1
|
Zhao X, Xu Z, Liu Y, Mei J, Xie J. Effects of different slaughtering methods on the energy metabolism, apoptosis process and quality of grouper (Epinephelus fuscoguttatus) during cold storage at 4 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39258832 DOI: 10.1002/jsfa.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The aquatic processing industry is increasingly aware of the need to ensure that slaughtering is carried out under high welfare standards, so there is a need to explore the impact of slaughter methods on fish fillets. This study aimed to investigate the effects of different slaughtering methods (M1, lethality by hammering; M2, gas mixture causing death; M3, lethality by clove oil anesthesia + ice slurry; M4, lethality by ice slurry; M5, lethality by gradient cooling) on the energy metabolism, apoptosis and flesh mass in grouper (Epinephelus fuscoguttatus). RESULTS Therefore, 120 fish (24 per treatment) were slaughtered by the five methods. The results showed that the succinate dehydrogenase (SDH) enzyme activity of M5 sample was higher. The serum glucose level of M2 samples and DAPI staining fluorescence of M2 samples were the highest, indicating that the stress response of M2 was strong. In addition, the texture, pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and K value results showed M5 samples had better flesh quality. CONCLUSION Gradient cooling lethality had the least effect on oxidative damage and apoptosis in grouper during cold storage as the gradient cooling lethality had the least effect on antioxidant enzyme activities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhilong Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yu Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
2
|
Sheng X, Yan L, Peng L, Zhao L, Dai F, Chen F, Wang L, Chen Y, Ye M, Wang J, Zhang J, Raghavan V. Effect of plasma-activated lactic acid on microbiota composition and quality of puffer fish ( Takifugu obscurus) fillets during chilled storage. Food Chem X 2024; 21:101129. [PMID: 38298353 PMCID: PMC10828650 DOI: 10.1016/j.fochx.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Fresh puffer fish (Takifugu obscurus) are susceptible to microbial contamination and have a very short shelf-life of chilled storage. Hence, this study aimed to evaluate the effects of plasma-activated lactic acid (PALA) on microbiota composition and quality attributes of puffer fish fillets during chilled storage. The results showed that PALA treatment effectively reduced the growth of bacteria and attenuated changes in physicochemical indicators (total volatile basic nitrogen, pH value, K value, and biogenic amines) of puffer fish fillets. Additionally, insignificant changes were observed in lipid oxidation during the first 8 days (p > 0.05). Illumina-MiSeq high-throughput sequencing revealed that PALA effectively inhibited the growth of Pseudomonas in puffer fish fillets and maintained the diverse characteristics of the microbial community. In combination with sensory analysis, PALA extended the shelf life of puffer fish fillets for 4 days, suggesting that PALA could be considered a potential fish fillet preservation method.
Collapse
Affiliation(s)
- Xiaowei Sheng
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lanqing Peng
- Guangdong Supply and Marketing Green Agricultural Products Production and Supply Base Operation Co., Ltd, Huizhou 516100, China
| | - Luling Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanwei Dai
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Feiping Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ling Wang
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yulong Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingqiang Ye
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
3
|
Liang Q, Hu X, Zhong B, Huang X, Wang H, Yu C, Tu Z, Li J. Regulating effects of low salt dry-curing pre-treatment on microbiota, biochemical changes and flavour precursors of grass carp ( Ctenopharyngodon idella) fillets during storage at 4 °C. Food Chem X 2024; 21:101188. [PMID: 38434696 PMCID: PMC10904891 DOI: 10.1016/j.fochx.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Low salt dry-curing (LSD), as a healthier pre-treatment for the preservation of fishery products, is a potential technique substitute for excessively salty curing. The regulatory effects of 2 % and 3 % LSD on the quality evolution through an intrinsic correlation between microbiota succession and flavour precursors of refrigerated grass carp fillets were investigated in this study. The results showed that the LSD pre-treatment was effective in promoting proteolysis, free amino acid and fatty acid metabolism with the microbiota succession and quality evolution. Compared with unpre-treated samples, the 3 % LSD pre-treatment effectively extended the shelf life by 10 days within the acceptable quality attributes. Not only did the LSD pre-treatment lead to catalytic microbiota succession and inhibitive spoilage substance production but it also improved the flavour precursors, which are taste-active amino acids and polyunsaturated fatty acids (PUFAs). Moreover, considerable correlations between quality attributes, taste-active amino acids, PUFAs and microbiota were obtained.
Collapse
Affiliation(s)
- Qingxi Liang
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bizhen Zhong
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaoliang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengwei Yu
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zongcai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Jinlin Li
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
4
|
Liu Y, Kang S, Zhang H, Kai Y, Yang H. Preservative effect of gelatin/chitosan-based films incorporated with lemon essential oil on grass carp (Ctenopharyngodon idellus) fillets during storage. Int J Food Microbiol 2023; 407:110437. [PMID: 37826883 DOI: 10.1016/j.ijfoodmicro.2023.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The present study investigated the effect of fish gelatin/chitosan-based (FG/CS-based) films incorporated with lemon essential oil (LEO) on grass carp fillets in terms of moisture status, total volatile basic nitrogen (TVB-N), and microbial community succession during chilled (4 °C) and iced (0 °C) storage. Low-field nuclear magnetic resonance (LF-NMR) revealed that the active films remarkably inhibited moisture transformation from being the immobilized to free water in grass carp fillets, accompanied with the reduced T22 relaxation time. Besides, magnetic resonance imaging (MRI) detected a higher density of proton in the treated fish samples, indicating that the active films could improve the water-holding capacity of fish samples. Moreover, high-throughput 16S rRNA sequencing suggested that the FG/CS-based films loaded with LEO efficiently decreased the relative abundance of the bacterial genera Shewanella and Aeromonas in grass carp fillets, with minimal accumulation of TVB-N during storage. Additionally, the low storage temperature (0 °C) could further enhance the preservative effect of the active films on the fish samples, which together prolonged their shelf-life to 18 days. Overall, the combination of the active films and iced storage could provide a promising strategy to preserve grass carp fillets.
Collapse
Affiliation(s)
- Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Shu Kang
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Haijuan Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
5
|
Shahrier J, Rasul G, Afrin F, Islam R, Shah AKMA. Extension of shelf life of Nile tilapia ( Oreochromis niloticus) fillets using seaweed extracts during refrigerated storage. Food Sci Nutr 2023; 11:7430-7440. [PMID: 37970374 PMCID: PMC10630796 DOI: 10.1002/fsn3.3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
The effects of seaweed (Padina tetrastromatica, Sargassum natans, and Sargassum fluitans) ethanolic extracts on the quality and shelf life extension of Nile tilapia (Oreochromis niloticus) fillets were investigated during refrigerated storage for 20 days. Each of the seaweed ethanolic extracts solution (2%, w/v) was used for dipping the fish fillets for 10 min at 4°C. The control and seaweed extract-treated fillets were stored at 4 ± 1°C in air-tight polyethylene bags, and chemical, bacteriological, and sensory evaluation were performed at every 4 days' intervals. During the storage period, P. tetrastromatica extract significantly (p < .05) reduced the increment of pH, peroxide value, thiobarbituric acid reactive substances, and total volatile basic nitrogen values in Nile tilapia fillets compared to other seaweed extracts-treated and untreated fillets. The maximal total viable count of control, P. tetrastromatica, S. natans, and S. fluitans extracts-treated fillets was 6.53, 7.11, 6.75, and 7.10 log CFU/g at the 8th, 20th, 12th, and 16th days of storage, respectively. The total psychrotrophic count of control and seaweed extracts-treated fillets was also significantly increased (p < .05) throughout the storage period. The P. tetrastromatica extracts-treated fillets showed better sensory characteristics than other seaweed extracts-treated and control fillets. Results of this study suggest that ethanolic extracts (2%, w/v) of P. tetrastromatica extend the shelf life for 12 days longer than the control fillets in refrigerated conditions.
Collapse
Affiliation(s)
- Jaki Shahrier
- Department of Fisheries TechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Golam Rasul
- Department of Fisheries TechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Faria Afrin
- Department of Fisheries TechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Rabiul Islam
- Department of AquacultureBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - A. K. M. Azad Shah
- Department of Fisheries TechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| |
Collapse
|
6
|
Chen HM, Zhou Q, Huang LJ, Lin J, Liu JF, Huang ZY, Zhang RL, Wang JJ, Zhao Y, Wu YN, Yang XF, Wu WL. Curcumin-mediated photodynamic treatment extends the shelf life of salmon (Salmo salar) sashimi during chilled storage: Comparisons of preservation effects with five natural preservatives. Food Res Int 2023; 173:113325. [PMID: 37803636 DOI: 10.1016/j.foodres.2023.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Quan Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Jun Huang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Lin
- Huadu District Center for Disease Control and Prevention, Guangzhou 510803, PR China
| | - Jia-Fei Liu
- Waters Technologies (Shanghai) Limited, Shanghai 200080, PR China
| | - Zi-Yong Huang
- Waters Technologies (Shanghai) Limited, Shanghai 200080, PR China
| | - Rong-Lin Zhang
- Guangxi-Asean Food Inspection Center, Nanning 530007, PR China
| | - Jing-Jing Wang
- School of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yong Zhao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yong-Ning Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| | - Wei-Liang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
7
|
Olvera-Aguirre G, Piñeiro-Vázquez ÁT, Sanginés-García JR, Sánchez Zárate A, Ochoa-Flores AA, Segura-Campos MR, Vargas-Bello-Pérez E, Chay-Canul AJ. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023; 9:e17071. [PMID: 37383206 PMCID: PMC10293679 DOI: 10.1016/j.heliyon.2023.e17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.
Collapse
Affiliation(s)
| | | | | | | | - Angélica Alejandra Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| | - Maira Rubi Segura-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, Mérida, Yucatán, Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, 31453, Mexico
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| |
Collapse
|
8
|
Zhao N, Zhang X, Zhang Z, Guo X, Ma R, Meng Y, Li Y. Effects of ellagic acid and ε-polylysine hydrochloride on the content of biogenic amines, volatile compounds and quality of salmon slices during chilled storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
This study aimed to investigate effects of ellagic acid (EA) and ε-polylysine hydrochloride (ε-PL) on biogenic amines (BAs), volatile compounds and quality of salmon slices stored at 4 °C. The results showed that EA and ε-PL attenuated the production of BAs, retarded the increase of TVC, TVB-N and TBARS. Additionally, water mobility, texture properties of salmon slices were also stabilized by the EA and ε-PL. Volatile compounds including aldehydes, alcohols and hydrocarbons were identified and spoilage-related compounds reduced by the EA and ε-PL, which was related to the inhibition of bacterial, TVB-N and TBA growth by EA and ε-PL. The content of phencthylamine, putrescine, cadaverine, histamine and tyramine in EA-s-PL groups reduced by 46.53%, 54.1%, 26.42%, 31.98% and 45.37% compared to the control group at the end of storage, respectively. Therefore, EA and ε-PL can be applied for inhibiting the increase of BAs and delaying quality deterioration of salmon slices.
Collapse
Affiliation(s)
- Nan Zhao
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xinyuan Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Zian Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xiaohua Guo
- Shandong Meijia Group Co., Ltd , Rizhao , Shandong 276815 , China
| | - Rui Ma
- Qinghai University , Xining 810016 , China
| | | | - Yingchang Li
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| |
Collapse
|
9
|
Zhong H, Wei S, Kang M, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu M, Liu S. Effects of different storage conditions on microbial community and quality changes of greater amberjack (Seriola dumerili) fillets. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Effects of Storage Method on the Quality of Processed Sea Cucumbers ( Apostichopus japonicus). Foods 2022; 11:foods11244098. [PMID: 36553840 PMCID: PMC9778063 DOI: 10.3390/foods11244098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
This research aimed to establish an effective storage method to maintain the quality of processed sea cucumbers. In this study, sea cucumbers were stored by various methods including the storage of live sea cucumbers (seawater treatment, oxygen treatment, and ascorbic acid treatment) and the storage of dead sea cucumbers (frozen treatment). The sea cucumber quality was monitored after storage and boiling. The weightlessness rate and WHC of the frozen group increased to 86.96% ± 0.83% and 93.29% ± 0.32%, respectively. Frozen sea cucumbers shrunk with the meat's textural properties deteriorated. During the live sea cucumber storage, the tissue protein degraded from day 3 to day 7 which led to the promotion of TVB-N. Among these, the oxygen group showed the smallest TVB-N increase from day 0 (3.78 ± 0.60 mg 100 g-1) to day 7 (10.40 ± 0.12 mg 100 g-1). The oxygen group exhibited the most moderate change in weightlessness rate (4.24% ± 0.45%) and the most moderate texture parameters decline, such as the hardness of 32.52%, chewiness of 78.98 ± 5.10 N, and adhesion of 0.84 ± 0.00. The oxygen method showed the best condition of sea cucumber after 5 days of storage.
Collapse
|
11
|
Study on nucleotide, myofibrillar protein biochemical properties and microstructure of freeze-dried scallop striated muscle during storage and rehydration. Food Res Int 2022; 158:111461. [DOI: 10.1016/j.foodres.2022.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
12
|
Lan W, Zhao X, Wang M, Xie J. Effects of chitosan and apple polyphenol coating on quality and microbial composition of large yellow croaker (Pseudosciaena crocea) during ice storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3099-3106. [PMID: 34778959 DOI: 10.1002/jsfa.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Large yellow croaker (Pseudosciaena crocea) has important commercial value because of its high nutritional value and delicious taste. However, large yellow croaker is readily affected by microorganisms during storage, which causes the corruption of muscle tissue. Both chitosan (CS) and apple polyphenols (APs) are bio-preservatives, which can effectively inhibit the growth of microorganisms and improve the quality of large yellow croaker. The effects of 10.0 and 20.0 g L-1 CS combined with 1.0 g L-1 AP coating on the quality and microbial composition of large yellow croaker during ice storage were investigated respectively. RESULTS CS + AP coating restrained the increase of total volatile basic nitrogen (TVB-N) and biogenic amines, slowed down the rise of K-value and retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the concentration of CS. Through the analysis of high-throughput sequencing (HTS), the microbial diversity was changed respectively. The proportion of Shewanella was significantly decreased by CS + AP coating treatment and Pseudomonas was the dominant microorganism in spoiled samples. Compared with the shelf-life of the control group (8 days), 20.0 g L-1 CS combined with 1.0 g L-1 AP coating treatment could extend the shelf-life of large yellow croaker for another 8 days. CONCLUSIONS CS combined with AP coating may be considered a promising method to delay the biochemical changes of ice stored large yellow croaker and extend its shelf life. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
13
|
Non-migrating active antibacterial packaging and its application in grass carp fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Influence of processing conditions on the physical properties, retention rate, and antimicrobial activity of cinnamaldehyde loaded in gelatin/pectin complex coacervates. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Formulation of Laurus nobilis Essential Oil Nanoemulsion System and Its Application in Fresh-Cut Muskmelons. COATINGS 2022. [DOI: 10.3390/coatings12020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective was to elucidate the influences of Laurus nobilis essential oil nanoemulsion on the quality properties of fresh-cut muskmelons (Cucumis melo L.) stored at 4 °C for 8 days. The L. nobilis oil nanoemulsion coating can inhibit changes in the browning index and titratable acidity level of muskmelon samples. The browning index in the slices treated with L. nobilis oil nanoemulsion was 0.095 ± 0.007, as compared with that of the control (0.314 ± 0.018). Meanwhile, L. nobilis oil nanoemulsion treatment maintained total phenolic content, with values ranging from 11.13 ± 0.74 mg GAE/g FW to 9.47 ± 0.75 mg GAE/g FW and inhibited the activities of related enzymes, such as polyphenol oxidase, peroxidase and antioxidant enzymes (catalase and peroxidase). Moreover, the application of L. nobilis oil nanoemulsion inhibited the proliferation of spoilage microorganisms. The population of the aerobic bacteria of the muskmelon samples subjected to L. nobilis oil nanoemulsion treatment was 5.14 ± 0.47 log CFU/g FW, whereas that of the control was 9.42 ± 0.88 log CFU/g FW after 8 days. Therefore, the tested L. nobilis oil nanoemulsion may contribute to the inhibition of surface browning and enhancement of the shelf life of fresh-cut muskmelons for eight days at refrigerator temperature.
Collapse
|
17
|
Ameur A, Bensid A, Ozogul F, Ucar Y, Durmus M, Kulawik P, Boudjenah-Haroun S. Application of oil-in-water nanoemulsions based on grape and cinnamon essential oils for shelf-life extension of chilled flathead mullet fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:105-112. [PMID: 34048077 DOI: 10.1002/jsfa.11336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The effect of nanoemulsions prepared with grape seed and cinnamon essential oils on the shelf-life of flathead mullet (Mugil cephalus) fillets was evaluated by determining physicochemical (pH, free fatty acids, peroxide value, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARs)), sensory and microbiological (mesophilic aerobic bacteria, total psychrophilic bacteria, and Enterobacteriaceae counts) properties during 14 day storage at 2 °C. RESULTS The nanoemulsions showed good stability and low average droplet size. The results indicated that nanoemulsion treatments significantly prolonged the shelf-life of the fillets. Treatment inhibited increases in pH and TVB-N, and retarded lipid oxidation and hydrolysis. Sensory assessment revealed that treatment induced shelf-life extension from 10 to 14 days, compared with controls. Microbiological analyses showed nanoemulsion treatment caused shelf-life extension from 10 to 12 days with reduction of microbiological contamination by up to 1 log cfu g-1 in mesophilic and 1.5 log cfu g-1 in psychrotrophic bacteria. CONCLUSION Considering the results, grape seed and cinnamon essential oil nanoemulsions could be considered as novel antimicrobial and antioxidant materials for shelf-life extension of flathead mullet fillets during cold storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abderrahmane Ameur
- Université Kasdi Merbah Ouargla. Faculté des Sciences de la Nature et de la Vie. Laboratoire de Recherche sur la Phœniciculture, Ouargla, Algeria
| | - Abdelkader Bensid
- Department of Agronomy, Faculty of Natural Sciences and Life, Ziane Achour University, Djelfa, Algeria
| | - Fatih Ozogul
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Yilmaz Ucar
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Mustafa Durmus
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Saliha Boudjenah-Haroun
- Université Kasdi Merbah Ouargla. Faculté des Sciences de la Nature et de la Vie. Laboratoire de Recherche sur la Phœniciculture, Ouargla, Algeria
| |
Collapse
|
18
|
Hao R, Shah BR, Sterniša M, Možina SS, Mráz J. Development of essential oil-emulsion based coating and its preservative effects on common carp. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Singh A, Mittal A, Benjakul S. Undesirable discoloration in edible fish muscle: Impact of indigenous pigments, chemical reactions, processing, and its prevention. Compr Rev Food Sci Food Saf 2021; 21:580-603. [PMID: 34859577 DOI: 10.1111/1541-4337.12866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Fish is rich in proteins and lipids, especially those containing polyunsaturated fatty acids, which made them vulnerable to chemical or microbial changes associated with quality loss. Meat color is one of vital criteria indicating the freshness, quality, and acceptability of the meat. Color of meat is governed by the presence of various pigments such as hemoglobin, myoglobin (Mb), and so on. Mb, particularly oxy-form, is responsible for the bright red color of fish muscle, especially tuna, and dark fleshed fish, while astaxanthin (AXT) directly determines the color of salmonids muscle. Microbial spoilage and chemical changes such as oxidation of lipid/proteins result in the autoxidation of Mb or fading of AXT, leading to undesirable color with lower acceptability. The discoloration has been affected by chemical composition, post-harvesting handling or storage, processing, cooking, and so on . To tackle discoloration of fish meat, vacuum or modified atmospheric packaging, low- or ultralow-temperature storage, uses of artificial and natural additives have been employed. This review article provides information regarding the factors affecting color and other quality aspects of fish muscle. Moreover, promising methodologies used to control discoloration are also focused.
Collapse
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
20
|
Yu D, Zhao W, Dong J, Zang J, Regenstein JM, Jiang Q, Xia W. Multifunctional bioactive coatings based on water-soluble chitosan with pomegranate peel extract for fish flesh preservation. Food Chem 2021; 374:131619. [PMID: 34810018 DOI: 10.1016/j.foodchem.2021.131619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 01/11/2023]
Abstract
This study aimed to reveal the effects of vacuum-impregnated carboxymethyl chitosan (CMCS) coating with pomegranate peel extract (PPE) on quality retention of fish flesh during refrigeration. Herein, CMCS-PPE coating was effective in attenuating quality loss of grass carp fillets. Compared to Control, the levels of drip loss, total volatile base nitrogen, and K value in coated samples were sharply decreased (p < 0.05) by 24.5%, 35.3% and 25.2% on day 9, respectively. Meanwhile, the coating also helped inhibit oxidation, bioamine accumulation, and texture softening in fillets. Moreover, the microbial enumeration was reduced by >1.4 lg cfu/g as compared to Control on day 6 afterward, and high throughput sequencing analysis further showed the active coating contributed to the notable growth suppression of spoilage bacteria like Shewanella. Additionally, the positive effect of the coating scheme was also verified in longsnout catfish and snakehead, further confirming its good applicability for fish flesh preservation.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenyu Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junli Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinhong Zang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Joe M Regenstein
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science, Cornell University, Ithaca NY14850, USA
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Liu Y, Yang J, Ma H, Qi H, Jia S, Li W, Li J, Zhuang S, Luo Y. Microbiota Composition and Quality Changes of Tiger Puffer (Takifugu rubripes) Fillets during 4°C Refrigerated and Ice Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yiming Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyi Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haoyuan Ma
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hang Qi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shiliang Jia
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weidong Li
- Tangshan Haidu Seafood Co., Ltd, Tangshan, Heibei, China
| | - Jinlu Li
- Tangshan Haidu Seafood Co., Ltd, Tangshan, Heibei, China
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Yu C, Yang W, Jiang S, Wang T, Yang Z. Effects of star anise (Illicium verum Hook.f.) essential oil administration under three different dietary energy levels on growth performance, nutrient, and energy utilization in broilers. Anim Sci J 2021; 92:e13496. [PMID: 33511733 DOI: 10.1111/asj.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
This experiment was conducted to investigate the effect of star anise essential oil (SAO) supplementation in diets with different energy levels on growth performance, nutrient metabolic efficiency of broilers. One hundred and ninety-two Arbor Acres male broiler chicks at 28 days of age were divided into a 3 × 4 factorial arrangement design with three dietary energy levels (13.41, 12.82, 12.23 MJ/kg) and 4 levels of SAO supplementation (0, 200, 400, and 600 mg/kg of diet). Dietary supplementation with SAO increased (p < .05) apparent metabolic efficiency of CP, EE, GE, and all of the amino acids except Trp. Significant interactions were noted between energy level and SAO administration for metabolic efficiency of CP, all of the amino acids except Cys. Inclusion of SAO enhanced apparent nutrient metabolic efficiency of broilers in a dose-dependent manner, birds supplemented with 400 mg/kg of SAO in high-energy diets appeared to contain highest nutrient metabolic efficiency, moreover, the metabolic efficiency of nutrients in low-energy diets along with 200 or 400 mg/kg of SAO was similar with that in high-energy diets without SAO, which indicated that the SAO might ameliorate the negative effects of reduced dietary metabolic energy on nutrient utilization in broilers.
Collapse
Affiliation(s)
- Caiyun Yu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Weiren Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, P. R. China
| | - Shuzhen Jiang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, P. R. China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zaibin Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, P. R. China
| |
Collapse
|
23
|
Effects of oregano essential oil and nisin on the shelf life of modified atmosphere packed grass carp (Ctenopharyngodon idellus). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
The Preparation and Identification of Characteristic Flavour Compounds of Maillard Reaction Products of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Bone. J FOOD QUALITY 2021. [DOI: 10.1155/2021/8394152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aims at preparing the Maillard reaction products of protein hydrolysate from grass carp (Ctenopharyngodon idella) bone and identifying its characteristic flavour compounds. Meanwhile, bioactivities and amino acids composition of hydrolysates and its Maillard reaction products were compared with the thermal degradation reaction as one positive control. Single factor experiment was applied to optimize the enzymolysis parameters of grass carp bone protein using flavourzyme, under which the highest degree of hydrolysis (40.1%) was obtained. According to the response surface methodology, the top predicted value (70.45%) of degree of graft of Maillard reaction was obtained with initial pH of 7.07, temperature of 118.33°C, and time of 1.75 h. Moreover, the results of Maillard reaction products illustrated a significant increase in DPPH radical scavenging activity (
) compared to that of hydrolysate and its thermal degradation products, which was accompanied by the decreased ACE inhibitory activity. Besides, the umami-sweet taste amino acid ratio in free amino acids of Maillard reaction products climbed considerably compared to those of hydrolysate and its thermal degradation products, which proved that Maillard reaction is an effective way to improve the flavour taste of protein hydrolysate. The GC-MS results showed that 37, 40, and 62 kinds of volatile compounds were detected in hydrolysate, thermal degradation products, and Maillard reaction products, respectively. The Maillard reaction products contained more flavour volatile compounds of aldehydes, alcohol, ketone, pyrazine, and other compounds that contribute to pleasant aromas. These results suggested that the grass carp bone protein hydrolysate after Maillard reaction could potentially have a wide range of applications as antioxidant and flavour substances.
Collapse
|
25
|
Critical review on the use of essential oils against spoilage in chilled stored fish: A quantitative meta-analyses. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Çoban MZ. Effectiveness of chitosan/propolis extract emulsion coating on refrigerated storage quality of crayfish meat (Astacus leptodactylus). CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1882580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Lan W, Liu J, Wang M, Xie J. Effects of apple polyphenols and chitosan‐based coatings on quality and shelf life of large yellow croaker (
Pseudosciaena crocea
) as determined by low field nuclear magnetic resonance and fluorescence spectroscopy. J Food Saf 2021. [DOI: 10.1111/jfs.12887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai China
| | - Jiali Liu
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai China
| |
Collapse
|
28
|
Houicher A, Bensid A, Regenstein JM, Özogul F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100807] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Synergistic effect of kojic acid and tea polyphenols on bacterial inhibition and quality maintenance of refrigerated sea bass (Lateolabrax japonicus) fillets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
31
|
Zhuang S, Hong H, Zhang L, Luo Y. Spoilage‐related microbiota in fish and crustaceans during storage: Research progress and future trends. Compr Rev Food Sci Food Saf 2020; 20:252-288. [DOI: 10.1111/1541-4337.12659] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|
32
|
Effects of chitosan and sodium alginate active coatings containing ε-polysine on qualities of cultured pufferfish (Takifugu obscurus) during cold storage. Int J Biol Macromol 2020; 160:418-428. [DOI: 10.1016/j.ijbiomac.2020.05.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
|
33
|
Li Y, Zhuang S, Liu Y, Zhang L, Liu X, Cheng H, Liu J, Shu R, Luo Y. Effect of grape seed extract on quality and microbiota community of container-cultured snakehead (Channa argus) fillets during chilled storage. Food Microbiol 2020; 91:103492. [DOI: 10.1016/j.fm.2020.103492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
|
34
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|
35
|
Zhuang S, Li Y, Hong H, Liu Y, Shu R, Luo Y. Effects of ethyl lauroyl arginate hydrochloride on microbiota, quality and biochemical changes of container-cultured largemouth bass (Micropterus salmonides) fillets during storage at 4 °C. Food Chem 2020; 324:126886. [DOI: 10.1016/j.foodchem.2020.126886] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
|
36
|
Zhuang S, Liu X, Li Y, Zhang L, Hong H, Liu J, Luo Y. Biochemical changes and amino acid deamination & decarboxylation activities of spoilage microbiota in chill-stored grass carp (Ctenopharyngodon idella) fillets. Food Chem 2020; 336:127683. [PMID: 32771900 DOI: 10.1016/j.foodchem.2020.127683] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/11/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal amino acid deamination and decarboxylation activities of spoilage microbiota in chill-stored grass carp fillets. Results showed that microbial deamination activities of umami/sweet-taste amino acids were higher than that of bitter-taste amino acids. The total deamination activity of tested amino acids decreased during the late period of storage, which inhibited the increase of ammonia in fish flesh. Microbial decarboxylation activity of ornithine was much higher than lysine and histidine, which was consistent with the rapid increase of putrescine in fish fillets. Meanwhile, putrescine could be produced in large quantities through arginine deiminase pathway of spoilage bacteria. Glucose utilization by spoilage microbiota was active during the late period of storage, which was consistent with the rapid consumption of lactate and total sugar in fish flesh. Overall, results of this study could be beneficial for revealing fish spoilage mechanisms and providing theoretical guidance for developing fish preservation technologies.
Collapse
Affiliation(s)
- Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochang Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jun Liu
- National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Research and Development Center for Freshwater Fish Processing (Beijing), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
37
|
Effect of antioxidant extracted from bamboo leaves on the quality of box-packaged sturgeon fillets stored at 4 °C. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas.v12i2.690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Effectiveness of Sodium Alginate Active Coatings Containing Bacteriocin EFL4 for the Quality Improvement of Ready-to-Eat Fresh Salmon Fillets during Cold Storage. COATINGS 2020. [DOI: 10.3390/coatings10060506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study developed a biopreservation method for ready-to-eat (RTE) fresh salmon fillets based on the use of bacteriocin EFL4 produced by bacteriocinogenic Enterococcus faecalis L04 previously isolated from Chinese sea bass (Lateolabrax maculatus). Bacteriocin EFL4 has the ability to inhibit the growth of several fish-spoilage bacteria and foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Shewanella putrefaciens, Pseudomonas fluorescens and Listeria monocytogenes, and the minimal inhibitory concentration (MIC) for S. putrefaciens was 0.32 μg/mL. The biopreservation potential of bacteriocin EFL4 for RTE fresh salmon fillets during cold storage at 4 °C was tested for the first time on a laboratory scale. Microbiological and physicochemical properties, as well as organoleptic evaluations, have been done during the biopreservation trials. The results show that RTE fresh salmon fillets treated with 0.64 μg/mL bacteriocin EFL4 could significantly (p < 0.05) reduce the total viable count (TVC), total volatile basic nitrogen (TVB-N), K value and maintain the quality of RTE fresh salmon fillets during 8-day storage on the basis of the organoleptic evaluation results.
Collapse
|
39
|
Hussain Z, Li X, Ijaz M, Xiao X, Hou C, Zheng X, Ren C, Zhang D. Effect of Chinese Cinnamon Powder on the Quality and Storage Properties of Ground Lamb Meat during Refrigerated Storage. Food Sci Anim Resour 2020; 40:311-322. [PMID: 32426712 PMCID: PMC7207083 DOI: 10.5851/kosfa.2019.e79] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
This study was undertaken to evaluate the impact of Chinese cinnamon powder (w/w), at the levels of 0.5%, 1.5%, and 2.5% and control (without additive) on ground lamb meat quality. The samples were stored at 4°C and examined for pH, color, lipid oxidation (thiobarbituric acid reactive substances) and total viable counts (TVC). The results demonstrated that pH values were declined with the increase of Chinese cinnamon levels compared to control group. The L* values throughout the storage were significantly higher (p<0.05) in the control group than in other treatment groups, while a* values were decreased with the increase of Chinese cinnamon levels. The addition of Chinese cinnamon powder strongly inhibited (p<0.05) thiobarbituric acid reactive substances (TBARS) and TVC in all treated samples. It can be concluded that Chinese cinnamon powder in lower concentration 0.5% has the ability to maintain the quality of ground lamb in comparison with other treated samples.
Collapse
Affiliation(s)
- Zubair Hussain
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Muawuz Ijaz
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Xiong Xiao
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Chengli Hou
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Chi Ren
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture and Rural Affairs,
Beijing 100193, China
| |
Collapse
|
40
|
Sun X, Hong H, Jia S, Liu Y, Luo Y. Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Food Microbiol 2020; 86:103313. [DOI: 10.1016/j.fm.2019.103313] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/09/2019] [Accepted: 08/24/2019] [Indexed: 02/05/2023]
|
41
|
Xu Y, Yin Y, Li T, Zhao H, Li X, Li J, Sun T. Effects of lysozyme combined with cinnamaldehyde on storage quality of olive flounder (Paralichthys olivaceus) fillets. J Food Sci 2020; 85:1037-1044. [PMID: 32175601 DOI: 10.1111/1750-3841.14980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/26/2023]
Abstract
Effects of lysozyme (LYS) combined with cinnamaldehyde (CA) on quality enhancement of olive flounder (Paralichthys olivaceus) fillets during refrigerated storage at 4 °C for 20 days were assessed. Changes of total viable count (TVC), K-value, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), texture profile analysis (TPA), and trichloroacetic acid-soluble peptide (TCA-soluble peptide) in samples were determined periodically. Results demonstrated that the combination of LYS and CA treatment enhanced the antibacterial activity against S. putrefaciens and P. fluorescens, and lowered TVC values. Meanwhile, LYS combined with CA significantly retarded the increases of TBA value, TVB-N, K-value, and TCA-soluble peptide content compared to the control. Furthermore, the combined treatment also effectively maintained the texture properties of flounder fillets during the storage period. The efficiency was better than that of LYS or CA treatment alone. Thus, LYS combined with CA is promising in olive flounder shelf life extension.
Collapse
Affiliation(s)
- Yongxia Xu
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Yiming Yin
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Tao Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Honglei Zhao
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Xuepeng Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Jianrong Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Tong Sun
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| |
Collapse
|
42
|
Li P, Chen Z, Tan M, Mei J, Xie J. Evaluation of weakly acidic electrolyzed water and modified atmosphere packaging on the shelf life and quality of farmed puffer fish (
Takifugu obscurus
) during cold storage. J Food Saf 2020. [DOI: 10.1111/jfs.12773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Zhijie Chen
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
43
|
Duan X, Duan S, Wang Q, Ji R, Cao Y, Miao J. Effects of the natural antimicrobial substance from Lactobacillus paracasei FX-6 on shelf life and microbial composition in chicken breast during refrigerated storage. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106906] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Huang W, Xie J. Characterization of the Volatiles and Quality of Hybrid Grouper and Their Relationship to Changes of Microbial Community During Storage at 4 °C. Molecules 2020; 25:E818. [PMID: 32070021 PMCID: PMC7070358 DOI: 10.3390/molecules25040818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
To investigate the effects of spoilage bacteria on aquatic product quality and volatile organic compounds (VOCs) in hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂), the physical conditions were evaluated, the chemical changes including color, total volatile base nitrogen (TVB-N), VOCs, and free amino acids (FFAs) were determined, and biological profiles were made through microbial community (total viable counts (TVC), 16S rRNA gene amplification sequencing, and next-generation sequencing (NGS) technology on hybrid grouper, which were stored at 4 °C for 10 days. The results showed that the whiteness and TVB-N of grouper increased throughout the storage period. The contents of glycine, alanine, and total free amino acid decreased with the microbial activity towards the end of the study period. At the end of storage, the TVC reached 9.0 log10 (CFU/g). Seventy eight strains of bacteria were isolated from the hybrid grouper, most of which were shown to be Pseudomonas spp., after 16S rRNA sequencing. The results of the NGS test showed that the diversity of dominant bacteria decreased with time; Pseudomonas azotoformans was the dominant spoilage bacteria at the end of storage. The VOCs of fish and bacteria in the grouper's spoilage process were presented in headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). Twenty eight compounds were identified in hybrid grouper, among which alcohol and aldehyde were used to characterize freshness, both of which were not only related to the overall flavor of the grouper, but were also affected by microbial activity. However, due to the complexity of microbial communities in aquatic products, the correlation between community changes and VOCs needs further research. This study provides insights into the correlation between VOCs and specific spoilage organisms (SSOs) through the analysis of the microbial community and VOCs.
Collapse
Affiliation(s)
- Wenbo Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China
| |
Collapse
|
45
|
Cao J, Wang Q, Ma T, Bao K, Yu X, Duan Z, Shen X, Li C. Effect of EGCG-gelatin biofilm on the quality and microbial composition of tilapia fillets during chilled storage. Food Chem 2020; 305:125454. [DOI: 10.1016/j.foodchem.2019.125454] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
46
|
Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019; 11:E2786. [PMID: 31731683 PMCID: PMC6893664 DOI: 10.3390/nu11112786] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Essential oils (EOs) are a mixture of natural, volatile, and aromatic compounds obtained from plants. In recent years, several studies have shown that some of their benefits can be attributed to their antimicrobial, antioxidant, anti-inflammatory, and also immunomodulatory properties. Therefore, EOs have been proposed as a natural alternative to antibiotics or for use in combination with antibiotics against multidrug-resistant bacteria in animal feed and food preservation. Most of the results come from in vitro and in vivo studies; however, very little is known about their use in clinical studies. A systematic and comprehensive literature search was conducted in PubMed, Embase®, and Scopus from December 2014 to April 2019 using different combinations of the following keywords: essential oils, volatile oils, antimicrobial, antioxidant, immunomodulation, and microbiota. Some EOs have demonstrated their efficacy against several foodborne pathogens in vitro and model food systems; namely, the inhibition of S. aureus, V. cholerae, and C. albicans has been observed. EOs have shown remarkable antioxidant activities when used at a dose range of 0.01 to 10 mg/mL in cell models, which can be attributed to their richness in phenolic compounds. Moreover, selected EOs exhibit immunomodulatory activities that have been mainly attributed to their ability to modify the secretion of cytokines.
Collapse
Affiliation(s)
- Magdalena Valdivieso-Ugarte
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
| | - Carolina Gomez-Llorente
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julio Plaza-Díaz
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ángel Gil
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
47
|
Mei J, Ma X, Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019; 8:E490. [PMID: 31614926 PMCID: PMC6835557 DOI: 10.3390/foods8100490] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings.
Collapse
Affiliation(s)
- Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
48
|
Jia S, Liu Y, Zhuang S, Sun X, Li Y, Hong H, Lv Y, Luo Y. Effect of ε-polylysine and ice storage on microbiota composition and quality of Pacific white shrimp (Litopenaeus vannamei) stored at 0 °C. Food Microbiol 2019; 83:27-35. [DOI: 10.1016/j.fm.2019.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022]
|
49
|
Zhuang S, Li Y, Jia S, Hong H, Liu Y, Luo Y. Effects of pomegranate peel extract on quality and microbiota composition of bighead carp (Aristichthys nobilis) fillets during chilled storage. Food Microbiol 2019; 82:445-454. [DOI: 10.1016/j.fm.2019.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 03/17/2019] [Indexed: 01/03/2023]
|
50
|
Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds. Food Microbiol 2019; 84:103248. [PMID: 31421785 DOI: 10.1016/j.fm.2019.103248] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022]
Abstract
To evaluate the spoilage potential of dominant bacteria (Aeromonas allosaccharophila, Pseudomonas psychrophila, and Shewanella putrefaciens) isolated from spoiled silver carp (Hypophthalmichthys molitrix) fillets, biochemical changes including protein degradation, trichloroacetic acid (TCA)-soluble peptides, total volatile basic nitrogen (TVB-N), biogenic amines, nucleotide catabolism, and volatile organic compounds were examined in single-species inoculated silver carp flesh for 14 days at 4 °C. P. psychrophila exhibited the strongest proteolytic activity, which resulted in the highest concentrations of TCA-soluble peptides and TVB-N. S. putrefaciens was responsible for the production of putrescine and cadaverine and led to the fastest degradation of hypoxanthine riboside (HxR). At the end of storage, P. psychrophila was the main producer of ketones, especially the C7-C9 ketones, while sulfur compounds were released primarily by S. putrefaciens. Moreover, 1-propanol, butanone, 2-hexanone, methyl isobutyl ketone, dimethyl sulfide, and dimethyl disulfide increased gradually with storage time, suggesting their potential as spoilage markers for freshness/spoilage monitoring. P. psychrophila possessed the strongest spoilage potential in the fish matrix, followed by S. putrefaciens, whereas A. allosaccharophila showed a very low spoilage potential. In conclusion, P. psychrophila and S. putrefaciens were identified as the specific spoilage organisms (SSOs) of silver carp, suggesting that preservation researchers should focus on these two spoilage contributors in future studies. This research contributes to a deeper understanding of silver carp spoilage and to the development of methods and tools to improve fish quality management.
Collapse
|