1
|
Zhen H, Hu Y, Xiong K, Li M, Jin W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1344-1359. [PMID: 39102376 DOI: 10.1080/19440049.2024.2385713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
2
|
Wang Y, Zhou A, Yu B, Sun X. Recent Advances in Non-Contact Food Decontamination Technologies for Removing Mycotoxins and Fungal Contaminants. Foods 2024; 13:2244. [PMID: 39063328 PMCID: PMC11276063 DOI: 10.3390/foods13142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural food commodities are highly susceptible to contamination by fungi and mycotoxins, which cause great economic losses and threaten public health. New technologies such as gamma ray irradiation, ultraviolet radiation, electron beam irradiation, microwave irradiation, pulsed light, pulsed electric fields, plasma, ozone, etc. can solve the problem of fungal and mycotoxin contamination which cannot be effectively solved by traditional food processing methods. This paper summarizes recent advancements in emerging food decontamination technologies used to control various fungi and their associated toxin contamination in food. It discusses the problems and challenges faced by the various methods currently used to control mycotoxins, looks forward to the new trends in the development of mycotoxin degradation methods in the future food industry, and proposes new research directions.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Aiyun Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Bei Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Li Z, Ma T, Liu Y, Liu W, Zhao X, Zhang G, Wang J, Zhang Y. Screening and Mechanism Study of Three Antagonistic Drugs, Oxysophoridine, Rutin, and Phellodendrine, against Zearalenone-Induced Reproductive Toxicity in Ovine Oocytes. Antioxidants (Basel) 2024; 13:752. [PMID: 38929191 PMCID: PMC11201285 DOI: 10.3390/antiox13060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Zearalenone (ZEN) is a common fungal toxin with reproductive toxicity in various grains. It poses a serious threat to ovine and other animal husbandry industries, as well as human reproductive health. Therefore, investigating the mechanism of toxicity and screening antagonistic drugs are of great importance. In this study, based on the natural compound library and previous Smart-seq2 results, antioxidant and anti-apoptotic drugs were selected for screening as potential antagonistic drugs. Three natural plant compounds (oxysophoridine, rutin, and phellodendrine) were screened for their ability to counteract the reproductive toxicity of ZEN on ovine oocytes in vitro using quantitative polymerase chain reaction (qPCR) and reactive oxygen species detection. The compounds exhibited varying pharmacological effects, notably impacting the expression of antioxidant (GPX, SOD1, and SOD2), autophagic (ATG3, ULK2, and LC3), and apoptotic (CAS3, CAS8, and CAS9) genes. Oxysophoridine promoted GPX, SOD1, ULK2, and LC3 expression, while inhibiting CAS3 and CAS8 expression. Rutin promoted SOD2 and ATG3 expression, and inhibited CAS3 and CAS9 expression. Phellodendrine promoted SOD2 and ATG3 expression, and inhibited CAS9 expression. However, all compounds promoted the expression of genes related to cell cycle, spindle checkpoint, oocyte maturation, and cumulus expansion factors. Although the three drugs had different regulatory mechanisms in enhancing antioxidant capacity, enhancing autophagy, and inhibiting cell apoptosis, they all maintained a stable intracellular environment and a normal cell cycle, promoted oocyte maturation and release of cumulus expansion factors, and, ultimately, counteracted ZEN reproductive toxicity to promote the in vitro maturation of ovine oocytes. This study identified three drugs that antagonize the reproductive toxicity of ZEN on ovine oocytes, and compared their mechanisms of action, providing data support and a theoretical basis for their subsequent application in the ovine breeding industry, reducing losses in the breeding industry, screening of ZEN reproductive toxicity antagonists and various toxin antagonists, improving the study of ZEN reproductive toxicity mechanisms, and even protection of human reproductive health.
Collapse
Affiliation(s)
- Zongshuai Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory of Grassland Agro Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Tian Ma
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Yali Liu
- Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730020, China;
| | - Wanruo Liu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Gaiping Zhang
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China;
| | - Jianlin Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory of Grassland Agro Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China;
| |
Collapse
|
4
|
Qu Z, Ren X, Du Z, Hou J, Li Y, Yao Y, An Y. Fusarium mycotoxins: The major food contaminants. MLIFE 2024; 3:176-206. [PMID: 38948146 PMCID: PMC11211685 DOI: 10.1002/mlf2.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 07/02/2024]
Abstract
Mycotoxins, which are secondary metabolites produced by toxicogenic fungi, are natural food toxins that cause acute and chronic adverse reactions in humans and animals. The genus Fusarium is one of three major genera of mycotoxin-producing fungi. Trichothecenes, fumonisins, and zearalenone are the major Fusarium mycotoxins that occur worldwide. Fusarium mycotoxins have the potential to infiltrate the human food chain via contamination during crop production and food processing, eventually threatening human health. The occurrence and development of Fusarium mycotoxin contamination will change with climate change, especially with variations in temperature, precipitation, and carbon dioxide concentration. To address these challenges, researchers have built a series of effective models to forecast the occurrence of Fusarium mycotoxins and provide guidance for crop production. Fusarium mycotoxins frequently exist in food products at extremely low levels, thus necessitating the development of highly sensitive and reliable detection techniques. Numerous successful detection methods have been developed to meet the requirements of various situations, and an increasing number of methods are moving toward high-throughput features. Although Fusarium mycotoxins cannot be completely eliminated, numerous agronomic, chemical, physical, and biological methods can lower Fusarium mycotoxin contamination to safe levels during the preharvest and postharvest stages. These theoretical innovations and technological advances have the potential to facilitate the development of comprehensive strategies for effectively managing Fusarium mycotoxin contamination in the future.
Collapse
Affiliation(s)
- Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
| | - Zhaolin Du
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Ye Li
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| |
Collapse
|
5
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Zhu L, Liu W, Tong F, Zhang S, Xu Y, Hu Y, Zheng M, Zhou Y, Zhang Z, Li X, Liu Y. A bimetallic organic framework based fluorescent aptamer probe for the detection of zearalenone in cereals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123628. [PMID: 37950933 DOI: 10.1016/j.saa.2023.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
In this work, a bimetallic organic framework (Cu/UiO-66) based "turn on" fluorescent aptamer probe was designed for the high-efficiency detection of zearalenone (ZEN). In the probe, the 6-carboxyfluorescein-labeled aptamer (FAM-Apt) was used as the recognition element, and the electrostatic interaction, coordination effect, and photoinduced electron transfer effect between FAM-Apt and Cu/UiO-66 caused fluorescence quenching. When ZEN existed, FAM-Apt recognized ZEN specifically, causing FAM-Apt to separate from the surface of Cu/UiO-66 and recovery of fluorescence. Under the optimal conditions, the probe had a linear detection range of 0.5 ng/mL-60 ng/mL, and the detection limit was 0.048 ng/mL. The application potential of the probe was verified by real detection of various cereals and their products, with a standard recovery from 83.67 %-106.8 %. The development of this efficient, rapid, and sensitive ZEN detection method provides a new platform for the quality control of cereals and their products.
Collapse
Affiliation(s)
- Lu Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoxian Zhang
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
8
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
9
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
10
|
Li Z, Liu Y, Ma T, Lv C, Li Y, Duan H, Zhao X, Wang J, Zhang Y. Smart-seq2 Technology Reveals a Novel Mechanism That Zearalenone Inhibits the In Vitro Maturation of Ovine Oocytes by Influencing TNFAIP6 Expression. Toxins (Basel) 2023; 15:617. [PMID: 37888648 PMCID: PMC10611292 DOI: 10.3390/toxins15100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic fungal toxin widely present in forage, food, and their ingredients, poses a serious threat to animal and human reproductive health. ZEN also threatens ovine, a major source of human food and breeding stock. However, the mechanisms underlying the impact of ZEN on the in vitro maturation (IVM) of ovine oocytes remain unclear. This study aimed to elucidate these mechanisms using the Smart-seq2 technology. A total of 146 differentially expressed genes were obtained, using Smart-seq2, from sheep oocytes cultured in vitro after ZEN treatment. ZEN treatment inhibited RUNX2 and SPP1 expression in the PI3K signaling pathway, leading to the downregulation of THBS1 and ultimately the downregulation of TNFAIP6; ZEN can also decrease TNFAIP6 by reducing PTPRC and ITGAM. Both inhibit in vitro maturation of ovine oocytes and proliferation of cumulus cells by downregulating TNFAIP6. These findings provide data and a theoretical basis for elucidating ZEN's toxicity mechanisms, screening therapeutic drugs, and reducing ZEN-related losses in the ovine industry.
Collapse
Affiliation(s)
- Zongshuai Li
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yali Liu
- Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Tian Ma
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Chen Lv
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yina Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Hongwei Duan
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| |
Collapse
|
11
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
12
|
Marins-Gonçalves L, Martins Ferreira M, Rocha Guidi L, De Souza D. Is chemical analysis suitable for detecting mycotoxins in agricultural commodities and foodstuffs? Talanta 2023; 265:124782. [PMID: 37339540 DOI: 10.1016/j.talanta.2023.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
The assessment of the risks of mycotoxins to humans through consuming contaminated foods resulted in specific legislation that evaluates the presence, quantities, and type of mycotoxins in agricultural commodities and foodstuffs. Thus, to ensure compliance with legislation, food safety and consumer health, the development of suitable analytical procedures for identifying and quantifying mycotoxins in the free or modified form, in low-concentration and in complex samples is necessary. This review reports the application of the modern chemical methods of analysis employed in mycotoxin detection in agricultural commodities and foodstuffs. It is reported extraction methods with reasonable accuracy and those present characteristics according to guidelines of Green Analytical Chemistry. Recent trends in mycotoxins detection using analytical techniques are presented and discussed, evaluating the robustness, precision, accuracy, sensitivity, and selectivity in the detection of different classes of mycotoxins. Sensitivity coming from modern chromatographic techniques allows the detection of very low concentrations of mycotoxins in complex samples. However, it is essential the development of more green, fast and more suitable accuracy extraction methods for mycotoxins, which agricultural commodities producers could use. Despite the high number of research reporting the use of chemically modified voltammetric sensors, mycotoxins detection still has limitations due to the low selectivity from similar chemical structures of mycotoxins. Furthermore, spectroscopic techniques are rarely employed due to the limited number of reference standards for calibration procedures.
Collapse
Affiliation(s)
- Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Mariana Martins Ferreira
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Letícia Rocha Guidi
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil.
| |
Collapse
|
13
|
Zhang TW, Wu DL, Li WD, Hao ZH, Wu XL, Xing YJ, Shi JR, Li Y, Dong F. Occurrence of Fusarium mycotoxins in freshly harvested highland barley (qingke) grains from Tibet, China. Mycotoxin Res 2023:10.1007/s12550-023-00487-1. [PMID: 37237114 DOI: 10.1007/s12550-023-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Highland barley, also called "qingke" in Tibetan, is mainly cultivated in the Tibetan Plateau of China and has been used as a major staple food for Tibetans. Recently, Fusarium head blight (FHB) of qingke was frequently observed around the Brahmaputra River in Tibet. Considering the importance of qingke for Tibetans, the assessment of Fusarium mycotoxin contamination is essential for food safety. In this study, a total of 150 freshly harvested qingke grain samples were obtained from three regions around the Brahmaputra River in Tibet (China) in 2020. The samples were investigated for the occurrence of 20 Fusarium mycotoxins using high-performance liquid chromatography-tandem mass spectrometry (HPLC‒MS/MS). The most frequently occurring mycotoxin was enniatin B (ENB) (46%), followed by enniatin B1 (ENB1) (14.7%), zearalenone (ZEN) (6.0%), enniatin A1 (ENA1) (3.3%), enniatin A (ENA) (1.3%), beauvericin (BEA) (0.7%), and nivalenol (NIV) (0.7%). Due to the increase in altitude, the cumulative precipitation level and average temperature decreased from the downstream to the upstream of the Brahmaputra River; this directly correlated to the contamination level of ENB in qingke, which gradually decreased from downstream to upstream. In addition, the level of ENB in qingke obtained from qingke-rape rotation was significantly lower than that from qingke-wheat and qingke-qingke rotations (p < 0.05). These results disseminated the occurrence of Fusarium mycotoxins and provided further understanding of the effect of environmental factors and crop rotation on Fusarium mycotoxins.
Collapse
Affiliation(s)
- T W Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - D L Wu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - W D Li
- College of Food Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China
| | - Z H Hao
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - X L Wu
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - Y J Xing
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - J R Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Y Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China.
- College of Food Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China.
| | - F Dong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
14
|
Guo R, Ji Y, Chen J, Ye J, Ni B, Li L, Yang Y. Multicolor Visual Detection of Deoxynivalenol in Grain Based on Magnetic Immunoassay and Enzymatic Etching of Plasmonic Gold Nanobipyramids. Toxins (Basel) 2023; 15:351. [PMID: 37368652 DOI: 10.3390/toxins15060351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a multicolor visual method based on a magnetic immunoassay and enzyme-induced gold nanobipyramids (Au NBPs) etching was developed for deoxynivalenol (DON) detection. The magnetic beads modified with high affinity DON monoclonal antibodies were used as a carrier for target enrichment and signal transformation and the Au NBPs with excellent plasmonic optical properties were served as enzymatic etching substrates. The oxidation state TMB, which was generated through catalysis of horseradish peroxidase (HRP), induced the etching of plasmonic Au NBPs, resulting in the longitudinal peak blue-shift of local surface plasmon resonance (LSPR). Correspondingly, Au NBPs with various aspect ratios displayed a variety of individual colors which were visualized by the naked eye. The LSPR peak shift was linearly related to the DON concentration in the range of 0~2000 ng/mL and the detection limit was 57.93 ng/mL. The recovery for naturally contaminated wheat and maize at different concentrations ranged from 93.7% to 105.7% with a good relative standard deviation below 11.8%. Through observing the color change in Au NBPs, samples with overproof DON could be screened preliminarily by the naked eye. The proposed method has the potential to be applied in on-site rapid screening of mycotoxins in grain. In addition, the current multicolor visual method only used for the simultaneous detection of multiple mycotoxins is in urgent need of a breakthrough to overcome the limitation of single mycotoxin detection.
Collapse
Affiliation(s)
- Rui Guo
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Yue Ji
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Yongtan Yang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
15
|
A fluorescence aptasensor based on hybridization chain reaction for simultaneous detection of T-2 toxins and zearalenone 1. Talanta 2023; 255:124249. [PMID: 36610257 DOI: 10.1016/j.talanta.2022.124249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
It is extremely necessary to establish a rapid and high-throughput method to detect mycotoxins in food, because grains and cereals are greatly vulnerable to mycotoxins before and after harvest. In this study, we developed a portable aptasensor based on streptavidin magnetic microspheres (MMPs) and hybridization chain reaction (HCR) to simultaneously detect T-2 toxin and zearalenone (ZEN) in corn and oat flour. The MMPs compete with the aptamer for binding, which releases more H0 and triggers HCR with the H1 intermediate modified using 6-FAM and BHQ-1 and the unmodified H2. Subsequently, placing the HCR system corresponding to T-2 and ZEN in a constant-temperature fluorescence detector resulted in well-recovered fluorescence of the HCR products. T-2 and ZEN exhibited good fluorescence response in the dynamic range of 0.001-10 ng mL-1 and 0.01-100 ng mL-1 with detection limits of 0.1 pg mL-1 and 1.2 pg mL-1, respectively. In addition, this strategy achieved the selective detection of T-2 and ZEN in the spiked corn and oat flour samples. The results are also in good agreement with those obtained using commercial ELISA kits. This developed aptasensor with the characteristics of simple operation and portability has the application potential of establishing sensitive and portable field detection of various mycotoxins.
Collapse
|
16
|
Li Y, Gao H, Wang R, Xu Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front Microbiol 2023; 14:1141378. [PMID: 36998392 PMCID: PMC10043330 DOI: 10.3389/fmicb.2023.1141378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that contaminates animal feed and crops around the world. DON not only causes significant economic losses, but can also lead diarrhea, vomiting, and gastroenteritis in humans and farm animals. Thus, there is an urgent need to find efficient approaches for DON decontamination in feed and food. However, physical and chemical treatment of DON may affect the nutrients, safety, and palatability of food. By contrast, biological detoxification methods based on microbial strains or enzymes have the advantages of high specificity, efficiency, and no secondary pollution. In this review, we comprehensively summarize the recently developed strategies for DON detoxification and classify their mechanisms. In addition, we identify remaining challenges in DON biodegradation and suggest research directions to address them. In the future, an in-depth understanding of the specific mechanisms through which DON is detoxified will provide an efficient, safe, and economical means for the removal of toxins from food and feed.
Collapse
|
17
|
Hierarchical CoCoPBA@PCN-221 nanostructure for the highly sensitive detection of deoxynivalenol in foodstuffs. Food Chem 2023; 403:134370. [DOI: 10.1016/j.foodchem.2022.134370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
|
18
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
19
|
ŞAHIN S, EYUPOĞLU OE, YAMAN M, DOĞAN TÇ, KORKMAZ BİO, OMURTAG GZ. Investigation of the deoxynivalenol and ochratoxin A levels by high-performance liquid chromatography of cereals sold in the markets in Türkiye. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.89822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Mustafa YAMAN
- Istanbul Sabahattin Zaim University, Türkiye; Istanbul Sabahattin Zaim University, Türkiye
| | | | | | | |
Collapse
|
20
|
Tan L, Li Q, Sun C, Li W, Tang N, Tang K. An Efficient HPLC-PDA Coupled With Supel™ Tox DON SPE Approach for the Analysis of Deoxynivalenol Contamination in Cereal Grains and Feedstuffs in Jiangxi Province. J Food Prot 2023; 86:100022. [PMID: 36916602 DOI: 10.1016/j.jfp.2022.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Deoxynivalenol (DON) was commonly found in grains and feedstuffs, which can cause human chronic diseases. In this study, a quick and reliable method was developed for the determination of DON in grains and feedstuffs in Jiangxi Province market. The sample was extracted with acetonitrile-water (84:16, v/v), then purified by Supel™ Tox DON SPE column, and detected by high-performance liquid chromatography (HPLC). The results showed that the calibration curve of DON showed good linearity in the range of 0.01-10.0 μg/mL, and the correlation coefficient R2 = 0.9999. The recovery of DON in the spiked maize sample was 94.8-98.5% by spiking with DON at 0.2 µg/g, 1.0 µg/g, and 2.0 µg/g. The RSD was between 2.5 and 3.3%. This method was used to analyze 120 samples, including 90 grains and 30 feedstuffs, collected from the Jiangxi Province market. The results showed that 81 samples of grains were positive with 90.0% positive rates, and 30 samples of feedstuff were positive with 100% positive rates. Maximum concentration of DON was 0.7 μg/g in oat and 6.9 μg/g in wheat feedstuffs, respectively. Fortunately, the positive samples of grains were safe levels in comparison with National standards for food safety limits of mycotoxins in food (1.0 μg/g), while, the feedstuff of oats was over the Maximum Guideline Level of 16.7% (the Maximum Residue Limit, MRL is 5.0 μg/g). The results of this study about current DON pollution in the grains and feedstuffs on the Jiangxi Province market have not been previously reported.
Collapse
Affiliation(s)
- Lin Tan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China; Agricultural and Rural Bureau of Tonggu County, Yichun 336200, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chao Sun
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Weiqiang Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Ninan Tang
- Wuxi Professional College of Science and Technology, Wuxi 214028, People's Republic of China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
21
|
Rapid detection and identification of fungi in grain crops using colloidal Au nanoparticles based on surface-enhanced Raman scattering and multivariate statistical analysis. World J Microbiol Biotechnol 2022; 39:26. [PMID: 36422715 DOI: 10.1007/s11274-022-03467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Grain crops are easily contaminated by fungi due to the existence of various microorganisms in the storage process, especially in humid and warm storage conditions. Compared with conventional methods, surface-enhanced Raman scattering (SERS) has paved the way for the detection of fungi in grain crops as it is a rapid, nondestructive, and sensitive analytical method. In this work, Aspergillus niger, Saccharomyces cerevisiae, Fusarium moniliforme and Trichoderma viride in grain crops were detected using colloidal Au nanoparticles and SERS. The results indicated that different fungi showed different Raman phenotypes, which could be easily characterized by SERS. Combined with multivariate statistical analysis, identification of a variety of fungi could be accomplished rapidly and accurately. This research can be applied for the rapid detection of fungi in the food and biomedical industries.
Collapse
|
22
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
23
|
Yang ZK, Li DW, Peng L, Liu CF, Wang ZY. Transcriptomic responses of the zearalenone (ZEN)-detoxifying yeast Apiotrichum mycotoxinivorans to ZEN exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113756. [PMID: 35691196 DOI: 10.1016/j.ecoenv.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Zearalenone (ZEN) is a potent oestrogenic mycotoxin that is mainly produced by Fusarium species and is a serious environmental pollutant in animal feeds. Apiotrichum mycotoxinivorans has been widely used as a feed additive to detoxify ZEN. However, the effects of ZEN on A. mycotoxinivorans and its detoxification mechanisms remain unclear. In this study, transcriptomic and bioinformatic analyses were used to investigate the molecular responses of A. mycotoxinivorans to ZEN exposure and the genetic basis of ZEN detoxification. We detected 1424 significantly differentially expressed genes (DEGs), of which 446 were upregulated and 978 were downregulated. Functional and enrichment analyses showed that ZEN-induced genes were significantly associated with xenobiotic metabolism, oxidative stress response, and active transport systems. However, ZEN-inhibited genes were mainly related to cell division, cell cycle, and fungal development. Subsequently, bioinformatic analysis identified candidate ZEN-detoxification enzymes. The Baeyer-Villiger monooxygenases and carboxylesterases, which are responsible for the formation and subsequent hydrolysis of a new ZEN lactone, respectively, were significantly upregulated. In addition, the expression levels of genes related to conjugation and transport involved in the xenobiotic detoxification pathway were significantly upregulated. Moreover, the expression levels of genes encoding enzymatic antioxidants and those related to growth and apoptosis were significantly upregulated and downregulated, respectively, which made it possible for A. mycotoxinivorans to survive in a highly toxic environment and efficiently detoxify ZEN. This is the first systematic report of ZEN tolerance and detoxification in A. mycotoxinivorans. We identified the metabolic enzymes that were potentially involved in detoxifying ZEN in the GMU1709 strain and found that ZEN-induced transcriptional regulation of genes is key to withstanding highly toxic environments. Hence, our results provide valuable information for developing enzymatic detoxification systems or engineering this detoxification pathway in other species.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Innovation centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen-Fei Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Wang
- Innovation Centre for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Natural occurrence of deoxynivalenol, nivalenol and deoxynivalenol-3-glucoside in cereal-derived products from Egypt. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By increasing the resistance of seeds against abiotic and biotic stress, the possibility of cereal mold contamination and hence the occurrence of secondary mold metabolites mycotoxins decreases. The use of biological methods of seed treatment represents a complementary strategy, which can be implemented as an environmental-friendlier approach to increase the agricultural sustainability. Whereas the use of resistant cultivars helps to reduce mold growth and mycotoxin contamination at the very beginning of the production chain, biological detoxification of cereals provides additional weapons against fungal pathogens in the later stage. Most efficient techniques can be selected and combined on an industrial scale to reduce losses and boost crop yields and agriculture sustainability, increasing at the same time food and feed safety. This paper strives to emphasize the possibility of implementation of biocontrol methods in the production of resistant seeds and the prevention and reduction in cereal mycotoxin contamination.
Collapse
|
26
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
27
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
28
|
Mahato DK, Pandhi S, Kamle M, Gupta A, Sharma B, Panda BK, Srivastava S, Kumar M, Selvakumar R, Pandey AK, Suthar P, Arora S, Kumar A, Gamlath S, Bharti A, Kumar P. Trichothecenes in food and feed: Occurrence, impact on human health and their detection and management strategies. Toxicon 2022; 208:62-77. [DOI: 10.1016/j.toxicon.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
|
29
|
Yang X, Zhao Z, Wang J, Yang J, E H, Chen B, He P, Tan Y, Zhou C. Occurrence and Risk Assessment of Dietary Exposure to Deoxynivalenol in Wheat-Based Products Based Different Wheat-Producing Area for the Inhabitants in Shanghai, China. J Fungi (Basel) 2021; 7:1015. [PMID: 34946997 PMCID: PMC8703861 DOI: 10.3390/jof7121015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023] Open
Abstract
Deoxynivalenol (DON) is one of the major mycotoxins that contaminate cereals. In this study, we determined the DON level in wheat-based products from Chinese five main production areas collected in Shanghai and calculated the daily intake of DON for inhabitants using the point evaluation and the probabilistic evaluation based on Monte Carlo simulation. The results showed the positive rates of DON in the products were higher than 80.0%, with the concentrations ranging from 41.8 to 1110 µg/kg. The estimated mean daily intakes of DON for 7- to 10-year-old children and adults groups were below 1 µg/kg bw/day, the provisional maximum tolerable daily intake (PMTDI) set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), suggesting no health risks for the consumers. However, the 99th percentiles of dietary DON exposures for children and adults exceeded the PMTDI, indicating adverse health effects might occur if the two groups intake highly contaminated wheat-based products. The potential health risks for the two groups exposed to DON in the wheat-based products from the Middle and Lower Yangtze Valley (MLYV) were higher than those from the other areas in China.
Collapse
Affiliation(s)
- Xianli Yang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
- Shanghai Co-Elite Agro-Food Testing Technical Service Co., Ltd., Shanghai 201106, China
| | - Zhiyong Zhao
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Jianhua Wang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Junhua Yang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Hengchao E
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| | - Bo Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai 200433, China;
| | - Pengzhen He
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157012, China;
| | - Yanglan Tan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Changyan Zhou
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (J.W.); (J.Y.); (H.E.)
| |
Collapse
|
30
|
Wang Q, Zhao Y, Chen P, Zeng R, Liang Y. Ochratoxin A and zearalenone in poultry feed samples from South China. J Food Saf 2021. [DOI: 10.1111/jfs.12944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qiongshan Wang
- College of Life Science Technology of Huazhong Agricultural University Wuhan China
| | - Yarong Zhao
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Peirong Chen
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Rui Zeng
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Yunxiang Liang
- College of Life Science Technology of Huazhong Agricultural University Wuhan China
| |
Collapse
|
31
|
High-performance liquid chromatography for the sensitive zearalenone determination by the automated immunomagnetic beads purifier for one-step sample pre-treatment. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03862-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
33
|
Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins (Basel) 2021; 13:toxins13070499. [PMID: 34357971 PMCID: PMC8310349 DOI: 10.3390/toxins13070499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed.
Collapse
|
34
|
Dos Santos ID, Pizzutti IR, Dias JV, Fontana MEZ, Souza DM, Cardoso CD. Mycotoxins in wheat flour: occurrence and co-occurrence assessment in samples from Southern Brazil. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:151-161. [PMID: 34114946 DOI: 10.1080/19393210.2021.1920053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The goal of this survey was to evaluate the presence and concentration as well as the co-occurrence of legislated and non-legislated mycotoxins in wheat flour samples from Brazil. A total of 200 wheat flour samples were analysed by a validated multi-mycotoxins method. DON was the mycotoxin with the highest occurrence, being present in 100% of the analysed samples and showing contamination in both years and regions (53-2905 μg kg-1). ZEN was detected in 51% (<LOQ-50 μg kg-1) of the samples, while T-2 (not legislated in Brazil) was detected in 13.5% (<LOQ-1506 μg kg-1) of all samples. Regarding co-occurrence, all samples were contaminated with two to three mycotoxins.
Collapse
Affiliation(s)
- Ingrid Duarte Dos Santos
- Department of Technology and Food Science, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ionara Regina Pizzutti
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Jonatan Vinicius Dias
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, National Reference Laboratory for Pesticide Residues in Food and Feed, Wageningen
| | - Marlos Eduardo Zorzella Fontana
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Darliana Mello Souza
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Carmem Dickow Cardoso
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
35
|
Olopade BK, Oranusi SU, Nwinyi OC, Gbashi S, Njobeh PB. Occurrences of Deoxynivalenol, Zearalenone and some of their masked forms in selected cereals from Southwest Nigeria. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Khodaei D, Javanmardi F, Khaneghah AM. The global overview of the occurrence of mycotoxins in cereals: a three-year survey. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Cao H, Meng D, Zhang W, Ye T, Yuan M, Yu J, Wu X, Li Y, Yin F, Fu C, Xu F. Growth inhibition of
Fusarium graminearum
and deoxynivalenol detoxification by lactic acid bacteria and their application in sourdough bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Cao
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Denghui Meng
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Wei Zhang
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Tai Ye
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Min Yuan
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Jinsong Yu
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Yan Li
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan StreetSuzhou Industrial Park Suzhou Jiangsu215123China
| | - Fei Xu
- School of Medical Instrument and Food Engineering Shanghai Engineering Research Center for Food Rapid Detection University of Shanghai for Science and Technology P.O. Box 454No. 516, Jungong Road Shanghai200093China
| |
Collapse
|
38
|
Iqbal SZ, Abdull Razis AF, Usman S, Ali NB, Asi MR. Variation of Deoxynivalenol Levels in Corn and Its Products Available in Retail Markets of Punjab, Pakistan, and Estimation of Risk Assessment. Toxins (Basel) 2021; 13:296. [PMID: 33921990 PMCID: PMC8143574 DOI: 10.3390/toxins13050296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
This study investigated the natural incidence of deoxynivalenol (DON) in corn and corn products from corn-producing districts of Punjab, Pakistan. The analysis was carried out using high performance liquid chromatography (HPLC) with UV detector and immunoaffinity cleanup columns. The detection limit (LOD) and limit of quantification were 25 and 50 µg/kg, respectively. A total of 1220 samples of corn and corn products were analyzed to detect DON, and 539 (44.2%) samples were observed to be contaminated with DON (n ≥ LOD). Furthermore, 92 (7.5%) samples of corn and corn products had DON levels that were higher than the proposed limits of the EU. The data are significantly different from a normal distribution of DON in samples of corn and corn products from different locations (p < 0.05) for Shapiro-Wilk and Kolmogorov-Smirnov values. However, a significant difference in DON levels was found between corn and corn-derived products (p ≤ 0.05). The lowest and highest exposures, and hazard quotient (HQ) values of 0.92 and 9.68 µg/kg bw/day, were documented in corn flour samples.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia;
| | - Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia;
| | - Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia;
| | - Muhammad Rafique Asi
- Food Toxicology Lab, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan;
| |
Collapse
|
39
|
Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Tralamazza SM, Piacentini KC, Savi GD, Carnielli-Queiroz L, de Carvalho Fontes L, Martins CS, Corrêa B, Rocha LO. Wild rice (O. latifolia) from natural ecosystems in the Pantanal region of Brazil: Host to Fusarium incarnatum-equiseti species complex and highly contaminated by zearalenone. Int J Food Microbiol 2021; 345:109127. [PMID: 33689972 DOI: 10.1016/j.ijfoodmicro.2021.109127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
We assessed the mycobiota diversity and mycotoxin levels present in wild rice (Oryza latifolia) from the Pantanal region of Brazil; fundamental aspects of which are severely understudied as an edible plant from a natural ecosystem. We found multiple fungal species contaminating the rice samples; the most frequent genera being Fusarium, Nigrospora and Cladosporium (35.9%, 26.1% and 15%, respectively). Within the Fusarium genus, the wild rice samples were mostly contaminated by the Fusarium incarnatum-equiseti species complex (FIESC) (80%) along with Fusarium fujikuroi species complex (20%). Phylogenetic analysis supported multiple FIESC species and gave support to the presence of two putative new groups within the complex (LN1 and LN2). Deoxynivalenol (DON) and zearalenone (ZEN) chemical analysis showed that most of the isolates were DON/ZEN producers and some were defined as high ZEN producers, displaying abundant ZEN levels over DON (over 19 times more). Suggesting that ZEN likely has a key adaptive role for FIESC in wild rice (O. latifolia). Mycotoxin determination in the rice samples revealed high frequency of ZEN, and 85% of rice samples had levels >100 μg/kg; the recommended limit set by regulatory agencies. DON was only detected in 5.2% of the samples. Our data shows that FIESC species are the main source of ZEN contamination in wild rice and the excessive levels of ZEN found in the rice samples raises considerable safety concerns regarding wild rice consumption by humans and animals.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Karim Cristina Piacentini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Geovana Dagostim Savi
- University of Southern Santa Catarina (UNESC), Scientific and Technological Park, Santa Catarina, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lívia de Carvalho Fontes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Liliana Oliveira Rocha
- Department of Food Science, Food Engineering Faculty, University of Campinas, Campinas, Brazil.
| |
Collapse
|
41
|
A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples. BIOSENSORS-BASEL 2021; 11:bios11020053. [PMID: 33669533 PMCID: PMC7922548 DOI: 10.3390/bios11020053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
This research reports a portable immunochip, based on quartz crystal microbalance (QCM) for label-free, low-cost qualitative detection of zearalenone (ZEN) in food samples. The experimental parameters in the functionalization and working process were evaluated in detail, in order to achieve a high accuracy and sensitivity. Under optimal conditions, the ZEN concentration at an inhibition ratio of 50% and 15% of the proposed QCM immunochip achieved 3.41 µg L−1 and 0.37 µg L−1, respectively. This portable QCM immunochip also exhibited high specificity, no obvious cross-reaction to five structural analogs of ZEN, and showed other mycotoxins. It could finish the whole qualitative measurement within 30 min, showed good stability during the processes of preparation (SD < 5%, n = 9), storage (frequency response >90%, in PBS at 4 °C for 15 days), and application (frequency response >90% after being reused 6 times). The developed QCM immunochip obtained accurate and repeatable recovery results in ZEN analysis in the chosen food samples (corn, wheat flour, soy sauce, and milk), which had a high correlation (R2 = 0.9844) with that achieved by the HPLC–MS/MS method. In short, this work developed a portable, stable, and reproducible QCM immunochip that could be used for rapid, low-cost, and sensitively measurement of ZEN content in real food samples.
Collapse
|
42
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
43
|
Cüce M. Incidence of aflatoxins, ochratoxin A, zearalenone, and deoxynivalenol in food commodities from Turkey. J Food Saf 2020. [DOI: 10.1111/jfs.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mustafa Cüce
- Department of Food Technology, Şebinkarahisar School of Applied Sciences Giresun University Giresun Turkey
| |
Collapse
|
44
|
Iqbal SZ, Usman S, Razis AFA, Basheir Ali N, Saif T, Asi MR. Assessment of Deoxynivalenol in Wheat, Corn and Its Products and Estimation of Dietary Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5602. [PMID: 32756472 PMCID: PMC7432857 DOI: 10.3390/ijerph17155602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/23/2023]
Abstract
The main goal of the present research was to explore the seasonal variation of deoxynivalenol (DON) in wheat, corn, and their products, collected during 2018-2019. Samples of 449 of wheat and products and 270 samples of corn and their products were examined using reverse-phase liquid chromatography with a UV detector. The findings of the present work showed that 104 (44.8%) samples of wheat and products from the summer season, and 91 (41.9%) samples from winter season were contaminated with DON (concentration limit of detections (LOD) to 2145 µg/kg and LOD to 2050 µg/kg), from summer and winter seasons, respectively. In corn and products, 87 (61.2%) samples from summer and 57 (44.5%) samples from winter season were polluted with DON with levels ranging from LOD to 2967 µg/kg and LOD to 2490 µg/kg, from the summer and winter season, respectively. The highest dietary intake of DON was determined in wheat flour 8.84 µg/kg body weight/day from the summer season, and 7.21 µg/kg body weight/day from the winter season. The findings of the work argued the need to implement stringent guidelines and create awareness among farmers, stakeholders, and traders of the harmful effect of DON. It is mostly observed that cereal crops are transported and stockpiled in jute bags, which may absorb moisture from the environment and produce favorable conditions for fungal growth. Therefore, these crops must store in polyethylene bags during transportation and storage, and moisture should be controlled. It is highly desirable to use those varieties that are more resistant to fungi attack. Humidity and moisture levels need to be controlled during storage and transportation.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Sunusi Usman
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Tahmina Saif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | | |
Collapse
|
45
|
González Pereyra M, Di Giacomo A, Lara A, Martínez M, Cavaglieri L. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon 2020; 180:43-48. [DOI: 10.1016/j.toxicon.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
|
46
|
Pan M, Ma T, Yang J, Li S, Liu S, Wang S. Development of Lateral Flow Immunochromatographic Assays Using Colloidal Au Sphere and Nanorods as Signal Marker for the Determination of Zearalenone in Cereals. Foods 2020; 9:foods9030281. [PMID: 32143348 PMCID: PMC7143912 DOI: 10.3390/foods9030281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
This paper describes the development of lateral flow immunochromatographic assays (ICAs) using colloidal Au sphere (SP) and nanorods (NRs) as signal markers for the determination of zearalenone (ZEN) in cereals. The developed ICAs can detect the analyte ZEN within a short time (10 min), and achieve lower limit of detection (LOD). This is the first time that the AuNRs are used as signal probe in immune test strip for ZEN detection. For colloidal AuSP immunochromatographic analysis (AuSP-ICA), the LODs in solution and spiked cereal sample were 5.0 μg L−1 and 60 μg kg−1, and for AuNRs immunochromatographic analysis (AuNRs-ICA) the two LODs achieved 3.0 μg L−1 and 40 μg kg−1, respectively. These two proposed ICAs have minor cross-reaction to the structural analogs of ZEN, and no cross-reactivity with aflatoxin B1, T-2 toxin, ochratoxin A, deoxynivalenol, fumonisin B1. Both of the developed ICAs can specifically and sensitively detect ZEN in cereals, providing an effective strategy for rapid screening and detection of ZEN in a large number of food samples.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shijie Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-022-6091-2493
| |
Collapse
|