1
|
Zhou R, Wu X, Xue S, Yin L, Gao S, Zhang Y, Wang C, Wang Y, El-Seedi HR, Zou X, Guo Z. Magnetic metal-organic frameworks-based ratiometric SERS aptasensor for sensitive detection of patulin in apples. Food Chem 2025; 466:142200. [PMID: 39612841 DOI: 10.1016/j.foodchem.2024.142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Patulin (PAT), a major contaminant in apples, poses a considerable food safety risk, necessitating a rapid, sensitive and reliable detection method. This study developed a novel magnetic metal-organic frameworks (MOFs)-based ratiometric surface-enhanced Raman scattering (SERS) aptasensor. The sensor consists of magnetic MOFs loaded with 4-Mercaptobenzoic acid (4-MBA) internal labeled AuMBA@Ag as the SERS substrate, and gold nanorods (AuNRs) modified with Rhodamine 6G and aptamers as capture probes. This strategy enhances sensitivity through magnetic separation and abundant SERS hotspots provided by the magnetic MOF nanocomposites. The SERS intensity ratio showed a negative correlation with PAT concentrations from 0.01 to 100 ng/mL, with a LOD of 0.0465 ng/mL. Moreover, the aptasensor achieved 95.90 % ∼ 105.83 % recoveries in apple samples, indicating high accuracy and anti-interference capability. The excellent sensing performance demonstrates great potential of the SERS nanosensor for mycotoxin detection in actual food matrices.
Collapse
Affiliation(s)
- Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Focusight Technology (Jiangsu) Co., LTD, Changzhou 213100, China
| | - Xinchen Wu
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansong Wang
- Focusight Technology (Jiangsu) Co., LTD, Changzhou 213100, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Han H, Huang Y, Miao J, Lai K. Rapid determination of malachite green in fish by surface-enhanced Raman spectroscopy combined with MIL-100 (Fe). Mikrochim Acta 2025; 192:185. [PMID: 39994093 DOI: 10.1007/s00604-025-07010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) was combined with stoichiometric analysis to synthesize a AuNPs@MIL-100 (Fe) SERS substrate. This high-performance, and low-cost metal-organic framework-based SERS nano sensor is capable of detecting malachite green (MG) residues in fish. The minimum detectable concentration of MG in standard solutions is 0.1 μg/L, while in fish samples, the detection range spanned from 0.003-0.088 μg/kg. The partial least squares regression (PLSR) and support vector machine regression (SVR) were applied to model the SERS data, enhancing both the precision and reliability of the detection. The results show that compared with the traditional linear regression and PLSR models, the prediction accuracy of the SVR model is an improvement with higher stability. MG standard solutions and three fish samples can be analysed directly or after simple extraction. This method can be used to detect trace harmful substances in different aquatic products.
Collapse
Affiliation(s)
- Hongyu Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Hunan, 410076, China.
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, 201306, China.
| |
Collapse
|
3
|
Roa S, Kaihara T, Pedano ML, Parsamyan H, Vavassori P. Laser polarization as a critical factor in the SERS-based molecular sensing performance of nano-gapped Au nanowires. NANOSCALE 2024; 16:15280-15297. [PMID: 39078267 DOI: 10.1039/d4nr00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Nowadays, Au dimer-based nanostructures are exhaustively studied due to their outstanding potential as plasmonic nanoantennas for future applications in high-sensitivity molecular sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we analyze nano-gapped Au nanowires (NWs) or Au-NW dimers for designing efficient nanoantennas, reporting an exhaustive study about dimer length and laser polarization orientation effects on their SERS-based molecular sensing performance. Arrays of nanoantennas with gaps of about 22 ± 4 nm, nominal square cross-sections of 60 nm × 60 nm, and different segment lengths from 300 nm up to 1200 nm were fabricated by Au evaporation and subsequent e-beam lithography. The SERS performance was studied by confocal Raman microscopy using a linearly-polarized 633 nm laser. A critical impact of the polarization alignment on the spectral resolution of the studied Raman marker imprint was observed. The results show that the Raman signal is maximized by aligning the polarization orientation with the nanowire long axis, it is reduced by increasing the relative angle, and it is abruptly minimized when both are perpendicular. These observations were consistent with numerical simulations carried out by the FDTD method, which predicts a similar dependence between the orientation of linearly-polarized light and electric-near field amplification in the nano-gap zone. Our results provide an interesting paradigm and relevant insights in determining the role of laser polarization in the Raman signal enhancement in nano-gapped Au nanowires, showing the key role of this measurement condition on the SERS-based molecular sensing efficiency of this kind of nanostructure.
Collapse
Affiliation(s)
- Simón Roa
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
| | - Terunori Kaihara
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
| | - María Laura Pedano
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, C.P. 8400, S. C. de Bariloche, Río Negro, Argentina
| | - Henrik Parsamyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Paolo Vavassori
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Xu D, Su W, Luo Y, Wang Z, Yin C, Chen B, Zhang Y. Cellulose Nanofiber Films with Gold Nanoparticles Electrostatically Adsorbed for Facile Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657211 DOI: 10.1021/acsami.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cellulose nanofiber (CNF) holds great promise in applications such as surface-enhanced Raman scattering (SERS), catalysis, esthesia, and detection. This study aimed to build novel CNF-based SERS substrates through a facile synthetic method. Citrate-reduced gold nanoparticles (AuNPs) were adsorbed on the cationized CNF surface due to electrostatic interactions, and uniform AuNPs@(2,3-epoxypropyl trimethylammonium chloride)EPTMAC@CNF flexible SERS substrates were prepared by a simple vacuum-assisted filtration method. The probe molecule methylene blue was chosen to assess the performance of the CNF-based SERS substrate with a sensitivity up to 10-9 M, superior signal reproducibility (relative standard deviation (RSD) = 4.67%), and storage stability (more than 30 days). Tensile strength tests indicated that the CNF-based films had good mechanical properties. In addition, CNF-based substrates can easily capture and visually identify microplastics in water. These results demonstrate the potential application of the flexible, self-assembled AuNPs@EPTMAC@CNF flexible SERS substrate for prompt and sensitive detection of trace substances.
Collapse
Affiliation(s)
- Dewen Xu
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei Su
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yinlong Luo
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Zhenfeng Wang
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Cheng Yin
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Bingyan Chen
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
5
|
Yadav S, Bhardwaj R, Mishra P, Singh JP. A magnetic field augmented ultra-thin layer chromatography coupled surface enhanced Raman spectroscopy separation of hemozoin from bacterial mixture. J Chromatogr A 2023; 1708:464318. [PMID: 37660559 DOI: 10.1016/j.chroma.2023.464318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Malaria is considered as one the most widespread disease with highest possibility of co-infection at all levels of the disease prognosis. Rapid detection and discrimination of malaria from other co-infections remains a challenge. Hemozoin is a metabolic biproduct of malaraia possessing paramagnetic property due to presence of iron at its centre. Here, we report a label free, rapid and highly sensitive magnetic field based ultra-thin layer chromatography (UTLC) coupled with surface enhanced Raman spectroscopy (SERS) technique for detection and separation of hemozoin from a bacterial mixture. Highly optimized silver nanorods chip fabricated using glancing angle deposition (GLAD) is explored for the UTLC-SERS separation. These chips possessing channel like characteristic and high surface to the volume ratio serve as excellent UTLC plates. The magnetic nature of hemozoin has been exploited for its separation from the mixture of P. aeruginosa (Gram-negative) and S. aureus (Gram-positive) by allocating a 0.6 T magnet over the UTLC flow setup. The solvent front migrated approximately to a distance of 13 mm from the sample point due to the magnetic environment. Spatially resolved SERS data was collected along the mobile phase and separation of mixture was confirmed. Further, staining of hemozoin, P. aeruginosa and S. aureus was done using methylene blue, acridine orange and rhodamine 6 G respectively. The separation was confirmed for the stained analytes. The present developed method provides plate height as low as 18 µm and hemozoin detection limit as <10 parasites/mL. Therefore, we establish a highly specific and sensitive technique capable of separating small amounts of bioanalytes, aiding in the removal of co-infections from the disease at a very early stage of infection.
Collapse
Affiliation(s)
- Sarjana Yadav
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ritu Bhardwaj
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - J P Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Wang X, Liu X, Li F, Valsecchi C, Hu Z, Zhang Y, Wang D, Wang C, Sun J, Fan M. Multifunctional 3D magnetic carbon aerogel for adsorption separation and highly sensitive SERS detection of malachite green. CHEMOSPHERE 2023; 339:139654. [PMID: 37495048 DOI: 10.1016/j.chemosphere.2023.139654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
This work presents a novel strategy for the synthesis of a recyclable aerogel and its multifunctional application as effective adsorption material for organic pollutants and as a high-quality SERS substrate for on-site detection measurement. Silver nanoparticles (Ag NPs) were uniformly dispersed and adsorbed on the surface of an Fe3C-loaded carbon aerogel, resulting in the formation of a three-dimensional Ag-Fe3C-MCA (magnetic carbon aerogel) composite. The substrate preparation led to Ag-Fe3C-MCA with a mesoporous structure for high adsorption capacity, together with magnetic properties for easy separation capability. The Ag-Fe3C-MCA composite demonstrated an efficient removal ability for malachite green (MG), with an adsorption capacity of 296.7 mg g-1. Moreover, Ag-Fe3C-MCA composite provided ultrasensitive surface-enhanced Raman scattering detection for MG molecules, obtaining a limit of detection (LOD) of 3 × 10-10 M. Aquaculture water samples with spiked MG concentrations were used to simulate practical scenarios. The Ag-Fe3C-MCA presented has a significant potential for the removal of hazardous residues in wastewater, together with an efficient and sensitive method of quantification, all on the same substrate.
Collapse
Affiliation(s)
- Xueqing Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xing Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Fan Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chiara Valsecchi
- Federal University of Pampa, Campus Alegrete, 97542-160, Alegrete, RS, Brazil
| | - Zhangmei Hu
- The Analytical and Test Center, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chaoming Wang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Ji Sun
- School of Emergency Management, Xihua University, Chengdu, 610039, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Zhou X, Chen S, Pan Y, Wang Y, Xu N, Xue Y, Wei X, Lu Y. High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products. BIOSENSORS 2023; 13:766. [PMID: 37622852 PMCID: PMC10452132 DOI: 10.3390/bios13080766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
In order to improve the detection performance of surface-enhanced Raman scattering (SERS), a low-cost Au@Ag nanorods (Au@Ag NRs) substrate with a good SERS enhancement effect was developed and applied to the detection of malachite green (MG) in aquaculture water and crayfish. By comparing the SERS signal enhancement effect of five kinds of Au@Ag NRs substrates with different silver layer thickness on 4-mercaptobenzoic acid (4-MBA) solution, it was found that the substrate prepared with 100 µL AgNO3 had the smallest aspect ratio (3.27) and the thickest Ag layer (4.1 nm). However, it showed a good signal enhancement effect, and achieved a detection of 4-MBA as low as 1 × 10-11 M, which was 8.7 times higher than that of the AuNRs substrate. In addition, the Au@Ag NRs substrate developed in this study was used for SRES detection of MG in crayfish; its detection limit was 1.58 × 10-9 M. The developed Au@Ag NRs sensor had the advantages of stable SERS signal, uniform size and low cost, which provided a new tool for SERS signal enhancement and highly sensitive SERS detection method development.
Collapse
Affiliation(s)
- Xiaoxiao Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
| | - Shouhui Chen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.P.); (Y.X.)
- Food Safety Engineering and Technology Research Centre (Shanghai), Shanghai 200240, China
| | - Yi Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.P.); (Y.X.)
| | - Yuanfeng Wang
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (Y.W.); (N.X.)
| | - Naifeng Xu
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (Y.W.); (N.X.)
| | - Yanwen Xue
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.P.); (Y.X.)
- Food Safety Engineering and Technology Research Centre (Shanghai), Shanghai 200240, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.P.); (Y.X.)
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai 201306, China
| |
Collapse
|
8
|
Qi Z, Akhmetzhanov T, Pavlova A, Smirnov E. Reusable SERS Substrates Based on Gold Nanoparticles for Peptide Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:6352. [PMID: 37514646 PMCID: PMC10384829 DOI: 10.3390/s23146352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Raman spectroscopy is a powerful analytical technique widely used for quantitative and qualitative analysis. However, the development of inexpensive, reproducible, and reusable enhancing substrates remains a challenge for material scientists and analytical chemists. In this study, we address this challenge by demonstrating the deposition of core-shell nanoparticles consisting of a gold core and a thin inert SiO2 shell within a confined space, resulting in the formation of a highly efficient Raman-enhancing structure. Nanoparticles were characterized by UV-vis spectroscopy, dynamic light scattering, and total reflectance X-ray fluorescence spectroscopy, whereas the prepared substrates were characterized by scanning electron microscopy and Raman spectroscopy with a model molecule, malachite green. The relationship between Raman intensity and the loading of malachite green dye exhibited linearity, indicating the uniform spatial distribution of hotspots across the substrate. The limit of detection was determined as 2.9 μM of malachite green when 10 uL was distributed over a ca. 25 mm2 surface area. Moreover, the same substrate, after thorough washing in ethanol, was successfully employed for the detection of bovine serum albumin at a concentration level of 55 μg mL-1, demonstrating its reusability and versatility. Our findings highlight the potential of these substrates for various applications in biomedical research, clinical diagnosis, and beyond.
Collapse
Affiliation(s)
- Zhang Qi
- Department of Material Science, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Timur Akhmetzhanov
- Department of Material Science, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Arina Pavlova
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, Saint Petersburg 191002, Russia
| | - Evgeny Smirnov
- Department of Material Science, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 518172, China
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, Saint Petersburg 191002, Russia
| |
Collapse
|
9
|
Fu CP, Li KJ, He JY, Yu WH, Zhou CH. Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1001-1015. [PMID: 36541705 DOI: 10.1039/d2ay01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The nanostructure of Ag nanoparticles (NPs) plays a critical role in their surface-enhanced Raman scattering (SERS) activity. Despite many efforts to tune the nanostructure of Ag NPs, it remains a great challenge as Ag NPs tend to agglomerate and their nanostructure is difficult to control. Herein, newly-discovered clay-surfactant-Ag+ materials and interfacial processes were developed and used to prepare uniform spherical Ag@synthetic hectorite (Ag@Hct) nanomaterials for ultrasensitive SERS assay. Sodium dodecyl sulfate (SDS), an anionic surfactant, acted as a bridge to conjugate the positively charged edge of Hct NPs and Ag+via electrostatic interaction to form the bridging nanostructure of Hct-SDS-Ag+, which promoted the uniform dispersion of Hct NPs. Following this, Ag+ was reduced to Ag0 by the reductant, and Ag0 grew on the surface of disc-like Hct NPs to form spherical Ag@Hct nanomaterials with an average particle size of ∼24 nm. The prepared Ag@Hct nanomaterials showed an ultrasensitive SERS response to methylene blue (MB) with a detection limit of 10-12 M. The detection limit of MB in sewage was 10-11 M. The prepared Ag@Hct nanomaterials also exhibited great SERS enhancement for malachite green and crystal violet. This work provides a novel and simple approach to prepare Ag@Hct nanomaterials with uniform spheres and adjustable particle size, allowing more sensitive and reproducible detection of MB.
Collapse
Affiliation(s)
- Chao Peng Fu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Ke Jin Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jia Yong He
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Wei Hua Yu
- Zhijiang College, Zhejiang University of Technology, Shaoxing, 312030, China
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
- Qing Yang Institute for Industrial Minerals, Youhua, Qingyang, Chizhou, 242804, China
- Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resources, Hangzhou, 310007, China
| |
Collapse
|
10
|
Tian M, Yang L, Wang D, Tao Y, Wang L, Wang J, Liu S, Quan T, Ke F, Zhang K, Li X, Gao D. Preparation of sulphuric acid-mediated N,S-codoped red emissive carbon dots: Applications in food dyes detection, solid-state luminescence and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121581. [PMID: 35797950 DOI: 10.1016/j.saa.2022.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
As diseases such as cardiovascular disease and cancer caused by food problems are more and more frequent, food safety has received great attention. Among them, the safety problem caused by food dyes is more prominent. Thus, it is of great value to develop sensitive detection methods for food dyes. In present study, sulphuric acid-mediated N,S-codoped red emissive carbon dots (namely as R-CDs) had been manufactured by using N-phenyl-o-phenylenediamine as precursor, sulfuric acid as additive for the first time. The structural and fluorescence properties of R-CDs had been systematically studied. The results demonstrated that R-CDs showed uniform spherical morphology and had a graphite-like structure, for which the average diameters size was 5.05 nm. Due to the various functional groups such as hydroxyl, pyridinic N, pyrrolic N and -C-SO4, R-CDs emitted bright red fluorescence. Importantly, because of the interactions between the functional groups of R-CDs with the selected food dyes, three dyes including amaranth, brilliant blue FCF and methylene blue can sensitively quench the fluorescence of R-CDs through IFE and static quenching effects. The linearity ranges of them were separately detected as 0.20 μM -20 μM, 10 nM-1 μM and 60 nM-8 μM. The limits of detection (LODs) of them were 70 nM, 4 nM and 20 nM, respectively. Further, R-CDs was successfully applied to the sensitive detection of three dyes from various food samples. To maximize the fluorescence properties of R-CDs, a R-CDs/PVA composite gel was fabricated to make R-CDs fluoresce in solid state condition. The potential of R-CDs/PVA composite gel for preliminary visualization analysis of three dyes was studied. Finally, ascribed to the low toxicity and good biocompatibility, the potential of R-CDs as probe for cell imaging was explored preliminarily.
Collapse
Affiliation(s)
- Meng Tian
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lijuan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yongqing Tao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junji Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shaochi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tian Quan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiang Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
11
|
Zhai H, Zhu C, Wang X, Yuan Y, Tang H. Arrays of Ag-nanoparticles decorated TiO2 nanotubes as reusable three-dimensional surface-enhanced Raman scattering substrates for molecule detection. Front Chem 2022; 10:992236. [PMID: 36262347 PMCID: PMC9574249 DOI: 10.3389/fchem.2022.992236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional surface-enhanced Raman scattering (SERS) substrates usually provide more hot spots in the excitation light beam and higher sensitivity when compared with the two-dimensional counterpart. Here a simple approach is presented for the fabrication of arrays of Ag-nanoparticles decorated TiO2 nanotubes. Arrays of ZnO nanorods were fabricated in advance by a hydrothermal method. Then TiO2 nanotube arrays were achieved by immersing the arrays of ZnO nanorods in an aqueous solution of (NH4)2TiF6 for 1.5 h. Vertically aligned TiO2 nanotube arrays were modified with dense Ag nanoparticles by Ag mirror reaction. High density of Ag nanoparticles decorated on the fabricated TiO2 nanotubes provide plenty of hotspots for Raman enhancement. In addition, the fabricated array of Ag nanoparticles modified TiO2 nanotubes can serve as a reusable SERS substrate because of the photocatalytic activity of the TiO2 nanotubes. The SERS substrate adsorbed with analyte molecules can realize self-cleaning in deionized water after UV irradiation for 2.5 h. The sensitivity of the fabricated SERS substrate was investigated by the detection of organic dye molecules. The detectable concentration limits of rhodamine 6G (R6G), malachite green (MG) and methylene blue (MB) were found to be 10−12 M, 10−9 M and 10−8 M, respectively. The enhancement factor (EF) of the three-dimensional SERS substrate was estimated to be as high as ∼1.4×108. Therefore, the prepared Ag nanoparticles modified TiO2 nanotube arrays have promising potentials to be applied to rapid and trace SERS detection of organic chemicals.
Collapse
Affiliation(s)
- Haichao Zhai
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Anhui University, Hefei, China
| | - Chuhong Zhu
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Anhui University, Hefei, China
- *Correspondence: Chuhong Zhu, ; Xiujuan Wang, ; Haibin Tang,
| | - Xiujuan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, China
- *Correspondence: Chuhong Zhu, ; Xiujuan Wang, ; Haibin Tang,
| | - Yupeng Yuan
- College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Anhui University, Hefei, China
| | - Haibin Tang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
- *Correspondence: Chuhong Zhu, ; Xiujuan Wang, ; Haibin Tang,
| |
Collapse
|
12
|
Wang T, Liu M, Huang S, Yuan H, Zhao J. Detection of Ofloxacin and Norfloxacin in Duck Meat Using Surface-Enhanced Raman Spectroscopy (SERS) Coupled with Multivariate Analysis. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2098313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ting Wang
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Muhua Liu
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Shuanggen Huang
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Haichao Yuan
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jinhui Zhao
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
13
|
He Y, Xu W, Qu M, Zhang C, Wang W, Cheng F. Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Compr Rev Food Sci Food Saf 2022; 21:3647-3672. [PMID: 35794726 DOI: 10.1111/1541-4337.12968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.
Collapse
Affiliation(s)
- Yingchao He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou, China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Bistaffa MJ, Camacho SA, Pazin WM, Constantino CJL, Oliveira ON, Aoki PHB. Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein. Talanta 2022; 244:123381. [PMID: 35364338 PMCID: PMC8928707 DOI: 10.1016/j.talanta.2022.123381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
The early diagnosis of Coronavirus disease (COVID-19) requires either an accurate detection of genetic material or a sensitive detection of viral proteins. In this work, we designed an immunoassay platform for detecting trace levels of SARS-CoV-2 spike (S) protein. It is based on surface-enhanced resonance Raman scattering (SERRS) of methylene blue (MB) adsorbed onto spherical gold nanoparticles (AuNPs) and coated with a 6 nm silica shell. The latter shell in the SERRS nanoprobe prevented aggregation and permitted functionalization with SARS-CoV-2 antibodies. Specificity of the immunoassay was achieved by combining this functionalization with antibody immobilization on the cover slides that served as the platform support. Different concentrations of SARS-CoV-2 antigen could be distinguished and the lack of influence of interferents was confirmed by treating SERRS data with the multidimensional projection technique Sammon's mapping. With SERRS using a laser line at 633 nm, the lowest concentration of spike protein detected was 10 pg/mL, achieving a limit of detection (LOD) of 0.046 ng/mL (0.60 pM). This value is comparable to the lowest concentrations in the plasma of COVID-19 patients at the onset of symptoms, thus indicating that the SERRS immunoassay platform may be employed for early diagnosis.
Collapse
Affiliation(s)
- Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, 13566-590, Brazil.
| | - Wallance M Pazin
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, 13566-590, Brazil; São Paulo State University (UNESP), School of Technology and Applied Sciences, 19060-900, Presidente Prudente, SP, Brazil
| | - Carlos J L Constantino
- São Paulo State University (UNESP), School of Technology and Applied Sciences, 19060-900, Presidente Prudente, SP, Brazil
| | - Osvaldo N Oliveira
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| |
Collapse
|
15
|
Dong J, Wang T, Xu E, Bai F, Liu J, Zhang Z. Flexible Hydrophobic CFP@PDA@AuNPs Stripes for Highly Sensitive SERS Detection of Methylene Blue Residue. NANOMATERIALS 2022; 12:nano12132163. [PMID: 35807996 PMCID: PMC9267967 DOI: 10.3390/nano12132163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023]
Abstract
Considering the inherent hydrophilic and porous nature of paper, the rapid absorption and diffusion of aqueous analyte solutions on paper-based SERS substrates may severely affect the Raman detection sensitivity and accuracy in the detection of target molecules. In this work, a series of hydrophobic CFP@PDA@AuNPs stripes were obtained through in situ synthesizing of gold nanoparticles (AuNPs) on a polydopamine (PDA)-decorated cellulose filter paper (CFP) and functionalized with perfluorodecanethiol (PFDT). When the SERS performance of the substrates was examined using 4-ATP, the hydrophobic CFP@PDA@AuNPs substrate showed superior sensitivity, reproducibility and stability due to the hydrophobic enrichment effect, with the detection limit decreasing to 10−9 M and the enhancement factor as high as 2.55 × 107. More importantly, it was feasible to apply the hydrophobic paper substrate as an excellent SERS sensor to detect methylene blue (MB) residues in lake water in a highly sensitive manner. The lowest detectable limit of MB was 100 nM, and it showed a low relatively standard deviation (RSD) value of 5.28%. Hydrophobic CFP@PDA@AuNPs stripes may serve as excellent sensors for target molecule detection and have tremendous potential in food security, and environmental and chemical detection.
Collapse
Affiliation(s)
- Jinchen Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Tangchun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Enze Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Feng Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Jun Liu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (J.L.); (Z.Z.); Tel.: +86-0531-89631632 (Z.Z.)
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
- Correspondence: (J.L.); (Z.Z.); Tel.: +86-0531-89631632 (Z.Z.)
| |
Collapse
|
16
|
Kong YJ, Hou GZ, Gong ZN, Zhao FT, Han LJ. Fluorescence detection of malachite green and cations (Cr 3+, Fe 3+ and Cu 2+) by a europium-based coordination polymer. RSC Adv 2022; 12:8435-8442. [PMID: 35424814 PMCID: PMC8984937 DOI: 10.1039/d2ra00077f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Due to remarkable fluorescence characteristics, lanthanide coordination polymers (CP) have been widely employed in fluorescence detection, but it is rarely reported that they act as multifunctional luminescent probes dedicated to detecting malachite green (MG) and various metal ions. A europium-based CP fluorescent probe, Eu(PDCA)2(H2O)6 (PDCA = 2,6-pyridinedicarboxylic acid), has been synthesized and exhibited excellent recognition ability for malachite green and metal cations (Cr3+, Fe3+ and Cu2+) among 11 metal cations, 13 anions and six other compounds. The recognition was achieved by fluorescence quenching when MG, Cr3+, Fe3+ and Cu2+ were added to a suspension of Eu(PDCA)2(H2O)6 respectively. Eu(PDCA)2(H2O)6 is a multifunctional luminescent probe, and displayed high quenching efficiencies K sv (2.10 × 106 M-1 for MG; 1.46 × 105 M-1 for Cr3+; 7.26 × 105 M-1 for Fe3+; 3.64 × 105 M-1 for Cu2+), and low detection limits (MG: 0.039 μM; Cr3+: 0.539 μM; Fe3+: 0.490 μM; Cu2+: 0.654 μM), presenting excellent selectivity and sensitivity, especially for MG. In addition, Eu(PDCA)2(H2O)6 was also made into fluorescent test strips, which can rapidly and effectively examine trace amounts of MG, Cr3+, Fe3+ and Cu2+ in aqueous solutions. This work provides a new perspective for detecting malachite green in fish ponds and heavy metal ions in waste water.
Collapse
Affiliation(s)
- Ya-Jie Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Guo-Zheng Hou
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Zhao-Ning Gong
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Feng-Tan Zhao
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
| | - Li-Juan Han
- School of Chemistry, Chemical Engineering and Materials, Jining University Qufu Shandong 273155 P. R. China +86-25-3196089
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
17
|
Tian X, Yu Q, Kong X, Zhang M. Preparation of Plasmonic Ag@PS Composite via Seed-Mediated In Situ Growth Method and Application in SERS. Front Chem 2022; 10:847203. [PMID: 35360532 PMCID: PMC8963369 DOI: 10.3389/fchem.2022.847203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
The colloidal polystyrene (PS) was synthesized and decorated with silver nanoparticles (Ag NPs). The plasmonic Ag@PS nanocomposite was prepared by loading Ag NPs on PS microsphere through a seed-mediated in situ growth route. The property of Ag NPs deposited on the PS microsphere could be precisely controlled by adjusting the concentration of the chemicals used in the growth medium. The growth step is only limited by the diffusion of growing species in the growth media to the surface of the Ag seed. The Ag@PS prepared via the in situ growth method exhibited two advantages compared with the self-assembled PS/Ag. First, the high-density of Ag NPs were successfully deposited on the surface of PS as the electroless-deposited Ag seed process, which brings nearly three times SERS enhancement. Second, the rapid preparation process for in situ growth method (half an hour, 10 h for the self-assembled method). The PS/Ag could detect Nile blue A (NBA) down to 10-7 M by SERS. Furthermore, the plasmonic Ag@PS SERS substrate was used for pesticide identification. The on-site monitoring malachite green (MG) from fish was achieved by portable Raman spectrometer, and the limit of detection (LOD) was 0.02 ppm. The Ag@PS substrate has also shown capability for simultaneously sensing multiple pesticides by SERS.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Du S, Yu B, Han F, Mao Y, Zhang H, Li J. Finite-difference time-domain to screen Au NPs as SERS active substrate for the sensitive determination of prohibited drugs in fish via solvent cleaning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:921-925. [PMID: 35166760 DOI: 10.1039/d2ay00066k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS), as a molecule-specific method using plasmonic nanostructures to significantly enhance signal intensity, has been employed in various fields. In our study, we investigated the size effect of gold nanoparticles (Au NPs) on surface plasmon response by finite-difference time-domain (FDTD) simulation. In addition, SERS experiments, using the same concentrations of crystal violet (CV), were also carried out to confirm the simulation results. On this basis, the size of citrate-stabilized Au NPs (∼100 nm) was controlled by a seed-mediated growth, thus providing great electromagnetic field enhancement for SERS detection of CV in fish. Methanol solvent cleaning along with high speed centrifugal separation was developed, which could not only remove lipids in fish, but also produce hot spots via induced aggregation of Au NPs. The SERS detection limit of CV in fish could be less than 1 ppb. Such cost-effective and facile routes will be attractive for the trace detection of various analytes in complex matrices.
Collapse
Affiliation(s)
- Shenxuan Du
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China.
| | - Borong Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China.
| | - Fangwei Han
- School of Medical Information Engineering, Jining Medical University, Jining 272067, China
| | - Yue Mao
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China.
| | - Huijiao Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China.
| | - Jiangli Li
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China.
| |
Collapse
|
19
|
Wongmaneepratip W, Leong M, Yang H. Quantification and risk assessment of pyrethroid residues in seafood based on nanoparticle-extraction approach. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Solar Heterogenous Photocatalytic Degradation of Methylthionine Chloride on a Flat Plate Reactor: Effect of pH and H2O2 Addition. Catalysts 2022. [DOI: 10.3390/catal12020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Methylthionine chloride (MTC) is a compound with several applications both in the clinical and medical industries. Nevertheless, such compounds can become an environmental problem, as they are not properly treated by wastewater treatment plants. This objective of this work was to study MTC degradation in a flat plate reactor through solar photolysis and heterogeneous photocatalysis processes with TiO2 as a catalyst. In addition to the processes, three pH (3.5, 6.5, and 9) and the effect of H2O2 addition (no dose, 0.5, and 1 mM/L) were tested. The results show that acidic pH is the most appropriate for MTC degradation, which ranged between 56% and 68.7% for photolysis and between 76% and 86.7% in photocatalysis. The H2O2 addition resulted in lower degradation in all cases, leading the authors to conclude that the presence of peroxide actually hinders degradation in solar photolysis and photocatalysis processes. Statistical analysis showed that the constant rate reactions calculated for every process, under the same conditions of pH and H2O2 addition, are significantly different from one another, and the three factors considered for experimental design (process, pH, and H2O2) have a statistically significant effect on MTC degradation. The collector area per order confirmed higher efficiency for photocatalysis when compared to photolysis processes.
Collapse
|
21
|
Huang Z, Du B, Zhang Z, Ye Y, He S, Li Z, He S, Hu X, Li D. Compact photothermal self-mixing interferometer for highly sensitive trace detection. OPTICS EXPRESS 2022; 30:1021-1035. [PMID: 35209247 DOI: 10.1364/oe.446934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A self-mixing interferometer combined with the photothermal spectroscopy is utilized as a remarkable sensor for highly sensitive trace detection, featuring the beneficial property of a He-Ne laser with back-mounted photodiode, to the best of our knowledge, acting as an excitation laser, also as a probe laser, and even more, as a detector. Utilizing the novel implementation of the photothermal self-mixing (PTSM) interferometer with an external cavity modulation, the concentration of the sample is directly measured by the PTSM parameter extracted from the PTSM signal. The metrological qualities of the PTSM interferometer were investigated by methylene blue trace detection. For a low excitation power of 5 mW, a 7.7 nM of the limit of detection was achieved with a relative standard deviation of ∼3%. The compact and simple structure with high sensitivity has guiding significance to a robust analytical tool for the analysis of photosensitive compounds and in the detection of aquatic product hazards in aquaculture.
Collapse
|
22
|
Li Z, Shen T, Gu J, Chattha SA. PVP–gold–copper nanocluster based NIR fluorescence probe for sensitive detection of malachite green. NEW J CHEM 2022. [DOI: 10.1039/d1nj04943g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel NIR fluorescent probe based on PVP–Au/CuNCs has been developed, exhibiting good selectivity and stability for detecting malachite green (MG).
Collapse
Affiliation(s)
- Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Tian Shen
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Sadaqat Ali Chattha
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Department of Leather & Fibre Technology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
23
|
Tian X, Fan Q, Guo J, Yu Q, Xu L, Kong X. Surface-enhanced Raman scattering of flexible cotton fiber-Ag for rapid adsorption and detection of malachite green in fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120174. [PMID: 34284280 DOI: 10.1016/j.saa.2021.120174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The residual of malachite green (MG) in fish is one of the major food safety concerns for consumers. It is important to develop simple and instant analytical methods to identify MG residues in fish. We fabricated flexible cotton surface-enhanced Raman scattering substrate, which offers good flexibility, uniformity and excellent adsorption capability. The UV-vis DRS spectra, transmission electron microscopy and scanning electron elemental mapping images shown that the Ag NPs were closely packed on the surface of cotton fiber. The adsorption feature of cotton fiber could adsorb MG from solution and surface of fish. The Quick Easy Cheap Effective Rugged and Safe (QuEChERS) sample preparation method was used to adsorb MG in fish for SERS sensing. The limit of detection of MG in fish using this developed method was as low as 0.05 ppm. The QuEChERS-SERS analysis method exhibits the capability for multiplex detecting mixture of MG and Dimetridazole at different ratios (5 ppm, 1/400 and 1/4000) from fish. The results indicated that the cotton fiber-Ag composite was suitable employed as SERS substrate for simple and instant detecting trace contaminants in food.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qinzhen Fan
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Lingzi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
24
|
Wang J, Zhao C, Hong C, Lin Z, Huang Z. Rapid detection of malachite green in fish and water based on the peroxidase-like activity of Fe3O4NPs enhanced with aptamer. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Chowdhury E, Rahaman MS, Sathitsuksanoh N, Grapperhaus CA, O'Toole MG. DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering. Phys Chem Chem Phys 2021; 23:25256-25263. [PMID: 34734598 DOI: 10.1039/d1cp03684j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colloidal crystallization using DNA provides a robust method for fabricating highly programmable nanoparticle superstructures with collective plasmonic properties. Here, we report on the DNA-guided fabrication of 3D plasmonic aggregates from polydisperse gold nanoprisms. We first construct 1D crystals via DNA-induced and shape-directed face-to-face assembly of anisotropic gold nanoprisms. Using the near-Tm thermal annealing approach that promotes long-range DNA-induced interaction and ordering, we then assemble 1D nanoprism crystals into a 3D nanoprism aggregate that exhibits a polycrystalline morphology with nanoscale ordering and microscale dimensions. The presence of closely packed nanoprism arrays over a large area gives rise to strong near-field plasmonic coupling and generates a high density of plasmonic hot spots within the 3D nanoprism aggregates that exhibit excellent surface-enhanced Raman scattering performance. The plasmonic 3D nanoprism aggregates demonstrate significant SERS enhancement (<106), and low detection limits (10-9M) with good sample-to-sample reproducibility (CV ∼ only 5.6%) for SERS analysis of the probe molecule, methylene blue. These findings highlight the potential of 3D anisotropic nanoparticle aggregates as functional plasmonic nanoarchitectures that could find applications in sensing, photonics, optoelectronics and lasing.
Collapse
Affiliation(s)
- Emtias Chowdhury
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Noppadon Sathitsuksanoh
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | - Martin G O'Toole
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
26
|
Gum Arabic-capped silver nanoparticles for electrochemical amplification sensing of methylene blue in river water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Zhang X, Hui Y, Fang C, Wang Y, Han F, Lou X, Fodjo EK, Cai Y, Kong C. Determination of Methylene Blue and Its Metabolite Residues in Aquatic Products by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021; 26:4975. [PMID: 34443562 PMCID: PMC8401997 DOI: 10.3390/molecules26164975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
A sensitive and reliable method was developed to determine methylene blue (MB) and its metabolite residues, including azure A (AZA), azure B (AZB), and azure C (AZC) in aquatic products by HPLC-MS/MS. The samples were extracted by acetonitrile and cleaned up by alumina-neutral (ALN) cartridges. The analytes were separated on a Sunfire C18 column (150 mm × 2.1 mm, 5 µm). The method was validated according to the European criteria of Commission Decision 2002/657/CE. Good linearity between 1-500 µg/L was obtained with correlation coefficients (R2) greater than 0.99. The limit of quantification (LOQ) was 1.0 µg/kg. The average recoveries at three levels of each compound (1, 5, and 10 µg/kg) were demonstrated to be in the range of 71.8-97.5%, with relative standard deviations (RSDs) from 1.05% to 8.63%. This method was suitable for the detection of methylene blue and its metabolite residues in aquatic products.
Collapse
Affiliation(s)
- Xuan Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
- Key Laboratory of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunhua Hui
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
| | - Changling Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
- Key Laboratory of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
| | - Feng Han
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
- Key Laboratory of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xiaoyi Lou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
- Key Laboratory of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Essy Kouadio Fodjo
- Physical Chemistry Laboratory, UFR SSMT, Université Felix Houphouet Boigny, Abidjan 22 BP 582, Côte d’Ivoire;
| | - Youqiong Cai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
| | - Cong Kong
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (Y.H.); (C.F.); (Y.W.); (F.H.); (X.L.)
- Key Laboratory of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
28
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Xu Q, You H, Jia Y, Yu Y, Li H. Aquaculture drug degradation in persulfate by PANI-based microparticles controlled via ultrasonic field: Forced motion of "burning hot micromotors". CHEMOSPHERE 2021; 275:130098. [PMID: 33676276 DOI: 10.1016/j.chemosphere.2021.130098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
The triphenylmethane derivative malachite green (tpmMaG) despite repeated prohibitions but is frequently detected in aquatic environment and draws emerging attention because of the potential poisonous effects. The polyaniline/persulfate with ultrasound catalysis (US/PANI-PS) was developed for tpmMaG removal. The effects of 12 factors and the optimization by response surface methodology (RSM) for tpmFG removal were evaluated based on the pseudo-first-kinetics (kobs). From free radical inhibition, the ratios of active species in US/PANI-PS (δ11 = 0.355, δ12 = 0.593) were close to that in US-PS (δ21 = 0.346, δ22 = 0.586) and different to that in PANI-PS and PS systems. A possible degradation pathway (hydroxylation, N-demethylation, deamination, and open-benzene ring) was explored by gas chromatography-mass spectrometer (GC/MS) and high performance liquid chromatography-mass spectrometer (HPLC-MS). The designed reactor involving the US-driven PANI was simulated by acoustic-piezoelectric interaction. From cavitation calculations, the estimated effective-mean temperature at bubble-water interface had little increasing (from 704 K to 711 K) after adding the PANI, however, the adsorption capacity of tpmMaG in reactive zone decreased from 0.0891 μM to 0.0787 μM. The mechanism (PANI hot turbo-micromotors) with US/PANI-PS was proposed. The tpmMaG was removed with a low treatment cost of 2.81 $⋅m-3 (the EE/O value 18.29 kWh⋅m-3) by US/PANI-PS, presenting a cost-effective treating process. The reusability tests and characterizations (contact angle, X-ray diffraction (XRD), and scanning electron microscope (SEM)) further confirmed the stability of PANI.
Collapse
Affiliation(s)
- Qihui Xu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Yibo Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Haoyang Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| |
Collapse
|
30
|
Fabrication and Application of SERS-Active Cellulose Fibers Regenerated from Waste Resource. Polymers (Basel) 2021; 13:polym13132142. [PMID: 34209824 PMCID: PMC8272151 DOI: 10.3390/polym13132142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022] Open
Abstract
The flexible SERS substrate were prepared base on regenerated cellulose fibers, in which the Au nanoparticles were controllably assembled on fiber through electrostatic interaction. The cellulose fiber was regenerated from waste paper through the dry-jet wet spinning method, an eco-friendly and convenient approach by using ionic liquid. The Au NPs could be controllably distributed on the surface of fiber by adjusting the conditions during the process of assembling. Finite-difference time-domain theoretical simulations verified the intense local electromagnetic fields of plasmonic composites. The flexible SERS fibers show excellent SERS sensitivity and adsorption capability. A typical Raman probe molecule, 4-Mercaptobenzoicacid (4-MBA), was used to verify the SERS cellulose fibers, the sensitivity could achieve to 10−9 M. The flexible SERS fibers were successfully used for identifying dimetridazole (DMZ) from aqueous solution. Furthermore, the flexible SERS fibers were used for detecting DMZ from the surface of fish by simply swabbing process. It is clear that the fabricated plasmonic composite can be applied for the identifying toxins and chemicals.
Collapse
|
31
|
Su M, Jiang Q, Guo J, Zhu Y, Cheng S, Yu T, Du S, Jiang Y, Liu H. Quality alert from direct discrimination of polycyclic aromatic hydrocarbons in edible oil by liquid-interfacial surface-enhanced Raman spectroscopy. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Lin Y, Wang L, Zhang H, Wu L, Fan H, Liu X, Zheng R, Tian X, He H. Widely tunable surface plasmon resonance and uniquely superior SERS performance of Au nanotube network films. NANOTECHNOLOGY 2021; 32:295706. [PMID: 33823499 DOI: 10.1088/1361-6528/abf511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Three-dimensional Au network films with flexibility and transferability were fabricated based on sputtering deposition onto electrospun nanofibers as a template. The films are constructed using long Au nanotubes that are cross-linked with each other and that have dense nanoparticles on the tube wall surface. The surface plasmon resonance (SPR) peaks for the films are tunable in a wide range, from visible light to the near-infrared region, by tuning the inner diameter and/or wall thickness of the nanotubes. Such structured film exhibits significant surface-enhanced Raman scattering (SERS) activity with good signal uniformity and stability, and possesses great potential in thein situdetection of trace organic pollutants on a solid surface by simple transferring. This study provides a Au film with a unique structure and widely tunable SPR forin situSERS sensing and other needs.
Collapse
Affiliation(s)
- Yongxing Lin
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Liang Wang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- School of Physics and Materials Science, Anhui University, Hefei 230601, People's Republic of China
| | - Haibao Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Linfeng Wu
- College of Physics Science and Technology & Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Huibo Fan
- College of Physics Science and Technology & Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Xianglan Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Ruobing Zheng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Xingyou Tian
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hui He
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- College of Physics Science and Technology & Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| |
Collapse
|
33
|
Albarghouthi N, MacMillan P, Brosseau CL. Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine. Analyst 2021; 146:2037-2047. [PMID: 33533352 DOI: 10.1039/d0an02215b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, there has been increasing concern over the widespread use of the herbicide atrazine which has been reported to have problematic side effects on local ecosystems. This has highlighted the need for rapid and accurate point-of-need assessment tools for analytical determination of herbicides in ground and surface waters. Surface enhanced Raman spectroscopy (SERS) is a sensitive vibrational spectroscopy technique which has recently been employed for the analysis of a variety of analytes in water, ranging from pharmaceuticals to pesticides. In this work, SERS sensors constructed using gold nanorod (AuNR) arrays are optimized and then utilized for the rapid and sensitive detection of atrazine. In this study, the effect of relative humidity on the self-assembly of gold nanorods into arrays was explored, and the SERS performance was assessed using para-aminothiophenol as a SERS probe. Once the SERS performance of the substrates was deemed optimal, the detection of atrazine was highlighted. This work represents the first time that relative humidity has been explored as an optimization strategy for controlled alignment of gold nanorods for SERS analysis of atrazine.
Collapse
Affiliation(s)
- Najwan Albarghouthi
- Department of Chemistry, Saint Mary's University, 923 Robie St., Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
34
|
Chowdhury E, Rahaman MS, Sathitsuksanoh N, Grapperhaus CA, O'Toole MG. DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates. NANOTECHNOLOGY 2021; 32:025506. [PMID: 32987380 DOI: 10.1088/1361-6528/abbc22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The utilization of nanoparticle-polymer bead hybrid nanostructures as a SERS substrate depends on the control of the deposition, density, and distribution of nanoparticles on the bead surface. Here we demonstrate the fabrication of a large area SERS substate via a two- step DNA mediated assembly of gold nanoprisms and polystyrene (PS) beads into a large ensemble of beads that are densely coated with nanoprisms. First, nanoprisms are loaded on PS beads through DNA hybridization. The close packed arrangement of anisotropic nanoprisms in different orientations on a bead surface results in a plasmonic substrate with a variable nanogap size ranging 1-20 nm. Nanoprisms-coated beads are then assembled into a large stack or aggregate of beads using a DNA-induced crystallization approach. Each aggregate consists of 20-50 nanoprisms-coated beads, leading to the formation a large area of three-dimensional SERS substrate with a high-density of hot spots for SERS enhancement. An excellent enhancement factor (EF) of [Formula: see text] and a very high detection sensitivity (up to 10-10 M) are observed for the analysis of a probe molecule (Methylene blue) using the SERS substrate.
Collapse
Affiliation(s)
- Emtias Chowdhury
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States of America
| | - Mohammad Shahinur Rahaman
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky, 40292, United States of America
| | - Noppadon Sathitsuksanoh
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky, 40292, United States of America
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States of America
| | - Martin G O'Toole
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40292, United States of America
| |
Collapse
|
35
|
Yaraki MT, Tan YN. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem Asian J 2020; 15:3180-3208. [PMID: 32808471 PMCID: PMC7693192 DOI: 10.1002/asia.202000847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Metal nanoparticles (NP) that exhibit localized surface plasmon resonance play an important role in metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). Among the optical biosensors, MEF and SERS stand out to be the most sensitive techniques to detect a wide range of analytes from ions, biomolecules to macromolecules and microorganisms. Particularly, anisotropic metal NPs with strongly enhanced electric field at their sharp corners/edges under a wide range of excitation wavelengths are highly suitable for developing the ultrasensitive plasmon-enhanced biosensors. In this review, we first highlight the reliable methods for the synthesis of anisotropic gold NPs and silver NPs in high yield, as well as their alloys and composites with good control of size and shape. It is followed by the discussion of different sensing mechanisms and recent advances in the MEF and SERS biosensor designs. This includes the review of surface functionalization, bioconjugation and (directed/self) assembly methods as well as the selection/screening of specific biorecognition elements such as aptamers or antibodies for the highly selective bio-detection. The right combinations of metal nanoparticles, biorecognition element and assay design will lead to the successful development of MEF and SERS biosensors targeting different analytes both in-vitro and in-vivo. Finally, the prospects and challenges of metal-enhanced biosensors for future nanomedicine in achieving ultrasensitive and fast medical diagnostics, high-throughput drug discovery as well as effective and reliable theranostic treatment are discussed.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Yen Nee Tan
- Faculty of Science, Agriculture & EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUnited Kingdom
- Newcastle Research & Innovation Institute (NewRIIS)80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & EmployabilitySingapore609607Singapore
| |
Collapse
|
36
|
A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta 2020; 218:121188. [DOI: 10.1016/j.talanta.2020.121188] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
|
37
|
Hu Y, Xing H, Li G, Wu M. Magnetic Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for Sensitive Label-Free Detection of Methylene Blue in Groundwater. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5506. [PMID: 32992910 PMCID: PMC7583004 DOI: 10.3390/s20195506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Tiny changes in the mass of the sensor in a quartz crystal microbalance with dissipation monitoring (QCM-D) can be observed. However, the lack of specificity for target species has hindered the use of QCM-D. Here, molecularly imprinted polymers (MIPs) were used to modify a QCM-D sensor to provide specificity. The MIPs were formed in the presence of sodium dodecyl benzene sulfonate. Imprinted layers on Fe3O4 nanoparticles were formed using pyrrole as the functional monomer and cross-linker and methylene blue (MB) as a template. The MIPs produced were then attached to the surface of a QCM-D sensor. The MIPs-coated QCM-D sensor could recognize MB and gave a linear response in the concentration range 25 to 1.5 × 102 µg/L and a detection limit of 1.4 µg/L. The QCM-D sensor was selective for MB over structural analogs. The MIPs-coated QCM-D sensor was successfully used to detect MB in river water and seawater samples, and the recoveries were good. This is the first time MB has been detected using a QCM-D sensor. Mass is an intrinsic property of matter, so this method could easily be extended to other target species by using different MIPs.
Collapse
Affiliation(s)
- Yufeng Hu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China; (H.X.); (G.L.); (M.W.)
| | | | | | | |
Collapse
|
38
|
Hu X, Xu X, Fu F, Yang B, Zhang J, Zhang Y, Binte Touhid SS, Liu L, Dong Y, Liu X, Yao J. Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity. Carbohydr Polym 2020; 248:116777. [PMID: 32919567 DOI: 10.1016/j.carbpol.2020.116777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Introducing functional metal nanoparticles (NPs) into flexible substrate is being increasingly attempted to expand their application. Here, we extend the synthesis of cellulose to its unmodified dope achieving freestanding nanocomposite decorated with bimetallic Ag-Au NPs through the one pot reaction. In the procedure, cellulose chain not only acts as a reducing agent but also a biocompatible support for NPs with a mean size of 7.9-9.7 nm. Meanwhile, changing the addition order of Ag+ and AuCl4- generated different atom arrangement in the bimetallic NPs. Moreover, the correlation of bioactivity to NP atom arrangement was studied. The result revealed that the nanocomposite containing NPs with an ultrathin Ag-rich outermost shell around an Au-rich core showed better bactericidal ability while lower cytotoxicity. In addition, the nanocomposite exhibited a sensitive SERS property for determination of R6G with a high enhancement factor of 108.
Collapse
Affiliation(s)
- Xinman Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinyi Xu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Binbin Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jingjing Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China.
| | - Yanyan Zhang
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu, 241000, China
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Juming Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
39
|
Liu S, Kannegulla A, Kong X, Sun R, Liu Y, Wang R, Yu Q, Wang AX. Simultaneous colorimetric and surface-enhanced Raman scattering detection of melamine from milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118130. [PMID: 32044710 PMCID: PMC8711265 DOI: 10.1016/j.saa.2020.118130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/27/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
We present a dual-mode readout sensing mechanism that can effectively distinguish true and false-positive signals of melamine in milk by combining colorimetric analysis and surface-enhanced Raman scattering (SERS) spectroscopy. The colorimetry analysis takes advantage of color change of plasmonic nanoparticles upon the presence of melamine. We discovered that Ag colloids with 20 nm diameter was suitable for both colorimetric and SERS methods. However, the colorimetric method may present false-positive signals with the presence of interfering compounds. SERS spectroscopy can overcome this limitation and directly obtain signature spectra from the same plasmonic NPs used for the colorimetric assay without any modification. Melamine/s-triazine can be reliably differentiated by probing the SERS spectra based on surface-selection rules. The limit of detection of sensing melamine from milk by this method could reached to 0.05 ppm. Therefore, the combination of colorimetric and SERS method not only allows for rapid preliminary screening of melamine by naked eyes, but also greatly reduces false-positive signals by surface selection rules in SERS.
Collapse
Affiliation(s)
- Sijia Liu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Akash Kannegulla
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xianming Kong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Ran Sun
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Ye Liu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Rui Wang
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|