common, rare, or have not yet been performed. The uniqueness of this study lies in the wide range of spice types studied for the presence of OTA on the Czech market.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| |
Collapse
|
21
|
Kortei NK, Annan T, Kyei-Baffour V, Essuman EK, Okyere H, Tettey CO. Exposure and risk characterizations of ochratoxins A and aflatoxins through maize (Zea mays) consumed in different agro-ecological zones of Ghana. Sci Rep 2021; 11:23339. [PMID: 34857860 PMCID: PMC8639867 DOI: 10.1038/s41598-021-02822-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Mycotoxin contamination of foodstuffs is a serious food safety concern globally as the prolonged ingestion of these toxins has the tendency to worsen the risk of hepatocellular carcinoma. This study aimed at estimating ochratoxin A (OTA) and aflatoxin (AF) levels above international (European Food Safety Authority, EFSA) and local (Ghana Standards Authority, GSA) standards as well as the health risks associated with the consumption of maize (n = 180) sampled from six (6) regions representing the agro-ecological zones of Ghana. OTA and AF were measured with High-Performance Liquid Chromatography with a Fluorescence detector. Out of the 180 samples analyzed for total aflatoxins (AFtotal), 131/180 tested positive and 127 (70.50%) exceeded the limits of EFSA and ranged 4.27-441.02 µg/kg. While for GSA, 116 (64.44%) of samples exceeded this limit and ranged between 10.18 and 441.02 µg/kg. For OTA, 103/180 tested positive and 94 (52.22%) of samples between the range 4.00-97.51 µg/kg exceeded the tolerable limit of EFSA, whereas 89 (49.44%) and were in the range of 3.30-97.51 µg/kg exceeded the limits of GSA. Risk assessment values for total aflatoxins (AFtotal) ranged between 50 and 1150 ng/kg bw/day, 0.4-6.67, 0-0.0323 aflatoxins ng/kg bw/day and 1.62-37.15 cases/100,000 person/year for Estimated Daily Intake (EDI), Margin of Exposure (MOE), Average Potency, and Cancer Risks respectively. Likewise, ochratoxin (OTA) values were in the ranges of 8.6 × 10-3-450 ng/kg bw/day, 0.05-2059.97, 0-0.0323 ochratoxins ng/kg bw/day and 2.78 × 10-4-14.54 cases/100,000 person/year. Consumption of maize posed adverse health effects in all age categories of the locations studied since the calculated MOE values were less than 10,000.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Theophilus Annan
- Food Microbiology Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Edward Ken Essuman
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Harry Okyere
- Council for Scientific and Industrial Research- Crops Research Institute, P. O. Box 3785, Fumesua, Kumasi, Ghana
| | - Clement Okraku Tettey
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| |
Collapse
|
22
|
Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
24
|
Zhao T, Zhang M, Peng Q, Lin X, Xie Z. Facile DNA adsorption enabling ammonium-based hydrophilic affinity monolithic column for high-performance online selective microextraction of ochratoxin A. Anal Chim Acta 2021; 1185:339077. [PMID: 34711314 DOI: 10.1016/j.aca.2021.339077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Herein, a facile protocol of simple DNA adsorption on UV-initiated polymerization supports was proposed for effectively fabricating aptamer-based affinity monolithic column. Hydrophilic cationic monolith with an excellent mechanical stability was achieved within 7 min and then massive aptamers were directly bound by DNA charge-dependent adsorption. Strong cationic quaternary ammonium-based monomer was employed to provide effective and stable positive charge surface for aptamer immobilization in a wide range of pH. An ultra-high aptamer coverage density of 6813 pmol/μL was achieved to gain a highly specific online recognition performance. Limitations such as low aptamer capacity, tedious modification and time-consuming reactions in the traditional biological or covalent modification strategies were avoided. By using ochratoxin A (OTA) as the given analyte, the selective recognition and high recoveries were successfully achieved, and little cross-reactivity towards OTB analogue was only 0.5% even if the content of OTB got up to 125 folds of OTA. Applied to sample analysis, the satisfactory discriminations of trace OTA were obtained at 93.9 ± 1.9% - 96.5 ± 1.7%(n = 3)in beer, wheat and chicken liver samples. It might light a cost-effective access to efficiently preparing high-performance affinity monoliths towards the selective in-tube microextraction of OTA.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Min Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Qi Peng
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
25
|
Waqas M, Iqbal SZ, Abdull Razis AF, Pervaiz W, Ahmad T, Usman S, Ali NB, Asi MR. Occurrence of Aflatoxins in Edible Vegetable Seeds and Oil Samples Available in Pakistani Retail Markets and Estimation of Dietary Intake in Consumers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158015. [PMID: 34360308 PMCID: PMC8345775 DOI: 10.3390/ijerph18158015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
Aflatoxins (AFs) are secondary metabolites toxic to humans as well as animals. The environmental conditions, conventional agricultural practices, and illiteracy are the main factors which favor the production of AFs in food and feed. In the current study 744 samples of vegetable seeds and oils (soybean, sunflower, canola, olive, corn, and mustard) were collected and tested for the presence of aflatoxin B1 (AFB1) and total AFs. Liquid-liquid extraction was employed for the extraction of AFs from seeds and oil samples. Reverse phase high performance liquid chromatography equipped with fluorescence detection was used for the analysis. The results have shown that 92 (56.7%) samples of imported and 108 (57.0%) samples of local edible seeds were observed to be contaminated with AFs. All samples of edible seeds have AFB1 levels greater than the proposed limit set by the European Union (EU, 2 µg/kg) and 12 (7.40%) samples of imported seeds and 14 (7.40%) samples of local seeds were found in the range ≥ 50 µg/kg. About 78 (43.3%) samples of imported edible oil and 103 (48.3%) sample of local edible oil were observed to be positive for AFs. Furthermore, 16 (8.88%) and six (3.33%) samples of imported vegetable oil have levels of total AFs in a range (21–50 µg/kg) and greater than 50 µg/kg, respectively. The findings indicate significant differences in AFs levels between imported and local vegetable oil samples (t = 22.27 and p = 0.009) at α = 0.05 and a significant difference in AFs levels were found between vegetable seeds and oil samples (t = −17.75, p = 0.009) at α = 0.05. The highest dietary intake was found for a local sunflower oil sample (0.90 µg/kg/day) in female individuals (16–22 age group). The results have shown considerably high levels of AFB1 and total AFs in seeds and oil samples and emphasise the need to monitor carefully the levels of these toxic substances in food and feed on regular basis.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.W.); (W.P.); (T.A.)
| | - Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.W.); (W.P.); (T.A.)
- Correspondence: (S.Z.I.); (A.F.A.R.)
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (S.Z.I.); (A.F.A.R.)
| | - Wajeeha Pervaiz
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.W.); (W.P.); (T.A.)
| | - Touheed Ahmad
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.W.); (W.P.); (T.A.)
| | - Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | |
Collapse
|
26
|
Gamma irradiation and storage effects on quality and safety of Himalayan paprika (Waer). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Iqbal SZ, Mumtaz A, Mahmood Z, Waqas M, Ghaffar A, Ismail A, Pervaiz W. Assessment of aflatoxins and ochratoxin a in chili sauce samples and estimation of dietary intake. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Wajih Ul Hassan S, Sadef Y, Hussain S, Rafique Asi M, Ashraf MY, Anwar S, Malik A. Unusual pattern of aflatoxins and ochratoxin in commercially grown maize varieties of Pakistan. Toxicon 2020; 182:66-71. [PMID: 32439496 DOI: 10.1016/j.toxicon.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/05/2020] [Accepted: 05/16/2020] [Indexed: 01/03/2023]
Abstract
The contamination of food with mycotoxins could be a major health risk. Identification and quantification of mycotoxins in maize are essentially required to guarantee food safety. Seven commonly grown maize cultivars were sown at semi-arid conditions in Pakistan. After harvesting plants, total aflatoxin (AFs), aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), and ochratoxin-A (OTA) contents were determined in maize flour using high performance liquid chromatography (HPLC). Results showed an unusual pattern of AFs in maize with a higher concentration of AFG1 in all maize varieties. The AFB1 was not found in most of the samples, however, all maize grains contained AFs above the maximum tolerable limit (20 μg/kg). The highest concentration of AFs was recorded in Ayub-1/26 maize (362.8 μg/kg). Ochratoxin-A (OTA) was detected in 71% maize samples ranged from 2.14 to 214 μg/kg. The highest OTA and microbial load were recorded in Ayub-2/27 grains that exceeded the FDA limit (50 μg/kg). These results indicated the higher prevalence of total AFs, AFG1, and OTA at the harvest stage of maize that could pose significant health hazards to humans and livestock.
Collapse
Affiliation(s)
- Syed Wajih Ul Hassan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan; Department of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Yumna Sadef
- Department of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Shabbir Hussain
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan; Central Analytical Facility Division, PINSTECH, Islamabad, Pakistan
| | - Muhammad Rafique Asi
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan
| | - Muhammad Yasin Ashraf
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38950, Pakistan; Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan.
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| |
Collapse
|
29
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
30
|
Foerster C, Muñoz K, Delgado-Rivera L, Rivera A, Cortés S, Müller A, Arriagada G, Ferreccio C, Rios G. Occurrence of relevant mycotoxins in food commodities consumed in Chile. Mycotoxin Res 2019; 36:63-72. [DOI: 10.1007/s12550-019-00369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
|
31
|
Costa J, Rodríguez R, Garcia-Cela E, Medina A, Magan N, Lima N, Battilani P, Santos C. Overview of Fungi and Mycotoxin Contamination in Capsicum Pepper and in Its Derivatives. Toxins (Basel) 2019; 11:E27. [PMID: 30626134 PMCID: PMC6356975 DOI: 10.3390/toxins11010027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Capsicum products are widely commercialised and consumed worldwide. These substrates present unusual nutritional characteristics for microbial growth. Despite this, the presence of spoilage fungi and the co-occurrence of mycotoxins in the pepper production chain have been commonly detected. The main aim of this work was to review the critical control points, with a focus on mycotoxin contamination, during the production, storage and distribution of Capsicum products from a safety perspective; outlining the important role of ecophysiological factors in stimulating or inhibiting mycotoxin biosynthesis in these food commodities. Moreover, the human health risks caused by the ingestion of peppers contaminated with mycotoxins were also reviewed. Overall, Capsicum and its derivative-products are highly susceptible to contamination by mycotoxins. Pepper crop production and further transportation, processing and storage are crucial for production of safe food.
Collapse
Affiliation(s)
- Jéssica Costa
- Scientific and Technological Bioresource Nucleus-BIOREN-UFRO, Universidad de La Frontera, Temuco 4811-230, Chile.
- Department of Sustainable Crop Production, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del S. Cuore di Piacenza, via Emilia Parmense 84, 2910010 Piacenza, Italy.
| | - Rodrigo Rodríguez
- Scientific and Technological Bioresource Nucleus-BIOREN-UFRO, Universidad de La Frontera, Temuco 4811-230, Chile.
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK.
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK.
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK.
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del S. Cuore di Piacenza, via Emilia Parmense 84, 2910010 Piacenza, Italy.
| | - Cledir Santos
- Scientific and Technological Bioresource Nucleus-BIOREN-UFRO, Universidad de La Frontera, Temuco 4811-230, Chile.
| |
Collapse
|
32
|
Nazareth TM, Corrêa JAF, Pinto ACSM, Palma JB, Meca G, Bordin K, Luciano FB. Evaluation of gaseous allyl isothiocyanate against the growth of mycotoxigenic fungi and mycotoxin production in corn stored for 6 months. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5235-5241. [PMID: 29652439 DOI: 10.1002/jsfa.9061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Brazil produces approximately 63 million tons of corn kernels annually, which is commonly contaminated with fungi and mycotoxins. The objective of this study was to evaluate the efficacy of gaseous allyl isothiocyanate (AITC) to inhibit the growth of Aspergillus parasiticus and Fusarium verticillioides, and mycotoxin production (aflatoxins B1 , B2 , G1 and G2 , fumonisins B1 and B2 ) in corn during 180 days of storage. RESULTS AITC at 50 µL L-1 resulted in a significant reduction of the fungal population (P < 0.05) after 180 days, decreasing 3.17 log(CFU g-1 ) and 3.9 log(CFU g-1 ) of A. parasiticus and F. verticillioides respectively in comparison with the control. In addition, 10 and 50 µL L-1 treatments prevented the production of fumonisin B1 for the whole period. Aflatoxins were not detected in either control or treated groups. Residual levels of AITC in corn treated with 10 µL L-1 and 50 µL L-1 were detected up to 14 days and 30 days respectively. CONCLUSION Prophylactic treatment with AITC reduced the fungal population and inhibited fumonisin B1 production in stored corn, exhibiting great potential to be applied in corn silos to prevent fungi contamination and minimize mycotoxin levels. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tiago M Nazareth
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Jessica A F Corrêa
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Anne C S M Pinto
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Juliano B Palma
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Keliani Bordin
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Fernando B Luciano
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
33
|
Khan S, Ismail A, Gong YY, Akhtar S, Hussain M. Concentration of Aflatoxin M 1 and selected heavy metals in mother milk samples from Pakistan. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Caballero-Casero N, García-Fonseca S, Rubio S. Restricted access supramolecular solvents for the simultaneous extraction and cleanup of ochratoxin A in spices subjected to EU regulation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Iqbal SZ, Mehmood Z, Asi MR, Shahid M, Sehar M, Malik N. Co-occurrence of aflatoxins and ochratoxin A in nuts, dry fruits, and nuty products. J Food Saf 2018. [DOI: 10.1111/jfs.12462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry; Government College University Faisalabad; Faisalabad Pakistan
- Department of Plant Biology; Rutgers, The State University of New Jersey; New Brunswick New Jersey
| | - Zehid Mehmood
- Department of Biochemistry; Government College University Faisalabad; Faisalabad Pakistan
| | | | - Misbah Shahid
- Department of Biochemistry; Government College University Faisalabad; Faisalabad Pakistan
| | - Mubasharah Sehar
- Department of Biochemistry; Government College University Faisalabad; Faisalabad Pakistan
| | - Noeen Malik
- Department of Radiology; New York State University; New York New York
| |
Collapse
|
36
|
Iqbal SZ, Asi MR, Mehmood Z, Mumtaz A, Malik N. Survey of aflatoxins and ochratoxin A in retail market chilies and chili sauce samples. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
El-Nekeety AA, Salman AS, Hathout AS, Sabry BA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Evaluation of the bioactive extract of actinomyces isolated from the Egyptian environment against aflatoxin B 1-induce cytotoxicity, genotoxicity and oxidative stress in the liver of rats. Food Chem Toxicol 2017; 105:241-255. [PMID: 28442411 DOI: 10.1016/j.fct.2017.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023]
Abstract
This study aimed to determine the bioactive compounds of actinomyces (ACT) isolated from the Egyptian environment (D-EGY) and to evaluate their protective activity against AFB1 in female Sprague-Dawley rats. Six groups of animals were treated orally for 3 weeks included: C, the control group, T1, AFB1-treated group (80 μg/kg b.w), T2 and T3, the groups received ACT extract at low (25 mg/kg b.w) or high (50 mg/kg b.w) doses, T4 and T5, the groups received AFB1 plus the low or high dose of ACT extract. Blood, bone marrow and tissue samples were collected for different analyses and histological examination. The results revealed the identification of 40 components, representing 99.98%. Treatment with AFB1 disturbs liver function parameters, oxidative stress markers, antioxidant gene expressions, DNA fragmentation and induced severe histological changes. ACT extract at the low or high doses did not induce significant changes in all the tested parameters or histological picture of the liver. Moreover, ACT extract succeeded to induce a significant protection against the toxicity of AFB1. It could be concluded that the bioactive compounds in ACT are promise candidate for the development of food additive or drugs for the protection and treatment of liver disorders in the endemic area.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Amal S Hathout
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Bassem A Sabry
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
38
|
Lippolis V, Irurhe O, Porricelli ACR, Cortese M, Schena R, Imafidon T, Oluwadun A, Pascale M. Natural co-occurrence of aflatoxins and ochratoxin A in ginger (Zingiber officinale) from Nigeria. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Aslam N, Tipu MY, Ishaq M, Cowling A, McGill D, Warriach HM, Wynn P. Higher Levels of Aflatoxin M1 Contamination and Poorer Composition of Milk Supplied by Informal Milk Marketing Chains in Pakistan. Toxins (Basel) 2016; 8:E347. [PMID: 27929386 PMCID: PMC5198542 DOI: 10.3390/toxins8120347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to observe the seasonal variation in aflatoxin M1 and nutritional quality of milk along informal marketing chains. Milk samples (485) were collected from three different chains over a period of one year. The average concentrations of aflatoxin M1 during the autumn and monsoon seasons (2.60 and 2.59 ppb) were found to be significantly higher (standard error of the difference, SED = 0.21: p = 0.003) than in the summer (1.93 ppb). The percentage of added water in milk was significantly lower (SED = 1.54: p < 0.001) in summer (18.59%) than in the monsoon season (26.39%). There was a significantly different (SED = 2.38: p < 0.001) mean percentage of water added by farmers (6.23%), small collectors (14.97%), large collectors (27.96%) and retailers (34.52%). This was reflected in changes in milk quality along the marketing chain. There was no difference (p = 0.178) in concentration of aflatoxin M1 in milk collected from the farmers (2.12 ppb), small collectors (2.23 ppb), large collectors (2.36 ppb) and retailers (2.58 ppb). The high levels of contamination found in this study, which exceed the standards set by European Union (0.05 ppb) and USFDA (0.5 ppb), demand radical intervention by regulatory authorities and mass awareness of the consequences for consumer health and safety.
Collapse
Affiliation(s)
- Naveed Aslam
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga 2650, NSW, Australia.
| | - Muhammad Yasin Tipu
- Quality Operation Laboratory, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Muhammad Ishaq
- Agriculture Sector Linkages Program Dairy Project, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Ann Cowling
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga 2650, NSW, Australia.
| | - David McGill
- Faculty of Veterinary and Agricultural, University of Melbourne, Werribee 3030, VIC, Australia.
| | - Hassan Mahmood Warriach
- Agriculture Sector Linkages Program Dairy Project, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Peter Wynn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga 2650, NSW, Australia.
| |
Collapse
|
40
|
Iqbal SZ, Asi MR, Nisar S, Zia KM, Jinap S, Malik N. A Limited Survey of Aflatoxins and Zearalenone in Feed and Feed Ingredients from Pakistan. J Food Prot 2016; 79:1798-1801. [PMID: 28221839 DOI: 10.4315/0362-028x.jfp-16-091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work presents current information on the presence of aflatoxins (AFs) and zearalenone (ZEN) in feed and feed ingredients from Punjab, Pakistan. The 105 samples tested were concentrated feed, i.e., cotton seed meal (18 samples) and soybean meal (14), and feed ingredients, i.e., crushed corn (17), crushed wheat (15), barley (17). and poultry feed (24). Samples were analyzed using high-performance liquid chromatography equipped with a fluorescence detector. Analysis revealed that 69 of 105 samples were contaminated with AFs, and the highest mean concentrations of AFB1 (6.20 μg/kg) and total AFs (9.30 μg/kg) were found in poultry feed samples. The mean total AF concentrations ranged from the limit of quantification to 165.5 μg/kg. However, 75 of the 105 samples were positive for ZEN. The highest mean concentration (19.45 μg/kg) was found in poultry feed samples. The mean ZEN concentrations were 0.15 to 145.30 μg/kg. The prevalence of AFs and ZEN was high in feed and feed ingredients and needs urgent attention.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rafique Asi
- Food Toxicology Laboratory, Nuclear Institute for Agriculture and Biology, P.O. Box 128, Faisalabad 38950, Pakistan
| | - Sonia Nisar
- Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Selamat Jinap
- Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, 38000, Pakistan.,Department of Food Safety, Institute of Food Security, University of Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noeen Malik
- Clinic for Nuclear Medicine, University Hospital, Ulm D-89070, Germany
| |
Collapse
|
41
|
Iqbal SZ, Asi MR, Hanif U, Zuber M, Jinap S. The presence of aflatoxins and ochratoxin A in rice and rice products; and evaluation of dietary intake. Food Chem 2016; 210:135-40. [PMID: 27211631 DOI: 10.1016/j.foodchem.2016.04.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/24/2022]
Abstract
In present study aflatoxins (AFs) and ochratoxin A (OTA) were analysed in 208 samples of rice and products collected from central areas of Punjab, Pakistan. The analysis was carried out using HPLC equipped with fluorescence detector. The results have shown that 35% of the samples were found contaminated with AFs, out of which 19% and 24% samples were found to be above the European Union (EU) maximum content for AFB1 and total AFs, respectively. About 19% samples were found contaminated with OTA and 14% samples were found to be above the EU maximum content. The highest mean level of AFB1 and total AFs were found in brown rice samples i.e. 8.91 and 12.4μg/kg, respectively. However, white rice samples have shown the highest mean level of OTA (8.50μg/kg) with highest level of 24.9μg/kg. The high mean dietary exposure 22.2 and 24.2ngkg(-1)bwday(-1) to AFB1 and OTA, respectively poses significant health hazard for local population.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry & Biochemistry, Government College University, Faisalabad 38000, Pakistan; Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, University of Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Muhammad Rafique Asi
- Food Toxicology Lab., Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38950, Pakistan
| | - Usman Hanif
- Department of Applied Chemistry & Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Zuber
- Department of Applied Chemistry & Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - S Jinap
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, University of Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
42
|
A reliable screening of mycotoxins and pesticide residues in paprika using ultra-high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Ostry V, Malir F, Dofkova M, Skarkova J, Pfohl-Leszkowicz A, Ruprich J. Ochratoxin A Dietary Exposure of Ten Population Groups in the Czech Republic: Comparison with Data over the World. Toxins (Basel) 2015; 7:3608-35. [PMID: 26378578 PMCID: PMC4591665 DOI: 10.3390/toxins7093608] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011–2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01–0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4–6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for “average consumer” was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for “high consumers” in the group 4–6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18–59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day (“high consumers”, middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18–59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18–59 years old compared to the other population groups.
Collapse
Affiliation(s)
- Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Marcela Dofkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Jarmila Skarkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jiri Ruprich
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| |
Collapse
|
44
|
Iqbal SZ, Mustafa HG, Asi MR, Jinap S. Variation in vitamin E level and aflatoxins contamination in different rice varieties. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Iqbal SZ, Nisar S, Asi MR, Jinap S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.02.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Iqbal SZ, Rabbani T, Asi MR, Jinap S. Assessment of aflatoxins, ochratoxin A and zearalenone in breakfast cereals. Food Chem 2014; 157:257-62. [DOI: 10.1016/j.foodchem.2014.01.129] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
|
47
|
Berthiller F, Burdaspal P, Crews C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2012-2013. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1637] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2012 and mid-2013. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. A wide range of analytical methods for mycotoxin determination in food and feed were developed last year, in particular immunochemical methods and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-based methods. After a section on sampling and sample preparation, due to the rapid spread and developments in the field of LC-MS/MS multimycotoxin methods, a separate section has been devoted to this area of research. It is followed by a section on mycotoxins in botanicals and spices, before continuing with the format of previous reviews in this series with dedicated sections on method developments for the individual mycotoxins.
Collapse
Affiliation(s)
- F. Berthiller
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Carretera de Majadahonda a Pozuelo km 5, 228220 Majadahonda, Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Instituto Adolfo Lutz, Laboratrio I de Ribeiro Preto, Av Dr Arnaldo 355, CEP 14085-410, Ribeiro Preto SP, Brazil
| | - R. Krska
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - J. Stroka
- Institute for Reference Materials and Measurements (IRMM), European Commission Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
48
|
|
49
|
Variation of aflatoxin M1 contamination in milk and milk products collected during winter and summer seasons. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Majeed S, Iqbal M, Asi MR, Iqbal SZ. Aflatoxins and ochratoxin A contamination in rice, corn and corn products from Punjab, Pakistan. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|