1
|
Jaikel-Viquez D, Granados F, Gómez-Arrieta A, Vásquez-Flores J, Morales-Calvo F, Argeñal-Avendaño N, Álvarez-Corvo D, Artavia G, Gómez-Salas G, Wang B, Redondo-Solano M. Occurrence of ochratoxins in coffee and risk assessment of ochratoxin a in a Costa Rican urban population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:103-116. [PMID: 39621808 DOI: 10.1080/19440049.2024.2429140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Costa Rica is a coffee producer and consumer country, but this product is prone to ochratoxin contamination; therefore, this study aims evaluates the human health risk associated with ochratoxin exposure among coffee consumers in the Costa Rica. Ochratoxin A (OTA) is a nephrotoxic compound classified as a Group 2B carcinogen, produced by the fungi Aspergillus section Circumdati, Aspergillus section Nigri and Penicillium spp. The presence of OTA and ochratoxin B (OTB) in Costa Rican coffee products (n = 175) was determined by HPLC with fluorescence detection. OTA was detected in 58.2% of the green coffee beans (1.01 ± 0.85 ng g -1), in 36.8% of the pure roasted coffee (2.59 ± 4.41 ng g -1), in 23.1% of the sugar-added roasted coffee (1.59 ± 0.33 ng g-1) and 75% of the instant coffee samples (0.69 ± 0.58 ng g-1). The contamination with OTB was 45.5% (1.28 ± 0.83 ng g -1), 31.6% (1.60 ± 2.04 ng g -1), 30.8% (1.42 ± 0.86 ng g -1), and 41.7% (2.64 ± 2.07 ng g -1), respectively. The dietary exposure to OTA of the Costa Rican population was assessed by a probabilistic approach. The mean estimated daily intake (EDI) of OTA from coffee was: 0.184 (90% IC: 0.179-0.189) ng kg-1 bw day-1 for the total population (0.189 [90% IC: 0.184-0.194] ng kg-1 bw day-1 for males and 0.181 [90% IC: 0.176-0.186] ng kg-1 bw day-1 for females). The EDIs were lower than the tolerable human intake benchmarks for OTA set by international food safety authorities (even though more than 80% of OTA is extracted during coffee preparation). The results evidence a low risk (related to ochratoxin) for coffee consumers in Costa Rica.
Collapse
Affiliation(s)
- Daniela Jaikel-Viquez
- School of Microbiology, University of Costa Rica, San José, Costa Rica
- Center of Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabio Granados
- Center of Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
| | | | - Josué Vásquez-Flores
- National Center of Food Science and Technology (CITA), University of Costa Rica, San José, Costa Rica
| | | | - Nicole Argeñal-Avendaño
- Center of Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
- Laboratory of Research and Training in Food and Water Microbiology (LIMA), University of Costa Rica, San José, Costa Rica
| | - Delia Álvarez-Corvo
- Center of Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
- Laboratory of Research and Training in Food and Water Microbiology (LIMA), University of Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- National Center of Food Science and Technology (CITA), University of Costa Rica, San José, Costa Rica
| | - Georgina Gómez-Salas
- Department of Biochemistry, School of Medicine, University of Microbiology, San José, Costa Rica
| | - Bing Wang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Mauricio Redondo-Solano
- School of Microbiology, University of Costa Rica, San José, Costa Rica
- Center of Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
- Laboratory of Research and Training in Food and Water Microbiology (LIMA), University of Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Massahi T, Kiani A, Moradi M, Soleimani H, Omer AK, Habibollahi MH, Mansouri B, Sharafi K. A worldwide systematic review of ochratoxin A in various coffee products - human exposure and health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1594-1610. [PMID: 39259858 DOI: 10.1080/19440049.2024.2400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Coffee is one of the most commonly consumed beverages worldwide, so assessing its quality for potential health risks is essential. Therefore, this review aimed to determine the levels of ochratoxin A (OTA) in coffee worldwide and then estimate its human intake and health risks. The systematic search took place from June 1997 to April 2024 and 40 of 254 articles were selected based on the selection criteria. The results showed significant differences in average levels of OTA between countries, continents and coffee types (p < 0.001). Of 3256 samples, OTA was detected in 1778, accounting for 54.6% of the total, with the percentage of positive results varying between 7.5% and 100%. Only two studies reported OTA average levels in roasted coffee exceeding the maximum limit (ML) set by the European Commission (ML-EC = 5 μg/kg). The average OTA in soluble coffee was lower than ML-EC (10 μg/kg) in all studies, and in instant coffee, the level of OTA was higher than ML-EC (10 μg/kg) only in one study. The estimated daily intake (EDI) of OTA in all coffee types was lower than the provisional tolerable daily intake (PTDI) values set by joint FAO/WHO Expert Committee on Food Additives (JECFA) (14 ng/kg bw/day) and proposed by the European Food Safety Authority (EFSA) (17 ng/kg bw/day). Non-carcinogenic risk assessment through coffee consumption indicated that the hazard quotient (HQ) was below the acceptable level, HQ = 1. The Margin of Exposure (MoE) for neoplastic effects was acceptable and unacceptable for non-neoplastic effects (NNE) in 4.5% (one of 22 cases) of the roasted and soluble coffees, but acceptable for all instant coffees. In conclusion, the study shows that the OTA content of coffee is not toxic to consumers worldwide. However, preventative measures should be taken, including inhibiting fungal growth and reducing OTA-producing fungal growth.
Collapse
Affiliation(s)
- Tooraj Massahi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Banahene JCM, Ofosu IW, Odai BT, Lutterodt HE, Agyemang PA, Ellis WO. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024; 10:e39313. [PMID: 39640601 PMCID: PMC11620267 DOI: 10.1016/j.heliyon.2024.e39313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by species of Aspergillus and Penicillium that contaminate agricultural products and pose significant health risks to both humans and animals. This review examines the mechanisms of OTA toxicity, its occurrence in various food commodities, and the implications for public health and trade. Literature pertaining to OTA was sourced from Google Scholar, covering the period from 2004 to 2024. OTA exposure is linked to multiple adverse health effects, including teratogenicity, immunotoxicity, and hepatotoxicity, with a primary impact on kidney function, and it is classified as a possible human carcinogen (Group 2B). Its toxic effects are attributed to several mechanisms, including lipid peroxidation, inhibition of protein synthesis, DNA damage, oxidative stress, and mitochondrial dysfunction. Notable findings included the presence of OTA in 46.7 % of cocoa products in Turkey, 32 % of cocoa samples in Côte d'Ivoire exceeding the OTA threshold of 2 μg/kg, and 91.5 % of ready-to-sell cocoa beans in Nigeria testing positive for OTA. Coffee beans are particularly susceptible to OTA contamination, which underscores the need for vigilant monitoring. Additionally, OTA contamination impacts agricultural productivity and food safety, leading to significant economic consequences, particularly in regions reliant on exports, such as cocoa and coffee. Several countries regulate the OTA levels in food products to safeguard public health. However, these regulations can impede trade, particularly in countries with high levels of contamination. Balancing regulatory compliance with economic viability is crucial for affected nations. Current strategies for managing OTA include improved agronomic practices, such as the use of biocontrol agents for pest management, enhanced storage conditions to prevent mould growth, and the implementation of detoxification techniques to reduce OTA levels in food products. Despite these strategies, OTA remains a significant threat to public health and the agricultural economy worldwide. The complexity of contamination in food products requires robust prevention, control, and management strategies to mitigate its impact. Continuous research and regulatory initiatives are essential for safeguarding consumers and ensuring food safety.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre–BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Herman Erick Lutterodt
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Paul Ayiku Agyemang
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Williams Otoo Ellis
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| |
Collapse
|
4
|
López-Rodríguez C, Verheecke-Vaessen C, Strub C, Fontana A, Schorr-Galindo S, Medina A. Reduction in Ochratoxin A Occurrence in Coffee: From Good Practices to Biocontrol Agents. J Fungi (Basel) 2024; 10:590. [PMID: 39194915 DOI: 10.3390/jof10080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from farm to cup. After a brief introduction to the OTA occurrence in coffee, current good management practices are introduced. The core of this review focuses on biocontrol and microbial decontamination by lactic acid bacteria, yeasts and fungi, and their associated enzymes currently reported in the literature. Special attention is given to publications closest to in vivo applications of biocontrol agents and microbial OTA adsorption or degradation agents. Finally, this review provides an opinion on which future techniques to promote within the coffee supply chain.
Collapse
Affiliation(s)
- Claudia López-Rodríguez
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | | | - Caroline Strub
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angélique Fontana
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Sabine Schorr-Galindo
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
5
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
6
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
7
|
Guadalupe GA, Grandez-Yoplac DE, Arellanos E, Doménech E. Probabilistic Risk Assessment of Metals, Acrylamide and Ochratoxin A in Instant Coffee from Brazil, Colombia, Mexico and Peru. Foods 2024; 13:726. [PMID: 38472839 DOI: 10.3390/foods13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study analysed the probabilistic risk to consumers associated with the presence of iAs, Cd, Cr, Hg, Pb, acrylamide (AA) and ochratoxin A (OTA) in instant coffee from Brazil, Colombia, Mexico and Peru. The results found iAs to be the metal with the highest concentrations (3.50 × 10-2 to 6.00 × 10-2 mg/kg), closely followed by Pb (1.70 × 10-2 to 2.70 × 10-2 mg/kg) and Cr (5.00 × 10-3 to 1.00 × 10-2 mg/kg), although these differences were not significant between countries. Cd and Hg were not detected. Focusing on AA, the concentrations ranged from 1.77 × 10-1 mg/kg (Peru) to 4.77 × 10-1 mg/kg (Brazil), while OTA ranged from 1.32 × 10-3 (Peru) to 1.77 × 10-3 mg/kg (Brazil) with significant differences between countries in both cases. As regards risk, the hazard quotient and hazard index were less than 1, meaning that the consumption of instant coffee represents a low level of concern for non-genotoxic effects. The results of the combination of margin of exposure and probability of exceedance indicated that the non-genotoxic effects of Pb, AA and OTA pose no threat. However, the probability values of suffering cancer from iAs and AA (between 1 × 10-6 and 1 × 10-4) indicated a moderate risk and that management measures should be taken.
Collapse
Affiliation(s)
- Grobert A Guadalupe
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Dorila E Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick Arellanos
- Instituto de Investigación en Ingeniería Ambiental (INAM), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Higos Urco 342, Chachapoyas 01001, Peru
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
8
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
9
|
Arimah A, Dewanti-Hariyadi R, Nuraida L. Estimasi Risiko Okratoksin A dari Konsumsi Kopi Bubuk di Indonesia. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2022. [DOI: 10.6066/jtip.2022.33.2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ochratoxin A (OTA) is a nephrotoxic and carcinogenic mycotoxin that can be found in coffee. This study aimed to obtain the processing steps commonly applied by coffee shops in Indonesia, calculate the level of OTA in coffee bean and ground coffee, and the risk estimate of OTA exposure from ground coffee in Indonesia. The processing steps were determined through an online survey while the level of OTA in coffee was calculated from available references. The consumption level of ground coffee was determined from the Indonesia total diet study report and the exposure assessment was carried out by deterministic approach. The risk estimates were expressed as % risk towards provisional tolerable weekly intake (PTWI) and margin of exposure (MOE). Based on the survey of coffee shops (n=20), ground coffee is commonly processed using dry method consisting of cherries sorting, sun drying, roasting and grinding. Ground coffee was the most common coffee consumed by adults. Based on references from countries with climate similar to Indonesia, the level of OTA in coffee bean ranged from 0.033 to 168 μg/kg with an average of 12.25 μg/kg and 0.018-55 μg/kg in ground coffee averaging at 5.60 μg/kg. The individual exposure to OTA from drinking coffee is 0.014-0.744 ng/kg bw/day. The risk estimates shows that risk of ochratoxin A from ground coffee consumption is low, with risk percentage of <100 % provisional tolerable weekly intake (PTWI) and a MOE of higher than 10000 for all age groups. The study suggested that adults (19-55 years) have higher exposure and risk than the other age groups.
Collapse
|
10
|
Zhang Y, Li Z, Lu Y, Zhang J, Sun Y, Zhou J, Tu T, Gong W, Sun W, Wang Y. Characterization of Bacillus velezensis E2 with abilities to degrade ochratoxin A and biocontrol against Aspergillus westerdijkiae fc-1. Toxicon 2022; 216:125-131. [PMID: 35850255 DOI: 10.1016/j.toxicon.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA), primarily produced by the fungi belonging to the species of Aspergillus and Penicillium, is one of the most common mycotoxins found in cereals and fruits. In addition to resulting in huge economic losses, OTA contamination also poses considerable threat to human and livestock health. Microbial degradation of mycotoxins has been considered with great potential in mycotoxins decontamination. In a previous study, Bacillus velezensis E2 was isolated by our laboratory and showed appreciable inhibitory effect on Aspergillus flavus growth and aflatoxin production in rice grains. In this study, B. velezensis E2 was investigated for its ability to remove OTA and biocontrol against the ochratoxigenic Aspergillus westerdijkiae fc-1. The results revealed that B. velezensis E2 has considerable inhibitory effect on A. westerdijkiae fc-1 both on PDA medium and pear fruits, with inhibitory rate of 51.7% and 73.9%, respectively. In addition, its ability to remove OTA was evaluated in liquid medium and the results showed that more than 96.1% of OTA with an initial concentration of 2.5 μg/mL could be removed by B. velezensis E2 in 48 h. Further experiments revealed that enzymatic transformation and alkaline hydrolysis might be the main mechanisms related to OTA degradation by B. velezensis E2, with ring open ochratoxin α (OP-OTα) as a possible degradation product. Our study indicated that the B. velezensis E2 strain could be a potential bacterial candidate in biodegradation of OTA and biocontrol against A. westerdijkiae fc-1.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhenchao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yenan Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yemei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiayu Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weihong Sun
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Oeung S, Songsermsakul P, Porasuphatana S. Assessment of ochratoxin A exposure risk from the consumption of coffee beans in Phnom Penh, Cambodia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:71-77. [PMID: 35067208 DOI: 10.1080/19393210.2022.2026492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
This survey aimed to determine OTA contamination in roasted coffee samples commercialised in Phnom Penh, Cambodia and to assess the potential health risk from OTA exposure. Forty locally grown and imported coffee samples were collected and analysed. Analytical validation methods were fully performed. In 3 of 40 samples (7.5%), the results showed detectable levels of OTA, ranging from 0.19 to 1.12 µg kg-1, with an overall average of 0.26 µg kg-1 and an average over the LOQ (n = 3) at 0.81 µg kg-1. OTA estimated daily intake (EDI) of both values were 0.05 (overall average) and 0.17 ng/kg bw/day (the worst-case scenario) with the calculated risk of OTA exposure expressed as a Hazard Quotient at 0.003 and 0.01, respectively. This result could imply a low health risk to Cambodian coffee consumers.
Collapse
Affiliation(s)
- Sokunvary Oeung
- Graduate Program in Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Piyada Songsermsakul
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Supatra Porasuphatana
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Zapaśnik A, Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Podolska G. Ochratoxin A and 2' R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2021; 27:188. [PMID: 35011417 PMCID: PMC8746423 DOI: 10.3390/molecules27010188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to estimate the contamination of grain coffee, roasted coffee, instant coffee, and cocoa purchased in local markets with ochratoxin A (OTA) and its isomerization product 2'R-ochratoxin A (2'R-OTA), and to assess risk of dietary exposure to the mycotoxins. OTA and 2'R-OTA content was determined using the HPLC chromatography with immunoaffinity columns dedicated to OTA. OTA levels found in all the tested samples were below the maximum limits specified in the European Commission Regulation EC 1881/2006. Average OTA concentrations calculated for positive samples of grain coffee/roasted coffee/instant coffee/cocoa were 0.94/0.79/3.00/0.95 µg/kg, with the concentration ranges: 0.57-1.97/0.44-2.29/0.40-5.15/0.48-1.97 µg/kg, respectively. Average 2'R-OTA concentrations calculated for positive samples of roasted coffee/instant coffee were 0.90/1.48 µg/kg, with concentration ranges: 0.40-1.26/1.00-2.12 µg/kg, respectively. In turn, diastereomer was not found in any of the tested cocoa samples. Daily intake of both mycotoxins with coffee/cocoa would be below the TDI value even if the consumed coffee/cocoa were contaminated with OTA/2'R-OTA at the highest levels found in this study. Up to now only a few papers on both OTA and 2'R-OTA in roasted food products are available in the literature, and this is the first study in Poland.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland;
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
13
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
14
|
Al Attiya W, Hassan ZU, Al-Thani R, Jaoua S. Prevalence of toxigenic fungi and mycotoxins in Arabic coffee (Coffea arabica): Protective role of traditional coffee roasting, brewing and bacterial volatiles. PLoS One 2021; 16:e0259302. [PMID: 34714880 PMCID: PMC8555823 DOI: 10.1371/journal.pone.0259302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Fungal infection and synthesis of mycotoxins in coffee leads to significant economic losses. This study aimed to investigate the prevalence of toxigenic fungi, their metabolites, and the effect of traditional roasting and brewing on ochratoxin A (OTA) and aflatoxins (AFs) contents of naturally contaminated coffee samples. In addition, in vivo biocontrol assays were performed to explore the antagonistic activities of Bacillus simplex 350–3 (BS350-3) on the growth and mycotoxins synthesis of Aspergillus ochraceus and A. flavus. The relative density of A. niger, A. flavus, Penicillium verrucosum and A. carbonarius on green coffee bean was 60.82%, 7.21%, 3.09% and 1.03%, respectively. OTA contents were lowest in green coffee beans (2.15 μg/kg), followed by roasted (2.76 μg/kg) and soluble coffee (8.95 μg/kg). Likewise, AFs levels were highest in soluble coffee (90.58 μg/kg) followed by roasted (33.61 μg/kg) and green coffee (9.07 μg/kg). Roasting naturally contaminated coffee beans at three traditional methods; low, medium and high, followed by brewing resulted in reduction of 58.74% (3.50 μg/kg), 60.88% (3.72 μg/kg) and 64.70% (4.11 μg/kg) in OTA and 40.18% (34.65 μg/kg), 47.86% (41.17 μg/kg) and 62.38% (53.73 μg/kg) AFs contents, respectively. Significant inhibitions of AFs and OTA synthesis by A. flavus and A. carbonarius, respectively, on infected coffee beans were observed in presence of Bacillus simplex BS350-3 volatiles. Gas chromatography mass spectrochemistry (GC-MS/MS) analysis of head-space BS350-3 volatiles showed quinoline, benzenemethanamine and 1-Octadecene as bioactive antifungal molecules. These findings suggest that marketed coffee samples are generally contaminated with OTA and AFs, with a significant level of roasted and soluble coffee contaminated above EU permissible limits for OTA. Further, along with coffee roasting and brewing; microbial volatiles can be optimized to minimize the dietary exposure to mycotoxins.
Collapse
Affiliation(s)
- Wadha Al Attiya
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
- * E-mail:
| |
Collapse
|
15
|
Aguilar-Alvarez ME, Saucedo-Castañeda G, Durand N, Perraud-Gaime I, González-Robles RO, Rodríguez-Serrano GM. The variety, roasting, processing, and type of cultivation determine the low OTA levels of commercialized coffee in Chiapas State, Mexico. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Ropejko K, Twarużek M. The occurrence of ochratoxin A in human body fluids – review. TOXIN REV 2021. [DOI: 10.1080/15569543.2019.1605530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Karolina Ropejko
- Department of Physiology and Toxicology, Faculty of Natural Sciences, Institute of Experimental Biology, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Natural Sciences, Institute of Experimental Biology, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
17
|
Gonzalez AL, Lozano VA, Escandar GM, Bravo MA. Determination of ochratoxin A in coffee and tea samples by coupling second-order multivariate calibration and fluorescence spectroscopy. Talanta 2020; 219:121288. [PMID: 32887030 DOI: 10.1016/j.talanta.2020.121288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
A new method to quantify the mycotoxin ochratoxin A (OTA) in coffee and tea samples is proposed based on second-order multivariate calibration and excitation-emission fluorescence matrix (EEFM) data. Experimental conditions were optimized by studying the effect of pH and various organized media on the fluorescence signal of OTA. For each analysed matrix (coffee grains and tea leaves), several sample pretreatments and calibration methods (external or standard addition) and data processing by chemometric models (e.g., parallel factor analysis/PARAFAC and multivariate curve resolution-alternating least squares/MCR-ALS) were evaluated and discussed. The MCR-ALS algorithm provided an adequate fit to the data for both samples, while PARAFAC was satisfactory only for the tea samples. Regarding the figures of merit, the limits of detection were in the range of 0.2-0.3 ng mL-1; furthermore, low relative prediction errors, between 2% and 4%, were achieved in both the fortified and real samples. Accordingly, the proposed methodology was applied to analyse fortified roasted and green coffee and real tea leaf samples. Satisfactory recoveries were achieved (ranging from 92 to 110%), and the obtained concentrations were in agreement with the values obtained by the reference method (based on high-performance liquid chromatography with fluorescence detection/HPLC-FLD). In addition, all samples contained OTA levels lower than the maximum permissible levels. Finally, the proposed strategy allows the use of green analytical chemistry principles; for instance, the use of organic solvents and the generation of waste products were significantly lower than for similar analytical methods reported in the literature.
Collapse
Affiliation(s)
- Albani L Gonzalez
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2950, Valparaíso, Chile
| | - Valeria A Lozano
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Graciela M Escandar
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Manuel A Bravo
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2950, Valparaíso, Chile.
| |
Collapse
|
18
|
El-Moghazy AY, Amaly N, Istamboulie G, Nitin N, Sun G. A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. Mikrochim Acta 2020; 187:535. [PMID: 32870397 DOI: 10.1007/s00604-020-04509-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
An innovative ultrasensitive electrochemical aptamer-based sensor was developed for ochratoxin A (OTA) detection in cold brew coffee through revolutionary combination of nanofibers, electrochemical method, and aptamer technologies. The assembly of the aptasensor was based on the activation of silanized cellulose nanofibrous membranes as a supporting matrix for methylene blue (MB) redox probe-labeled aptamer tethering. Cellulose nanofibrous membranes were regenerated by deacetylating electrospun cellulose acetate nanofibrous membranes with deacetylation efficacy of 97%, followed by silanization of the nanofiber surfaces by using (3-aminopropyl)triethoxysilane (APTES). A replacement of conventionally casted membranes by the nanofibrous membranes increased the active surface area on the working electrode of a screen-printed three-electrode sensor by more than two times, consequently enhancing the fabricated aptasensor performance. The developed aptasensor demonstrated high sensitivity and specificity toward OTA in a range 0.002-2 ng mL-1, with a detection limit of 0.81 pg mL-1. Moreover, the assembled aptamer-based sensor successfully detected OTA in cold brew coffee samples without any pretreatment. The aptasensor exhibited good reusability and stability over long storage time. Graphical abstract.
Collapse
Affiliation(s)
- Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA. .,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Georges Istamboulie
- Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.,Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Jonatova P, Dzuman Z, Prusova N, Hajslova J, Stranska-Zachariasova M. Occurrence of ochratoxin A and its stereoisomeric degradation product in various types of coffee available in the Czech market. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) belongs among the most frequently occurring mycotoxins in coffee. In order to investigate its contamination levels in products currently available in the market, a broad set of coffee samples (103 in total) collected between 2016 and 2018 in the Czech Republic was investigated. Aqueous-methanolic extracts purified by using immunoaffinity columns were analysed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (U-HPLC-MS/MS). The undertaken study revealed a relatively low OTA contamination of roasted coffee (in the range 0.2-2.5 μg/kg with the mean concentration of 0.6 μg/kg, and 71% of positive samples). The roasted coffee samples did not exceed the maximum limit of 5 μg/kg set by 1881/2006/EC. With regard to instant coffee samples, OTA concentrations were considerably higher. All the samples were positive, with a mean concentration of 2.9 μg/kg (ranging from 0.6 to 12.8 μg/kg, with 100% of positive samples). One of the analysed samples of instant coffee even exceeded the maximum limit of 10 μg/kg (1881/2006/EC). The study further revealed a relatively high incidence of 14-(R)-OTA, stereoisomer of OTA (14-(S)-OTA), originating as its main degradation product. Its identity was confirmed by high resolution mass spectrometry (HRMS/MS). Most of the samples positive for OTA were also positive for this diastereoisomer, with signal intensities of approx. one-third to one half of the signal of 14-(S)-OTA.
Collapse
Affiliation(s)
- P. Jonatova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Z. Dzuman
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - N. Prusova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - J. Hajslova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | | |
Collapse
|
20
|
Foerster C, Muñoz K, Delgado-Rivera L, Rivera A, Cortés S, Müller A, Arriagada G, Ferreccio C, Rios G. Occurrence of relevant mycotoxins in food commodities consumed in Chile. Mycotoxin Res 2019; 36:63-72. [DOI: 10.1007/s12550-019-00369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
|
21
|
Hajok I, Kowalska A, Piekut A, Ćwieląg-Drabek M. A risk assessment of dietary exposure to ochratoxin A for the Polish population. Food Chem 2019; 284:264-269. [DOI: 10.1016/j.foodchem.2019.01.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
|
22
|
Abstract
Ochratoxin A (OTA) is a widespread bioactive extrolite from secondary metabolism of fungi which presence in foods like coffee is of public health concern, particularly for heavy drinkers. Coffee is one of the most consumed and appreciated non-alcoholic beverage in the world. Its production from the plantation to the coffee cup involves several steps that would determine the final concentration of OTA in the beverage. This review gives an overview of OTA contamination in roasted coffee beans in different countries and mitigation strategies for OTA reduction.
Collapse
|
23
|
Ferreira SL, Silva Junior MM, Felix CS, da Silva DL, Santos AS, Santos Neto JH, de Souza CT, Cruz Junior RA, Souza AS. Multivariate optimization techniques in food analysis – A review. Food Chem 2019; 273:3-8. [DOI: 10.1016/j.foodchem.2017.11.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
|
24
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
25
|
Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit Rev Food Sci Nutr 2018; 57:3405-3420. [PMID: 26744990 DOI: 10.1080/10408398.2015.1126548] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by two main types of fungi, Aspergillus and Penicillium species. OTA is a natural contaminant found in a large number of different matrices and is considered as a possible carcinogen for humans. Hence, low maximum permitted levels in foods have been established by competent authorities around the world, making essential the use of very sensitive analytical methods for OTA detection. Sample treatment is a crucial step of analytical methodology to get clean and concentrated extracts, and therefore low limits of quantification. Solid phase extraction (SPE) is a useful technique for rapid and selective sample preparation. This sample treatment enables the concentration and purification of analytes from the sample solution or extract by sorption on a solid sorbent. This review is focused on sample treatment procedures based on SPE prior to the determination of OTA in food matrices, published from 2010.
Collapse
Affiliation(s)
- J Fernando Huertas-Pérez
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Natalia Arroyo-Manzanares
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Ana M García-Campaña
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Laura Gámiz-Gracia
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| |
Collapse
|
26
|
Barcelo JM, Barcelo RC. Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:328-340. [DOI: 10.1080/19440049.2017.1393109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jonathan M. Barcelo
- Department of Medical Laboratory Science, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| | - Racquel C. Barcelo
- Department of Biology, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| |
Collapse
|
27
|
González-Arias CA, Marín S, Rojas-García AE, Sanchis V, Ramos AJ. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food Chem Toxicol 2017; 109:333-340. [PMID: 28888735 DOI: 10.1016/j.fct.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Ochatoxin A (OTA) is one of the most important mycotoxins based on its toxicity. The oral route is the main gateway of entry of OTA into the human body, and specialized epithelial cells constitute the first barrier. The present study investigated the in vitro cytotoxic effect of OTA (5, 15 and 45 μM) and production of OTA metabolities in Caco-2 and HepG2 cells using a co-culture Transwell System to mimic the passage through the intestinal epithelium and hepatic metabolism. The results derived from MTS cell viability assays and transepithelial electrical resistance measurements showed that OTA was slightly cytotoxic at the lowest concentration at 3 h, but significant toxicity was observed at all concentrations at 24 h. OTA metabolites generated in this co-culture were ochratoxin B (OTB), OTA methyl ester, OTA ethyl ester and the OTA glutathione conjugate (OTA-GSH). OTA methyl ester was the major metabolite found in both Caco-2 and HepG2 cells after all treatments. Our results showed that OTA can cause cell damage through several mechanisms and that the OTA exposure time is more important that the dosage in in vitro studies. OTA methyl ester is proposed as an OTA exposure biomarker, although future studies should be conducted.
Collapse
Affiliation(s)
- Cyndia A González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Tepic, Nayarit C.P. 63155, Mexico
| | - Sonia Marín
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Aurora E Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Tepic, Nayarit C.P. 63155, Mexico
| | - Vicente Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Antonio J Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
28
|
Zhu W, Nie Y, Xu Y. The incidence and distribution of ochratoxin A in Daqu, a Chinese traditional fermentation starter. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
|
30
|
Taradolsirithitikul P, Sirisomboon P, Dachoupakan Sirisomboon C. Qualitative and quantitative analysis of ochratoxin A contamination in green coffee beans using Fourier transform near infrared spectroscopy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1260-1266. [PMID: 27324609 DOI: 10.1002/jsfa.7859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/27/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) contamination is highly prevalent in a variety of agricultural products including the commercially important coffee bean. As such, rapid and accurate detection methods are considered necessary for the identification of OTA in green coffee beans. The goal of this research was to apply Fourier transform near infrared spectroscopy to detect and classify OTA contamination in green coffee beans in both a quantitative and qualitative manner. RESULTS PLSR models were generated using pretreated spectroscopic data to predict the OTA concentration. The best model displayed a correlation coefficient (r) of 0.814, a standard error of prediction (SEP and bias of 1.965 µg kg-1 and 0.358 µg kg-1 , respectively. Additionally, a PLS-DA model was also generated, displaying a classification accuracy of 96.83% for a non-OTA contaminated model and 80.95% for an OTA contaminated model, with an overall classification accuracy of 88.89%. CONCLUSION The results demonstrate that the developed model could be used for detecting OTA contamination in green coffee beans in either a quantitative or qualitative manner. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Panmanas Sirisomboon
- Curriculum of Agricultural Engineering, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | | |
Collapse
|
31
|
Kolakowski B, O'Rourke SM, Bietlot HP, Kurz K, Aweryn B. Ochratoxin A Concentrations in a Variety of Grain-Based and Non-Grain-Based Foods on the Canadian Retail Market from 2009 to 2014. J Food Prot 2016; 79:2143-2159. [PMID: 28221957 DOI: 10.4315/0362-028x.jfp-16-051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extent of ochratoxin A (OTA) contamination of domestically produced foods sold across Canada was determined from 2009 to 2014 with sampling and testing occurring each fiscal year. Cereal-based, fruit-based, and soy-based food samples (n = 6,857) were analyzed. Almost half of the samples (3,200; 47%) did not contain detectable concentrations of OTA. The remaining 3,657 samples contained OTA at 0.040 to 631 ng/g. Wheat, oats, milled products of other grains (such as rye and buckwheat), and to a lesser extent corn products and their derived foods were the most significant potential sources of OTA exposure for the Canadian population. Wine, grape juice, soy products, beer, dairy-based infant formula, and licorice candy were not significant contributors to OTA consumption. Spices had the highest OTA concentrations; but because so little is ingested, these foods are not considered to be a significant source of OTA. In contrast, infant formulas and cereals can be important dietary sources of OTA. Infant cereals containing oats and infant formulas containing soy had detectable concentrations of OTA, some of which exceeded the proposed Canadian guidelines. The prevalence and concentrations of OTA in major crops (wheat, corn, and oats) varied widely across years. Because these foods were purchased at retail stores, no information was available on the OTA concentrations in the raw materials, the storage conditions before purchase of the samples, or the origin of the ingredients (may include blends of raw materials from different years and/or different geographical regions of Canada); therefore, impact of these factors could not be assessed. Overall, 2.3% of the samples exceeded the proposed Canadian OTA regulatory limits and 2.7% exceeded the current European Union (EU) OTA regulatory limits. These results are consistent with a Health Canada exposure assessment published in 2010, despite the inclusion of a wider range of products and confirm the safety of foods widely available across Canada.
Collapse
Affiliation(s)
- Beata Kolakowski
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Sarah M O'Rourke
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Henri P Bietlot
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Karl Kurz
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Barbara Aweryn
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
32
|
Ochratoxin A Detection on Antibody- Immobilized on BSA-Functionalized Gold Electrodes. PLoS One 2016; 11:e0160021. [PMID: 27467684 PMCID: PMC4965031 DOI: 10.1371/journal.pone.0160021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022] Open
Abstract
Ochratoxin A (OTA)—a toxin produced by Aspergillus carbonarius, Aspergillus ochraceus, and Penicillium verrucosum—is one of the most-abundant food-contaminating mycotoxins. To avoid the risk of OTA consumption for humans and animals, the rapid detection and quantitation of OTA level in different commodities are of great importance. In this work, an impedimetric immunosensor for ochratoxin A (OTA) detection, a common toxic botanical contaminant, was developed via the immobilization of anti-OTA antibody on bovine serum albumin modified gold electrodes. A four-step reaction protocol was tested to modify the gold electrode and obtain the sensing substrate. All the steps of the immunosensor elaboration and also the immunochemical reaction between surface-bound antibody and ochratoxin A were analyzed using cyclic voltammetry and electrochemical impedance spectroscopy. Modification of the impedance due to the specific antigen-antibody reaction at immunosensor surface, was used in order to detect ochratoxin A. Linear proportionality of the charge transfer resistance to the concentration of OTA allows ochratoxin A detection in the range of 2.5–100 ng/mL.
Collapse
|
33
|
Zhu W, Ren C, Nie Y, Xu Y. Quantification of ochratoxin A in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
A Selective Chromatographic Method to Determine the Dynamic of Biogenic Amines During Brewing Process. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Kokina A, Pugajeva I, Bartkevics V. Improved sensitivity of ochratoxin A analysis in coffee using high-performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:693-702. [DOI: 10.1080/19440049.2016.1152138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Soto JB, Ruiz MJ, Manyes L, Juan-García A. Blood, breast milk and urine: potential biomarkers of exposure and estimated daily intake of ochratoxin A: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 33:313-28. [PMID: 26565760 DOI: 10.1080/19440049.2015.1118160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purposes of this review are to study potential biomarkers of exposure for ochratoxin A (OTA) in biological fluids (blood, urine and breast milk) for the period 2005-14, calculate the estimated daily intake (EDI) of OTA by using database consumption for the Spanish population, and, finally, to correlate OTA levels detected in blood and EDI values calculated from food products. The values of OTA detected in potential biomarkers of exposure for blood, breast milk and urine ranged from 0.15 to 18.0, from 0.002 to 13.1, and from 0.013 to 0.2 ng ml(-1), respectively. The calculated EDI for OTA in plasma ranged from 0.15 to 26 ng kg(-1) bw day(-1), higher than that obtained in urine (0.017-0.4 ng kg(-1) bw day(-1)). All these values are correlated with the range of EDI for OTA calculated from food products: 0.0001-25.2 ng kg(-1) bw day(-1).
Collapse
Affiliation(s)
| | - María-José Ruiz
- b Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| | - Lara Manyes
- b Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| | - Ana Juan-García
- b Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| |
Collapse
|
37
|
Ostry V, Malir F, Dofkova M, Skarkova J, Pfohl-Leszkowicz A, Ruprich J. Ochratoxin A Dietary Exposure of Ten Population Groups in the Czech Republic: Comparison with Data over the World. Toxins (Basel) 2015; 7:3608-35. [PMID: 26378578 PMCID: PMC4591665 DOI: 10.3390/toxins7093608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011–2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01–0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4–6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for “average consumer” was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for “high consumers” in the group 4–6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18–59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day (“high consumers”, middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18–59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18–59 years old compared to the other population groups.
Collapse
Affiliation(s)
- Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Marcela Dofkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Jarmila Skarkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jiri Ruprich
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| |
Collapse
|
38
|
Garmendia G, Vero S. Occurrence and biodiversity of Aspergillus section Nigri on 'Tannat' grapes in Uruguay. Int J Food Microbiol 2015; 216:31-9. [PMID: 26398282 DOI: 10.1016/j.ijfoodmicro.2015.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/10/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin which has been found worldwide as a contaminant in wines. It is produced on grapes mainly by molds from Aspergillus section Nigri. This study has demonstrated for the first time the occurrence of black aspergilli on Tannat grapes from Uruguay, in a two year survey. Aspergillus uvarum (uniseriate) and Aspergillus welwitschiae (from Aspergillusniger aggregate) were the prevalent species whereas Aspergillus carbonarius which is considered the main OTA producing species was not detected. OTA production in culture medium was evaluated for native isolates from A. niger aggregate and compared to levels produced by a type strain of A. carbonarius. This work also includes the development of quick and easy molecular methods to identify black aspergilli to species level, avoiding sequencing.
Collapse
Affiliation(s)
- Gabriela Garmendia
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, UDELAR. 11800, Montevideo, Uruguay.
| | - Silvana Vero
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, UDELAR. 11800, Montevideo, Uruguay
| |
Collapse
|
39
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Toman J, Bazin I, Roubal T. Transfer of ochratoxin A into tea and coffee beverages. Toxins (Basel) 2014; 6:3438-53. [PMID: 25525684 PMCID: PMC4280543 DOI: 10.3390/toxins6123438] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, immunotoxic, neurotoxic, reprotoxic, teratogenic, and carcinogenic (group 2B), being characterized by species and sex differences in sensitivity. Despite the fact that OTA is in some aspects a controversial topic, OTA is the most powerful renal carcinogen. The aim of this study was to make a small survey concerning OTA content in black tea, fruit tea, and ground roasted coffee, and to assess OTA transfer into beverages. OTA content was measured using a validated and accredited HPLC-FLD method with a limit of quantification (LOQ) of 0.35 ng/g. The OTA amount ranged from LOQ up to 250 ng/g in black tea and up to 104 ng/g in fruit tea. Black tea and fruit tea, naturally contaminated, were used to prepare tea infusions. The transfer from black tea to the infusion was 34.8% ± 1.3% and from fruit tea 4.1% ± 0.2%. Ground roasted coffee naturally contaminated at 0.92 ng/g was used to prepare seven kinds of coffee beverages. Depending on the type of process used, OTA transfer into coffee ranged from 22.3% to 66.1%. OTA intakes from fruit and black tea or coffee represent a non-negligible human source.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Ingrid Bazin
- Ecole des mines d'Ales, 6 av de Clavieres, 30100 Ales Cedex, France.
| | - Tomas Roubal
- National Reference Laboratory for Biomarkers of Mycotoxins and Mycotoxins in Food, Institute of Public Health in Usti nad Labem, Regional Branch Hradec Kralove, 50002 Hradec Kralove, Czech Republic.
| |
Collapse
|