1
|
Bazaraa WA, Eissa HA, Helmy SA, Ramadan MT, Aboelhaggag RM. Effect of ultra violet (UV-C) and cold storage on orange juice quality. FOOD SCI TECHNOL INT 2023; 29:757-764. [PMID: 35929082 DOI: 10.1177/10820132221117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of the UV-C treatment on the physico-chemical characteristics, pectin methylesterase activity (PME) as well as microbial quality of orange juice, compared to fresh juice, was studied. The juice samples were UV-C (254 nm) irradiated for different exposure times (15, 30, 45 and 60 min) and stored at 4 ± 1 °C for 30 days. UV-C treatment didn't significantly (p ≤ 0.05) affect pH values, titratable acidity, TSS (%), ascorbic acid content and PME activity in both fresh and stored samples. Increasing the exposure time from 5 to 60 min. showed no significant effect (p ≤ 0.05) on L* and a* values for both the fresh and the stored samples. On the contrary, negative relationship was observed between UV-C exposure time and b* values. Total bacterial counts were significantly (p ≤ 0.05) reduced from 2.69 to 0.93 log10 CFU/mL when the exposure time was increased from 0 to 60 min. The UV-C treatment showed similar trend on yeast and mold counts but to a lesser extend due to their resistance to UV. The sensory characteristics, i.e. odour, colour, taste, consistency and overall acceptability didn't change (p ≤ 0.05) as a result of UV-C treatment at any tested exposure times.
Collapse
Affiliation(s)
- W A Bazaraa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - H A Eissa
- Food Technology Department, Food Industries and Nutrition Institute, National Research Centre, Cairo, Egypt
| | - S A Helmy
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - M T Ramadan
- Food Technology Department, Food Industries and Nutrition Institute, National Research Centre, Cairo, Egypt
| | - R M Aboelhaggag
- Food Technology Department, Food Industries and Nutrition Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Pipliya S, Kumar S, Srivastav PP. Modeling of the inactivation kinetics of aerobic mesophiles and yeasts and molds natural microbiota in nonthermal plasma-treated pineapple (Ananas comosus) juice. J Food Sci 2023; 88:3905-3919. [PMID: 37548638 DOI: 10.1111/1750-3841.16721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
The nonthermal plasma (NTP) technology is a promising nonthermal technology that can be employed for pasteurization of fruit juice. The effect of NTP on the natural microbiota, namely, aerobic mesophiles (AM), and yeasts and molds (YM) in pineapple juice were examined in the experimental range of 25-45 kV up to 10 min treatment time. At an applied voltage of 45 kV, the AM and YM count reductions of 4.7 and 4.1 log cfu/mL were obtained at the end of the 14-min treatment. The inactivation kinetics of microbes were attempted to be explained using nonlinear models, including Weibull + tail, Geeraerd, log-logistic, Coroller, and Cerf. The residual population (Nres ) model parameter in the Geeraerd model explained the tailing behavior of microbes. Furthermore, the estimated values for the scale parameter and destruction rate constants were used to describe the sensitive and resistant percentages of the microbial population. According to statistical parameters (R2 : 0.978-0.999, RMSE: 0.034-0.277) and validation indicators (accuracy factor: 1.013-1.152, bias factor: 0.985-1.12), all models performed well. Akaike's theory was used to select the best-fit model, and the Coroller model was shown to be the most accurate one for AM and YM, exhibiting the lowest Akaike increment (Δi = 0). PRACTICAL APPLICATION: Nonthermal plasma may be used as an alternate nonthermal process for this product in order to meet customer appeal for safe and nutritious juice with minimal processing. The goal of this work was to produce a nutritious and safe pineapple juice by using nonthermal processing.
Collapse
Affiliation(s)
- Sunil Pipliya
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sitesh Kumar
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Zhao S, Nan Y, Yao R, Wang L, Zeng X, Aadil RM, Shabbir MA. Antibacterial Activity and Transcriptomic Analysis of Hesperetin against Alicyclobacillus acidoterrestris Vegetative Cells. Foods 2023; 12:3276. [PMID: 37685209 PMCID: PMC10487046 DOI: 10.3390/foods12173276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this research was to investigate the antimicrobial characteristics and mechanism of hesperetin against Alicyclobacillus acidoterrestris vegetative cells. The results presented show that hesperetin had effective antimicrobial activity on Alicyclobacillus acidoterrestris vegetative cells, minimum inhibition concentration (MIC) of 0.0625 g/L, and minimum bacterial concentration (MBC) greater than 2 g/L. Moreover, treatment of hesperetin caused significant damage to cell integrity, preventing the growth of Alicyclobacillus acidoterrestris vegetative cells, enhancing the leakage of nucleic acid and proteins, and destroying the vegetative cell morphology. To further investigate the mechanism, transcriptomic analysis was carried out, and 3056 differentially expressed genes (DEGs) were detected. Gene ontology (GO) enrichment analysis revealed that hesperetin inhibits Alicyclobacillus acidoterrestris by affecting the intracellular nitrogen metabolism and amino acid metabolism. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis explained that hesperetin was also able to prevent the growth of Alicyclobacillus acidoterrestris by affecting the processes of nutrient transport, energy metabolism, and flagella motility. These results provide new insights into the antimicrobial effects and mechanism of hesperetin against Alicyclobacillus acidoterrestris, which provides a new method for inactive Alicyclobacillus acidoterrestris in the juice industry.
Collapse
Affiliation(s)
- Siqi Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.Z.); (Y.N.); (R.Y.); (L.W.)
| | - Yanzi Nan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.Z.); (Y.N.); (R.Y.); (L.W.)
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.Z.); (Y.N.); (R.Y.); (L.W.)
| | - Langhong Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.Z.); (Y.N.); (R.Y.); (L.W.)
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xinan Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.Z.); (Y.N.); (R.Y.); (L.W.)
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.M.A.); (M.A.S.)
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.M.A.); (M.A.S.)
| |
Collapse
|
4
|
Lopes SJS, S Sant'Ana A, Freire L. Non-thermal emerging processing Technologies: Mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Res Int 2023; 168:112727. [PMID: 37120193 DOI: 10.1016/j.foodres.2023.112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/01/2023]
Abstract
The increase in the fruit juice consumption and the interest in clean label products boosted the development and evaluation of new processing technologies. The impact of some emerging non-thermal technologies in food safety and sensory properties has been evaluated. The main technologies applied in the studies are ultrasound, high pressure, supercritical carbon dioxide, ultraviolet, pulsed electric field, cold plasma, ozone and pulsed light. Since there is no single technique that presents high potential for all the evaluated requirements (food safety, sensory, nutritional and the feasibility of implementation in the industry), the search for new technologies to overcome the limitations is fundamental. The high pressure seems to be the most promising technology regarding all the aspects mentioned. Some of the outstanding results are 5 log reduction of E. coli, Listeria and Salmonella, 98.2% of polyphenol oxidase inactivation and 96% PME reduction. However its cost can be a limitation for industrial implementation. The combination of pulsed light and ultrasound could overcome this limitation and provide higher quality fruit juices. The combination was able to achieve 5.8-6.4 log cycles reduction of S. Cerevisiae, and pulsed light is able to obtain PME inactivation around 90%, 61.0 % more antioxidants, 38.8% more phenolics and 68.2% more vitamin C comparing to conventional processing, and similar sensory scores after 45 days at 4 °C comparing to fresh fruit juice. This review aims to update the information related to the application of non-thermal technologies in the fruit juice processing through systematic and updated data to assist in industrial implementation strategies.
Collapse
Affiliation(s)
- Simone J S Lopes
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luísa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
5
|
Zheng R, Yin T, Chen Z, Lin X, Li B, Zhang Y. Degradation of imidacloprid and acetamiprid in tea ( Camellia sinensis) infusion by ultraviolet light irradiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:316-326. [PMID: 36942478 DOI: 10.1080/03601234.2023.2188850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The degradation of imidacloprid and acetamiprid in tea infusion by ultraviolet (UV) light irradiation was investigated in this study. Results showed that the influence of UV light irradiation on the quality of tea infusion was controllable and UV light irradiation was effective on the degradation of both pesticides. The maximum removal rates were 75.2% for imidacloprid and 17.6% for acetamiprid after irradiation (650 µW/cm,2 120 min). The degradation of both pesticides followed the first-order kinetics model. Three degradation products were identified for imidacloprid and one for acetamiprid based on liquid chromatography-tandem mass spectrometry analysis. The degradation pathway of imidacloprid involved in the cleavage of C-C bond with the loss of nitro group followed by the hydrogenation, oxidation and hydrolysis, while the degradation of acetamiprid involved in the oxidation at the chlorine atom with the bonding of C atoms at positions 1 and 4 on the pyridine ring. Simultaneously, the toxicity of both pesticides was mitigated by UV light irradiation according to LO2 cell toxicity evaluation. The study provided a low-cost and effective way to reduce imidacloprid and acetamiprid from tea infusion, and it has the potential to be applied to the ready-to drink tea beverage production in industrial scale.
Collapse
Affiliation(s)
- Ruiting Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tao Yin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Kumar S, Pipliya S, Srivastav PP. Effect of cold plasma processing on physicochemical and nutritional quality attributes of kiwifruit juice. J Food Sci 2023; 88:1533-1552. [PMID: 36866392 DOI: 10.1111/1750-3841.16494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
Cold plasma treatment of kiwifruit juice was studied in the domain of 18-30 kV of voltage, 2-6 mm of juice depth, and 6-10 min of treatment time using the response surface methodology (RSM). The experimental design utilized was a central composite rotatable design. The effect of voltage, juice depth, and treatment time on the various responses, namely peroxidase activity, color, total phenolic content, ascorbic acid, total antioxidant activity, and total flavonoid content, was examined. While modeling, the artificial neural network (ANN) showed greater predictive capability than RSM as the coefficient of determination (R2 ) value of responses was greater in the case of ANN (0.9538-0.9996) than in RSM (0.9041-0.9853). The mean square error value was also less in the case of ANN than in RSM. The ANN was coupled with a genetic algorithm (GA) for optimization. The optimum condition obtained from ANN-GA was 30 kV, 5 mm, and 6.7 min, respectively.
Collapse
Affiliation(s)
- Sitesh Kumar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sunil Pipliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
7
|
Kozono L, Fenoglio D, Ferrario M, Guerrero S. Inactivation of Alicyclobacillus acidoterrestris spores, single or composite Escherichia coli and native microbiota in isotonic fruit-flavoured sports drinks processed by UV-C light. Int J Food Microbiol 2023; 386:110024. [PMID: 36446270 DOI: 10.1016/j.ijfoodmicro.2022.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Pasteurized sports drinks and other fruit-based beverages are susceptible to deterioration due to thermal processing ineffectiveness to inactivate certain spoilage microorganisms, like Alicyclobacillus acidoterrestris. This represents a major challenge for the beverage industry. The goals of this study were to: i) investigate the UV-C inactivation (annular thin film unit, actinometrical delivered fluence: 795-1270 mJ/cm2, 10-15 min, 20 °C, 1.8 L/h, Reh = 391-1067, recirculation mode operation) and the evolution during refrigerated storage of A. acidoterrestris ATCC 49025 spores and single or composite Escherichia coli ATCC 25922 in isotonic sports drinks (ISDs) made from orange (orange-ISD, UVT% = 81) or orange-banana-mango-kiwi-strawberry-lemon juices (multi-fruit-ISD, UVT% = 91), compared to a turbid orange-tangerine juice (OT juice, UVT% = 40); ii) assess the effect of pH, °Brix, A254nm, turbidity, colour and particle size of the ISDs and juice on microbial inactivation, iii) evaluate the evolution of native microbiota during cold storage, iv) investigate the Coroller, biphasic, Weibull, and Weibull-plus-tail models' ability to describe microbial inactivation and v) measure 5-hydroxymethylfurfural (HMF) formation. The modified biodosimetry method was used to calculate the germicidal UV-C fluences. Heat pasteurization (T-coil, 80 °C/6 min) was evaluated as the control treatment. UV-C was highly effective at inactivating E. coli as 4.1-5.1 and 4.5-5.6 log reductions were determined in the multi-fruit-ISD and orange-ISD, respectively, barely impacted by the background microbiota. No significant differences were recorded for the inactivation of E. coli in the UV-C and T-coil systems. Whereas, a significantly higher inactivation of A. acidoterrestris spores was achieved by UV-C (3.7-4.0 log reductions), compared to the negligible one achieved by the thermal treatment. Even though E. coli inactivation curves were similar in shape, UV-C was less effective when a cocktail of other E. coli strains was present. In comparison to the OT juice, the ISDs' inactivation kinetics were markedly different in shape, with a rapid decrease in population during the first minutes of treatment. The germicidal fluence (Hd biod) corresponding to A. acidoterrestris (19.1 mJ/cm2) was selected as it was higher than the one obtained for E. coli (11.0 mJ/cm2). UV-C induced 2.8- or 1.3 and 2.3- or 0.8 log-reductions of total aerobes or moulds and yeasts in the multi-fruit-ISD and orange-ISD, respectively. Compared to the other models, the Coroller and biphasic models showed a better fit and more accurate parameter estimates. UV-C-induced HMF production was not significant in the ISDs. The current study found that the UV-C treatment was more effective than typical heat pasteurization for inactivating A. acidoterrestris spores in isotonic drinks, following a similar trend for E. coli and native microbiota.
Collapse
Affiliation(s)
- Luz Kozono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina
| | - Daniela Fenoglio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina
| | - Mariana Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina
| | - Sandra Guerrero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina.
| |
Collapse
|
8
|
Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Int J Food Microbiol 2023; 386:110039. [PMID: 36473316 DOI: 10.1016/j.ijfoodmicro.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alicyclobacillus acidoterrestris has great influence on the quality of apple juice products. In this study, the antibacterial activity of five preservatives (ε-polylysine, propylparaben, monocaprin, octyl gallate and heptylparaben) against A. acidoterrestris and its underlying mechanism were investigated. Results showed that these five preservatives all exerted antibacterial activity through a multiple bactericidal mechanism, and monocaprin and octyl gallate had the highest antibacterial activity, with the minimum inhibitory concentration (MIC) values of 22.5 and 6.25 mg/L, respectively. Five preservatives all changed the permeability of the cell membrane and destroyed the complete cell morphology, with the leakages of the intracellular electrolytes. Moreover, the treatment of ε-polylysine, propylparaben and monocaprin increased the leakage of intracellular protein; propylparaben and octyl gallate reduced the levels of cellular adenosine triphosphate. Also, monocaprin and octyl gallate may stimulate bacteria to release a large amount of reactive oxygen species, so that certain oxidative damage can kill the bacteria. Furthermore, monocaprin and octyl gallate could effectively inactivate the contamination of A. acidoterrestris in apple juices, with the slightly decrease of soluble sugars and organic acids, without significant adverse effects on total sugars and titratable acids. This research highlights the great promise of using monocaprin and octyl gallate as the safe multi-functionalized food additives for food preservations.
Collapse
|
9
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
10
|
Kumar S, Pipliya S, Srivastav PP. Effect of cold plasma on different polyphenol compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sitesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Sunil Pipliya
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
11
|
Sasikumar R, Jaiswal AK. Influence of pediocin‐assisted thermosonication treatment on phytonutrients, microbial and sensory qualities of blood fruit juice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raju Sasikumar
- Department of Agribusiness Management and Food Technology, North‐Eastern Hill University (NEHU), Tura Campus Tura Meghalaya India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health Technological University Dublin – City, Campus, Grangegorman Dublin Ireland
- Technological University Dublin – City Campus, Grangegorman Environmental Sustainability and Health Institute Dublin Ireland
| |
Collapse
|
12
|
Ribeiro AM, Paiva AD, Cruz AM, Vanetti MC, Ferreira SO, Mantovani HC. Bovicin HC5 and nisin reduce cell viability and the thermal resistance of Alicyclobacillus acidoterrestris endospores in fruit juices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3994-4002. [PMID: 34997599 DOI: 10.1002/jsfa.11747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alicyclobacillus acidoterrestris is an important thermoacidophilic spore-forming bacterium in fruit-juice deterioration, and alternative non-thermal methods have been investigated to control fruit juice spoilage. This work aimed to evaluate the capacity of bovicin HC5 and nisin to inhibit the growth of vegetative cells and reduce the thermal resistance of endospores of A. acidoterrestris inoculated (107 CFU mL-1 ) in different fruit juices. The number of viable cells was determined after 12 h incubation at 43 °C in the presence and absence of nisin or bovicin HC5 (10-100 AU mL-1 ). The exposure time (min) required to kill 90% of the initial population (reduction of one log factor) at 90 ºC (D90ºC ) was used to assess the thermal resistance of A. acidoterrestris endospores exposed (80 AU mL-1 ) or non-exposed to the bacteriocins. Additionally, the effect of bovicin and nisin on the morphology and cell structure of A. acidoterrestris was evaluated by atomic force microscopy (AFM). RESULTS Bovicin HC5 and nisin were bactericidal against A. acidoterrestris inoculated in fruit juices and reduced the D90°C values up to 30-fold. AFM topographical images revealed substantial structural changes in the cellular framework of vegetative cells upon treatment with bovicin HC5 or nisin. CONCLUSIONS These results emphasize the potential application of lantibiotics as additional hurdles in food processing to control thermoacidophilic spoilage bacteria in fruit juices. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aryádina M Ribeiro
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline D Paiva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alexandra Mo Cruz
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria Cd Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
13
|
Wahia H, Zhang L, Zhou C, Mustapha AT, Fakayode OA, Amanor-Atiemoh R, Ma H, Dabbour M. Pulsed multifrequency thermosonication induced sonoporation in Alicyclobacillus acidoterrestris spores and vegetative cells. Food Res Int 2022; 156:111087. [DOI: 10.1016/j.foodres.2022.111087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
14
|
Nunes BV, da Silva CN, Bastos SC, de Souza VR. Microbiological Inactivation by Ultrasound in Liquid Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02818-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Salar FJ, Domínguez-Perles R, García-Viguera C, Fernández PS. Ifs and buts of non-thermal processing technologies for plant-based drinks' bioactive compounds. FOOD SCI TECHNOL INT 2022:10820132221094724. [PMID: 35440183 DOI: 10.1177/10820132221094724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vegetables and fruits contain a variety of bioactive nutrients and non-nutrients that are associated with health promotion. Consumers currently demand foods with high contents of healthy compounds, as well as preserved natural taste and flavour, minimally processed without using artificial additives. Processing alternatives to be applied on plant-based foodstuffs to obtain beverages are mainly referred to as classical thermal treatments that although are effective treatments to ensure safety and extended shelf-life, also cause undesirable changes in the sensory profiles and phytochemical properties of beverages, thus affecting the overall quality and acceptance by consumers. As a result of these limitations, new non-thermal technologies have been developed for plant-based foods/beverages to enhance the overall quality of these products regarding microbiological safety, sensory traits, and content of bioactive nutrients and non-nutrients during the shelf-life of the product, thus allowing to obtain enhanced health-promoting beverages. Accordingly, the present article attempts to review critically the principal benefits and downsides of the main non-thermal processing alternatives (High hydrostatic pressure, pulsed electric fields, ultraviolet light, and ultrasound) to set up sound comparisons with conventional thermal treatments, providing a vision about their practical application that allows identifying the best choice for the sectoral industry in non-alcoholic fruit and vegetable-based beverages.
Collapse
Affiliation(s)
- Francisco J Salar
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Pablo S Fernández
- Department of Ingeniería Agrónomica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| |
Collapse
|
16
|
Vignali G, Gozzi M, Pelacci M, Stefanini R. Non-conventional Stabilization for Fruit and Vegetable Juices: Overview, Technological Constraints, and Energy Cost Comparison. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02772-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThis study will provide an overview and a description of the most promising alternatives to conventional thermal treatments for juice stabilization, as well as a review of the literature data on fruit and vegetable juice processing in terms of three key parameters in juice production, which are microbial reduction, enzyme inactivation, and nutrient-compound retention. The alternatives taken into consideration in this work can be divided, according to the action mechanism upon which these are based, in non-conventional thermal treatments, among which microwave heating (MWH) and ohmic heating (OH), and non-thermal treatments, among which electrical treatments, i.e., pulsed electric fields (PEF), high-pressure processing (HPP), radiation treatments such as ultraviolet light (UVL) and high-intensity pulsed light (PL), and sonication (HIUS) treatment, and inert-gas treatments, i.e., the pressure change technology (PCT) and supercritical carbon dioxide (SC-CO2) treatments. For each technology, a list of the main critical process parameters (CPP), advantages (PROS), and disadvantages (CONS) will be provided. In addition, for the non-thermal technologies, a summary of the most relevant published result of their application on fruit and vegetable juices will be presented. On top of that, a comparison of typical specific working energy costs for the main effective and considered technologies will be reported in terms of KJ per kilograms of processed product.
Collapse
|
17
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
18
|
Ye ZT, Cheng YH, Hung LW, Hsu KH, Hu YC. Light Guide Layer Thickness Optimization for Enhancement of the Light Extraction Efficiency of Ultraviolet Light-Emitting Diodes. NANOSCALE RESEARCH LETTERS 2021; 16:106. [PMID: 34121151 PMCID: PMC8200281 DOI: 10.1186/s11671-021-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 06/01/2023]
Abstract
Consider material machinability and lattice mismatch sapphire as substrates for the ultraviolet-C light-emitting diodes (UV-C LEDs) are commonly used, but their high refractive index can result in the total internal reflection (TIR) of light whereby some light is absorbed, therefore caused reducing light extraction efficiency (LEE). In this study, we propose a method to optimize the thickness of a sapphire substrate light guide layer through first-order optical design which used the optical simulation software Ansys SPEOS to simulate and evaluate the light extraction efficiency. AlGaN UV-C LEDs wafers with a light guide layer thickness of 150-700 μm were used. The simulation proceeded under a center wavelength of 275 nm to determine the optimal thickness design of the light guide layer. Finally, the experimental results demonstrated that the initial light guide layer thickness of 150 μm the reference output power of 13.53 mW, and an increased thickness of 600 um resulted in output power of 20.58 mW. The LEE can be increased by 1.52 times through light guide layer thickness optimization. We propose a method to optimize the thickness of a sapphire substrate light guide layer through first-order optical design. AlGaN UV-C LEDs wafers with a light guide layer thickness of 150-700 μm were used. Finally, the experimental results demonstrated that the LEE can be increased by 1.52 times through light guide layer thickness optimization.
Collapse
Affiliation(s)
- Zhi Ting Ye
- Department of Mechanical Engineering, Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan.
| | - Yuan-Heng Cheng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan
| | - Li-Wei Hung
- Department of Process Development Division, EPILEDS TECHNOLOGIES, No. 7, Kanxi Rd., Xinshi Dist., Tainan City, 744092, Taiwan
| | - Kung-Hsieh Hsu
- Department of Process Development Division, EPILEDS TECHNOLOGIES, No. 7, Kanxi Rd., Xinshi Dist., Tainan City, 744092, Taiwan
| | - Yu Chang Hu
- Department of R&D Division, Harvatek Corporation, No. 18, Ln. 522, Sec. 5, Zhonghua Rd., Xiangshan Dist., Hsinchu City, 300066, Taiwan
| |
Collapse
|
19
|
Colás-Medà P, Nicolau-Lapeña I, Viñas I, Neggazi I, Alegre I. Bacterial Spore Inactivation in Orange Juice and Orange Peel by Ultraviolet-C Light. Foods 2021; 10:foods10040855. [PMID: 33920777 PMCID: PMC8103511 DOI: 10.3390/foods10040855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Spore-forming bacteria are a great concern for fruit juice processors as they can resist the thermal pasteurization and the high hydrostatic pressure treatments that fruit juices receive during their processing, thus reducing their microbiological quality and safety. In this context, our objective was to evaluate the efficacy of Ultraviolet-C (UV-C) light at 254 nm on reducing bacterial spores of Alicyclobacillus acidoterrestris, Bacillus coagulans and Bacillus cereus at two stages of orange juice production. To simulate fruit disinfection before processing, the orange peel was artificially inoculated with each of the bacterial spores and submitted to UV-C light (97.8-100.1 W/m2) with treatment times between 3 s and 10 min. The obtained product, the orange juice, was also tested by exposing the artificially inoculated juice to UV-C light (100.9-107.9 W/m2) between 5 and 60 min. A three-minute treatment (18.0 kJ/m2) reduced spore numbers on orange peel around 2 log units, while more than 45 min (278.8 kJ/m2) were needed to achieve the same reduction in orange juice for all evaluated bacterial spores. As raw fruits are the main source of bacterial spores in fruit juices, reducing bacterial spores on fruit peels could help fruit juice processors to enhance the microbiological quality and safety of fruit juices.
Collapse
|
20
|
Hassan AB, Al Maiman SA, Sir Elkhatim KA, Elbadr NA, Alsulaim S, Osman MA, Mohamed Ahmed IA. Effect of UV-C radiation treatment on microbial load and antioxidant capacity in hot pepper, fennel and coriander. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Menezes NMC, Longhi DA, Ortiz BO, Junior AF, de Aragão GMF. Modeling the inactivation of Aspergillus fischeri and Paecilomyces niveus ascospores in apple juice by different ultraviolet light irradiances. Int J Food Microbiol 2020; 333:108773. [PMID: 32739634 DOI: 10.1016/j.ijfoodmicro.2020.108773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
The present work aimed to evaluate and to model the influence of UV-C light treatments with different irradiances (6.5, 13, 21, and 36 W/m2) on Aspergillus fischeri and Paecilomyces niveus ascospores inactivation in clarified apple juice. Approximately 5.0 and 6.0 log CFU/mL spores of P. niveus and A. fischeri, respectively, were suspended in 30 mL of clarified apple juice (pH 3.8, 12 ± 0.1°Brix) and exposed to UV-C light at different irradiances (as above) and exposure times (0 to 30 min). The first-order biphasic model was able to describe the experimental data with good statistical indices (RMSE = 0.296 and 0.308, R2 = 0.96 and 0.98, for P. niveus and A. fischeri respectively). At the highest irradiance level tested (36 W/m2), the UV-C light allowed the reduction of 5.7 and 4.2 log-cycles of A. fischeri and P. niveus ascospores, respectively, in approximately 10 min. P. niveus was the most UV-C resistant mould. The results showed that, to a defined UV-C fluence, a change in the level of either time or UV-C irradiance did not affect the effectiveness of UV-C light for A. fischeri and P. niveus inactivation. Thus, the modeling of the inactivation as a function of the UV-C fluence allowed the estimation of the primary model parameters with all experimental data and, consequently, no secondary models were needed. The model parameters were validated with experiments of variable UV-C fluences. Accordingly, experimental results allowed to conclude that UV-C treatment at the irradiances tested is a promising application for preventing A. fischeri and P. niveus spoilage of juices.
Collapse
Affiliation(s)
- Natielle Maria Costa Menezes
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Daniel Angelo Longhi
- Federal University of Paraná, Food Engineering, Jandaia do Sul Campus, Jandaia do Sul, PR 86900-000, Brazil
| | - Beatriz Oliveira Ortiz
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Agenor Furigo Junior
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Gláucia Maria Falcão de Aragão
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil.
| |
Collapse
|
22
|
do Prado-Silva L, Gomes ATPC, Mesquita MQ, Neri-Numa IA, Pastore GM, Neves MGPMS, Faustino MAF, Almeida A, Braga GÚL, Sant'Ana AS. Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. Int J Food Microbiol 2020; 333:108803. [PMID: 32798958 DOI: 10.1016/j.ijfoodmicro.2020.108803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Alicyclobacillus acidoterrestris is a cause of major concern for the orange juice industry due to its thermal and chemical resistance, as well as its spoilage potential. A. acidoterrestris spoilage of orange juice is due to off-flavor taints from guaiacol production and some halophenols. The present study aimed to evaluate the effectiveness of antimicrobial Photodynamic Treatment (aPDT) as an emerging technology to inactivate the spores of A. acidoterrestris. The aPDT efficiency towards A. acidoterrestris was evaluated using as photosensitizers the tetracationic porphyrin (Tetra-Py+-Me) and the phenothiazinium dye new methylene blue (NMB) in combination with white light-emitting diode (LED; 400-740 nm; 65-140 mW/cm2). The spores of A. acidoterrestris were cultured on YSG agar plates (pH 3.7 ± 0.1) at 45 °C for 28 days and submitted to the aPDT with Tetra-Py+-Me and NMB at 10 μM in phosphate-buffered saline (PBS) in combination with white light (140 mW/cm2). The use of Tetra-Py+-Me at 10 μM resulted in a 7.3 ± 0.04 log reduction of the viability of A. acidoterrestris spores. No reductions in the viability of this bacterium were observed with NMB at 10 μM. Then, the aPDT with Tetra-Py+-Me and NMB at 10 μM in orange juice (UHT; pH 3.9; 11°Brix) alone and combined with potassium iodide (KI) was evaluated. The presence of KI was able to potentiate the aPDT process in orange juice, promoting the inactivation of 5 log CFU/mL of A. acidoterrestris spores after 10 h of white light exposition (140 mW/cm2). However, in the absence of KI, both photosensitizers did not promote a significant reduction in the spore viability. The inactivation of A. acidoterrestris spores artificially inoculated in orange peels (105 spores/mL) was also assessed using Tetra-Py+-Me at 10 and 50 μM in the presence and absence of KI in combination with white light (65 mW/cm2). No significant reductions were observed (p < .05) when Tetra-Py+-Me was used at 10 μM, however at the highest concentration (50 μM) a significant spore reduction (≈ 2.8 log CFU/mL reductions) in orange peels was observed after 6 h of sunlight exposition (65 mW/cm2). Although the color, total phenolic content (TPC), and antioxidant capacity of orange juice and peel (only color evaluation) seem to have been affected by light exposition, the impact on the visual and nutritional characteristics of the products remains inconclusive so far. Besides that, the results found suggest that aPDT can be a potential method for the reduction of A. acidoterrestris spores on orange groves.
Collapse
Affiliation(s)
- Leonardo do Prado-Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana T P C Gomes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Mariana Q Mesquita
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Iramaia A Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Glaucia M Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria G P M S Neves
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Maria A F Faustino
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Gilberto Ú L Braga
- Department of Clinical, Toxicological and Bromatological Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
23
|
Effect of ultraviolet treatment (UV–C) combined with nisin on industrialized orange juice in Alicyclobacillus acidoterrestris spores. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
García Carrillo M, Ferrario M, Schenk M, Guerrero S. Effect of an UV-C Light-Based Hurdle Strategy for Carrot-Orange Juice Processing on Candida parapsilosis Inactivation and Physiological State: Impact on Juice Sensory and Physicochemical Quality Parameters. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02540-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
|
26
|
Mathematical Modeling Used to Evaluate the Effect of UV-C Light Treatment on Microorganisms in Liquid Foods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09219-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Atalar I, Saricaoglu FT, Odabas HI, Yilmaz VA, Gul O. Effect of ultrasonication treatment on structural, physicochemical and bioactive properties of pasteurized rosehip (Rosa canina L.) nectar. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
|
29
|
Hosseini FS, Akhavan HR, Maghsoudi H, Hajimohammadi-Farimani R, Balvardi M. Effects of a rotational UV-C irradiation system and packaging on the shelf life of fresh pistachio. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5229-5238. [PMID: 31021408 DOI: 10.1002/jsfa.9763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In this study, fresh pistachio was exposed to UV-C irradiation (2.1 and 4.5 kJ m-2 ) in a rotating cylindrical system with seven germicidal UV-C lamps and immediately packed in perforated and non-perforated polyethylene terephthalate (PET). The fruit were evaluated for weight loss, total phenolic content, enzyme activities, color indices (L*, a*, b* and browning index), and microbial counts during 35 days of storage at 4 °C. RESULTS UV-C treatment caused a significant decrease (P < 0.05) in the weight loss of fresh pistachios compared to the control. The activity of catalase and peroxidase enzymes was significantly higher (P < 0.05) in irradiated samples packed in non-perforated PET in comparison to those of untreated samples. Irradiation did not inhibit the activity of polyphenol oxidase in treated samples, although a slight decrease in polyphenol oxidase activity was observed in irradiated samples compared to control. The fruit treated with 2.1 kJ m-2 of UV-C and the control packed in non-perforated PET were lighter (L*), redder (a*), and less yellow (b*) compared to 4.5 kJ m-2 treated samples. Furthermore, a dose of 4.5 kJ m-2 UV-C significantly decreased sensory attributes of fresh pistachios compared to the other irradiation level and control. CONCLUSION UV-C irradiation at a dose of 2.1 kJ m-2 and packing in non-perforated PET are recommended for fresh pistachio preservation based on the physicochemical, microbial, and sensory parameters. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fereshteh-Sadat Hosseini
- Department of Mechanical Engineering of Bio-systems, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid-Reza Akhavan
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Maghsoudi
- Department of Mechanical Engineering of Bio-systems, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Hajimohammadi-Farimani
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Balvardi
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
30
|
UV-C light processing of Cantaloupe melon juice: Evaluation of the impact on microbiological, and some quality characteristics, during refrigerated storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Siroli L, Camprini L, Pisano MB, Patrignani F, Lanciotti R. Volatile Molecule Profiles and Anti- Listeria monocytogenes Activity of Nisin Producers Lactococcus lactis Strains in Vegetable Drinks. Front Microbiol 2019; 10:563. [PMID: 30972045 PMCID: PMC6443959 DOI: 10.3389/fmicb.2019.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/05/2019] [Indexed: 12/03/2022] Open
Abstract
This work aimed to evaluate the potential of 15 nisin producing Lactococcus lactis strains, isolated from dairy products, for the fermentation of soymilk and carrot juice. In particular, the acidification and the production of nisin in the food matrices were recorded. Moreover, three strains (LBG2, FBG1P, and 3LC39), that showed the most promising results were further scrutinized for their anti-Listeria monocytogenes activity and volatile molecules profile during fermentation of soymilk and carrot juice. Lactococcus lactis strains LBG2, FBG1P, and 3LC39 resulted the most interesting ones, showing rapid growth and acidification on both food matrices. The higher amounts of nisin were detected in soymilk samples fermented by the strain LBG2 after 24 and 48 h (26.4 mg/L). Furthermore, the rapid acidification combined with the production of nisin resulted in a strong anti-Listeria activity, reducing the pathogen loads below the detection limit, in carrot juice samples fermented by the strains LBG2 and FBG1P and in soymilk by the strain LBG2. The fermentation increased the presence of volatile molecules such as aldehydes and ketones with a positive impact on the organoleptic profile of both the fermented products. These results highlighted the interesting potential of three nisin producing L. lactis strains for the production of fermented carrot juice and soymilk. In fact, the fermentation by lactic acid bacteria, combined or not with other mild technologies, represents a good strategy for the microbiological stabilization of these products. Furthermore, the increase of molecules with a positive sensory impact, such as aldehydes and ketones, in the fermented products suggests a possible improvement of their organoleptic characteristics.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Lucia Camprini
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Maria Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
32
|
Tremarin A, Canbaz EA, Brandão TR, Silva CL. Modelling Alicyclobacillus acidoterrestris inactivation in apple juice using thermosonication treatments. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Pornpukdeewattana S, Jindaprasert A, Massa S. Alicyclobacillusspoilage and control - a review. Crit Rev Food Sci Nutr 2019; 60:108-122. [DOI: 10.1080/10408398.2018.1516190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Aphacha Jindaprasert
- Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Salvatore Massa
- Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
34
|
Putnik P, Kresoja Ž, Bosiljkov T, Režek Jambrak A, Barba FJ, Lorenzo JM, Roohinejad S, Granato D, Žuntar I, Bursać Kovačević D. Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chem 2018; 279:150-161. [PMID: 30611474 DOI: 10.1016/j.foodchem.2018.11.131] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 11/15/2022]
Abstract
The consumption of pomegranate juice (PJ) has increased substantially since scientific literature reported its therapeutic benefits that are attributable to antioxidant, antimicrobial, anti-carcinogenic, and anti-inflammatory properties. The growing consumer demands for fresh and high-quality food products have led to the interest in non-thermal technologies for preservation of fruit juices. Although thermal pasteurization is the most widely used preservation technology, it has adverse effects on the nutritional and sensory quality of juices. Conversely, non-thermal technologies are suitable alternatives for preservation and without negative effects on the quality. However, there is limited scientific literature concerning the use of non-thermal technologies for preservation of PJ. Therefore, this review focuses on PJ preservation by using non-thermal technologies. In conclusion, pomegranate is an economical crop that can justify the use of advanced non-thermal technologies for PJ preservation, as consumers' interest can offset the expenses associated with investments in alternative technological options and processing adjustments.
Collapse
Affiliation(s)
- Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Željka Kresoja
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tomislav Bosiljkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daniel Granato
- Department of Food Engineering, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Irena Žuntar
- Faculty of Pharmacy and Biochemistry of the University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Letter to the editor. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Ochoa-Velasco CE, Salcedo-Pedraza C, Hernández-Carranza P, Guerrero-Beltrán JA. Use of microbial models to evaluate the effect of UV-C light and trans-cinnamaldehyde on the native microbial load of grapefruit (Citrus × paradisi) juice. Int J Food Microbiol 2018; 282:35-41. [PMID: 29890306 DOI: 10.1016/j.ijfoodmicro.2018.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
The aim of this research was to evaluate the storage stability (5 °C), and microbial modeling, of Rubi red grapefruit (Citrus × paradisi) juice treated with ultraviolet-C (UV-C) light (0, 10 and 20 min), alone or in combination with trans-cinnamaldehyde (trans-CAH) (0, 25 and 50 μg/mL). A 32 factorial design was used and data modeled with the Weibull, Modified Gompertz and Logistic models. A response surface model was used to evaluate the effect of modeling parameters for suggesting the optimum treatment conditions. Treated and some untreated juice lasted up to 9 days without physicochemical and microbial changes. At the higher combination of UV-C light and trans-CAH, the microbial load of grapefruit juice was maintained below 100 CFU/mL up to 15 days. For mesophiles, the three predictive models indicated that the parameters n and Nmax decreased and the parameters λ and tc increased as the combination of UV-C light and trans-CAH increased. The response surface modeling of the parameters obtained by the predictive models showed acceptable correlation for mesophiles (R2 = 0.815-0.977) but not for yeasts (R2 = 0.618-0.815). The three predictive models showed that, the concentration of trans-CAH had more effect on stopping the microbial growth than the UV-C light treatment.
Collapse
Affiliation(s)
- C E Ochoa-Velasco
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Puebla, Mexico
| | - C Salcedo-Pedraza
- Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Puebla, Mexico
| | - P Hernández-Carranza
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Puebla, Mexico
| | - J A Guerrero-Beltrán
- Departamento de Ingeniería Química y Alimentos, Universidad de las Américas Puebla, Cholula 72810, Puebla, Mexico.
| |
Collapse
|
37
|
García Carrillo M, Ferrario M, Guerrero S. Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy. Food Microbiol 2018. [DOI: 10.1016/j.fm.2017.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
|
39
|
Esua OJ, Chin NL, Yusof YA, Sukor R. Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chem 2018; 270:113-122. [PMID: 30174024 DOI: 10.1016/j.foodchem.2018.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
The effects of a novel technology utilizing a simultaneous combination of Ultraviolet-C radiation and ultrasound energy postharvest treatment on tomato bioactive compounds during 28 days' storage period was investigated by varying Ultraviolet-C radiation intensities of 639.37 or 897.16 µW/cm2 at a constant ultrasound intensity of 13.87 W/L from a 40 kHz-1 kW transducer. A minimal treatment time of 240 s at Ultraviolet-C dosage of 2.15 kJ/m2 was observed to provoke a considerable increase in bioactive compounds content, proportionated to treatment time. Although treatment led to temperature increase in the system reaching 39.33 °C due to heat generation by ultrasonic cavitation, the extractability and biosynthesis of phytochemicals were enhanced resulting in 90%, 30%, 60%, 20%, and 36% increases in lycopene, total phenols, vitamin C, hydrophilic and lipophilic antioxidant activities respectively. Results present the potential use of the combined non-thermal technologies as post-harvest treatment to improve bioactive compounds and antioxidant activity during storage.
Collapse
Affiliation(s)
- Okon Johnson Esua
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Agricultural and Food Engineering, University of Uyo, Uyo, Akwa Ibom 520101, Nigeria.
| | - Nyuk Ling Chin
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Rashidah Sukor
- Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
40
|
Van Impe J, Smet C, Tiwari B, Greiner R, Ojha S, Stulić V, Vukušić T, Režek Jambrak A. State of the art of nonthermal and thermal processing for inactivation of micro-organisms. J Appl Microbiol 2018; 125:16-35. [DOI: 10.1111/jam.13751] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 02/03/2023]
Affiliation(s)
- J. Van Impe
- Department of Chemical Engineering; KU Leuven; Leuven Belgium
| | - C. Smet
- Department of Chemical Engineering; KU Leuven; Leuven Belgium
| | - B. Tiwari
- Department of Food Biosciences; Teagasc - Irish Agriculture and Food Development Authority; Carlow Ireland
| | - R. Greiner
- Department of Food Technology and Bioprocess Engineering; Max Rubner-Institut; Karlsruhe Germany
| | - S. Ojha
- Department of Food Biosciences; Teagasc - Irish Agriculture and Food Development Authority; Carlow Ireland
| | - V. Stulić
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - T. Vukušić
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - A. Režek Jambrak
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| |
Collapse
|
41
|
Režek Jambrak A, Šimunek M, Evačić S, Markov K, Smoljanić G, Frece J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. ULTRASONICS 2018; 83:3-17. [PMID: 28242037 DOI: 10.1016/j.ultras.2017.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to investigate the effect of non-thermal technology, high power ultrasound (HPU) on inactivation of Aspergillus ochraceus 318, Penicillium expansum 565, Rhodotorula sp. 74, Saccharomyces cerevisiae 5 and Alicyclobacillus acidoterrestris DSM 3922 in clear juices and nectars from apple, blueberry and cranberry juice concentrate. Inoculated juice and nectars were treated by high power ultrasound (20kHz) according to procedure set by central composite design (CCD). Three operational parameters, amplitude (60, 90 and 120μm), temperature (20, 40 and 60°C), and treatment time (3, 6 or 9min) were varied in order to observe the influence of ultrasound and combination of ultrasound and slight heating (thermosonication) on growth and inactivation of selected microorganisms. Number of vegetative cells of A. acidoterrestris DSM 3922 were not significantly reduced by high power ultrasound (p>0.05), except in apple juice, where statistical significant (p<0.05) influence of quadratic interaction of amplitude on bacteria reduction were observed. In all samples of fruit juices and nectars in terms of ultrasonic treatment at 60°C and times of 3, 6 and 9min, regardless of the value of the amplitude, complete inactivation of the growth of yeasts and moulds were achieved, while at 20 and 40°C it is not observed. The value of reduction of cells of selected yeasts and moulds for ultrasound treatments at 60°C and the duration of the 3, 6 and 9min ranged from 3.556 to 5.934 log units, depending on the initial number of selected yeasts and moulds before treatment.
Collapse
Affiliation(s)
- Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | | | - Silva Evačić
- Vindija d.d, Međimurska 6, 42000 Varaždin, Croatia
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Goran Smoljanić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
42
|
Roobab U, Aadil RM, Madni GM, Bekhit AED. The Impact of Nonthermal Technologies on the Microbiological Quality of Juices: A Review. Compr Rev Food Sci Food Saf 2018; 17:437-457. [DOI: 10.1111/1541-4337.12336] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Ume Roobab
- Natl. Inst. of Food Science and Technology; Univ. of Agriculture; Faisalabad Pakistan
| | - Rana Muhammad Aadil
- Natl. Inst. of Food Science and Technology; Univ. of Agriculture; Faisalabad Pakistan
| | - Ghulam Muhammad Madni
- Natl. Inst. of Food Science and Technology; Univ. of Agriculture; Faisalabad Pakistan
| | | |
Collapse
|
43
|
Bergwall C. New microbiological challenges for the sugar industry with focus on thermophilic acidophilic bacteria. SUGAR INDUSTRY 2018. [DOI: 10.36961/si19117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The potential occurrence of guaiacol producing Alicyclobacillus in sugar products and in the sugar production process was evaluated. Final product testing revealed that granulated sugar products showed random background contamination while liquid sugar products were free from guaiacol producing bacteria. Contamination tracing in the sugar factory process showed that beet soil is a primary contamination route to a sugar factory. The bacteria were completely eliminated in the juice purification at all evaluated factories. Random re-contamination was observed in wash syrups from the A-station. Environmental contamination from air and surfaces could not be observed while 20% of human test subjects showed skin contamination of guaiacol producing bacteria. A successful elimination of guaiacol producing bacteria from sugar products was concluded to be unfeasible due to random re-contamination events in the sugar production process. It is suggested that the goal must be to evaluate realistic technical solutions located at the last step of the supply chain. Thermal and non-thermal treatment techniques are available and among those UV-treatment appears to be a promising elimination technique for TAB (thermophilic acidophilic bacteria) and GP-TAB.
Collapse
|
44
|
Bevilacqua A, Petruzzi L, Perricone M, Speranza B, Campaniello D, Sinigaglia M, Corbo MR. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr Rev Food Sci Food Saf 2017; 17:2-62. [DOI: 10.1111/1541-4337.12299] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Marianne Perricone
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Daniela Campaniello
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| |
Collapse
|
45
|
Zhang JB, Gao ZP, Liu XH, Yue TL, Yuan YH. The Effect of RF Treatment Combined with Nisin Against Alicyclobacillus Spores in Kiwi Fruit Juice. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|