1
|
Xu Y, Guan X, Wang S. Synergistic bactericidal mechanisms of RF energy simultaneously combined with cinnamon essential oil or epsilon-polylysine against Salmonella revealed at cellular and metabolic levels. Int J Food Microbiol 2024; 408:110447. [PMID: 37907022 DOI: 10.1016/j.ijfoodmicro.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Radio frequency (RF) heating and antimicrobials are considered to be effective methods for inactivating food pathogens. This study explored the bactericidal effects against Salmonella of RF heating combined with two kinds of natural antimicrobials possessing different hydrophobic properties and their synergistic bactericidal mechanisms. Results showed that RF heating caused sublethal damage to bacterial cells and enhanced the interaction of cells and antimicrobials, leading to synergistic bactericidal effects of the simultaneous combination of RF heating and antimicrobials. The combination of RF heating and ε-polylysine (ε-PL) further promoted cell morphological alteration, raised membrane permeability, intracellular adenosine triphosphate (ATP) leakage and intracellular reactive oxygen species (ROS) accumulation compared to individual treatment. The simultaneous combination of RF heating and cinnamon essential oil nanoemulsion (CEON) also further enhanced membrane permeability and ROS accumulation compared to individual treatment, but impacts were less than those in the combination of RF heating and ε-PL. The major synergistic bactericidal mechanism of RF heating and CEON was significantly inhibiting intracellular ATP synthesis. The untargeted metabolomics analysis revealed that the combined treatments enhanced disturbances to multiple intracellular metabolisms compared to individual treatment, thus leading to synergistic bactericidal effects against Salmonella. These results provide an in-depth understanding of the synergistic bactericidal mechanisms of the combination of RF heating and natural antimicrobials from cellular and metabolic levels.
Collapse
Affiliation(s)
- Yuanmei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, China
| | - Xiangyu Guan
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; Washington State University, Department of Biological Systems Engineering, Pullman, WA 99164-6120, USA.
| |
Collapse
|
2
|
Shivaprasad DP, Rivera J, Siliveru K. Acidic water tempering and heat treatment, a hurdle approach to reduce wheat Salmonella load during tempering and its effects on flour quality. Food Res Int 2024; 176:113723. [PMID: 38163681 DOI: 10.1016/j.foodres.2023.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
The cultivation and processing of wheat render it susceptible to microbial contamination from varied sources. Hence, pathogens such as Salmonella can contaminate wheat grains, which poses a food safety risk in wheat-based products. This risk is displayed by the incidence of foodborne illness outbreaks linked to Salmonella-contaminated wheat flour and flour-based products. The purpose of this study was to assess the effectiveness of combining acidic water and heat treatment in reducing the Salmonella load of hard red spring (HRS) wheat grains during tempering. Effective treatments were then evaluated for their effects on wheat flour quality. Tempering with sodium bisulfate (SBS), lactic acid (LA), and citric acid (CA) at 15% w/v alone reduced (p < 0.001) wheat Salmonella load by 3.15, 3.23, and 2.91 log CFU/g, respectively. Heat treatment (55 °C) reduced (p < 0.001) wheat Salmonellaload by 4.1 log CFU/g after 24 h of tempering. Combining both tempering and heat treatments resulted in a greater reduction in Salmonella load as non-detectable levels (<2 log CFU/g) of Salmonella in the wheat grains were obtained after 12 h of tempering with LA (15%) + heat. A similar result were achieved for both SBS (15%) + heat and CA (15%) + heat treatments after 18 h of tempering. Applying the combined treatments in HRS wheat grains resulted in comparable wheat flour baking (volume, texture, and crumb structure) and physicochemical properties (rheology and composition) relative to the control (tempering with water alone). The results from this study has the potential to be utilized for developing more effective methods for improving the food safety of wheat flour against Salmonella contamination.
Collapse
Affiliation(s)
| | - Jared Rivera
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Wang D, Palmer JS, Fletcher GC, On SLW, Gagic D, Flint SH. Efficacy of commercial peroxyacetic acid on Vibrio parahaemolyticus planktonic cells and biofilms on stainless steel and Greenshell™ mussel (Perna canaliculus) surfaces. Int J Food Microbiol 2023; 405:110372. [PMID: 37672942 DOI: 10.1016/j.ijfoodmicro.2023.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
The potential of using commercial peroxyacetic acid (PAA) for Vibrio parahaemolyticus sanitization was evaluated. Commercial PAA of 0.005 % (v/v, PAA: 2.24 mg/L, hydrogen peroxide: 11.79 mg/L) resulted in a planktonic cell reduction of >7.00 log10 CFU/mL when initial V. parahaemolyticus cells averaged 7.64 log10 CFU/mL. For cells on stainless steel coupons, treatment of 0.02 % PAA (v/v, PAA: 8.96 mg/L, hydrogen peroxide: 47.16 mg/L) achieved >5.00 log10 CFU/cm2 reductions in biofilm cells for eight strains but not for the two strongest biofilm formers. PAA of 0.05 % (v/v, PAA: 22.39 mg/L, hydrogen peroxide: 117.91 mg/L) was required to inactivate >5.00 log10 CFU/cm2 biofilm cells from mussel shell surfaces. The detection of PAA residues after biofilm treatment demonstrated that higher biofilm production resulted in higher PAA residues (p < 0.05), suggesting biofilm is acting as a barrier interfering with PAA diffusing into the matrices. Based on the comparative analysis of genomes, robust biofilm formation and metabolic heterogeneity within niches might have contributed to the variations in PAA resistance of V. parahaemolyticus biofilms.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Jon S Palmer
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, Private Bag 85084, Canterbury, New Zealand
| | - Dragana Gagic
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Steve H Flint
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
4
|
Jin X, Yao S, Liu Y, Tang J, Zhu M, Liu H, Yu Y, Yu X, Sun J. Photocatalysis of carbamazepine via activating bisulfite by ultraviolet: Performance, transformation mechanism, and residual toxicity assessment of intermediates products. CHEMOSPHERE 2023; 315:137741. [PMID: 36610515 DOI: 10.1016/j.chemosphere.2023.137741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Carbamazepine (CBZ) as an extensively distributed emerging pollutant has menaced ecological security. The degradation performance of CBZ by UV driven bisulfite process was investigated in this work. The kinetics results indicated that CBZ was high-efficiently degraded by UV/bisulfite following a pseudo first-order kinetic model (Kobs = 0.0925 min-1). SO4•- and •OH were verified as the reactive oxidants by EPR test and the radicals scavenging experiment using MeOH and TBA. SO4•- played a dominant role for CBZ degradation. The Density functional theory (DFT) and LC-qTOF-MS/MS clarified that hydroxylation, ketonation, ring opening reaction, and ring contraction were main transformation patterns of CBZ. As to influence factors, CBZ degradation was significantly hindered in presence of CO32-, HPO42- and NOM. Toxicological analysis derived from metabonomics suggested that the remarkable alteration of metabolic profile was triggered by exposure to intermediates mixture. CBZ intermediates interfered in several key metabolic pathways, including pentose phosphate, amino acids, lysine degradation, glycerophospholipid, glutathione, nucleotides and carbohydrate, which was alleviated after UV/bisulfite treatment. This work provided a meaningful support to potential risk of CBZ intermediates products, which shed light on the future application in eliminating drugs using UV /bisulfite.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
5
|
Luo W, Wang J, Sun L, Li R, Wu D, Tang J, Zhang J, Geng F. Metabolome analysis shows that ultrasound enhances the lethality of chlorine dioxide against Salmonella enterica subsp. Enterica by disrupting its material and energy metabolism. Food Res Int 2022; 162:112135. [DOI: 10.1016/j.foodres.2022.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
6
|
Qi Z, Liu C. Metabolic characteristics and markers in viable but nonculturable state of Pseudomonas aeruginosa induced by chlorine stress. ENVIRONMENTAL RESEARCH 2022; 214:114111. [PMID: 35987374 DOI: 10.1016/j.envres.2022.114111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Many Gram-negative pathogens enter the viable but nonculturable (VBNC) state to resist external environmental stress (such as disinfection). However, little is known about the metabolic properties, especially for the metabolic markers, of VBNC bacteria, which impedes the development of efficient disinfection technologies and causes more potential health risks. In this study, we analyzed the metabolic characteristics of chlorine stress-induced VBNC Pseudomonas aeruginosa at the population and single-cell levels. The overall metabolic activity of VBNC bacteria showed a downward trend, but the glyoxylate cycle, fatty acid and glycerophospholipid metabolism pathways were up-regulated. Based on the metabolic profiles of VBNC bacteria, nine metabolic markers (pyruvate, glyoxylate, guanine, glutamate, sn glycero-3-phos-phocholine, fatty acid, D-alanine, glutathione, N-Butanoyl-D-homoserine lactone) were determined. The results of single-cell Raman spectroscopy showed that the metabolic activity of VBNC bacteria was significantly reduced, but showed more significant metabolic heterogeneity. The redshift of the Raman peaks of 15N and 13C labeled VBNC bacteria was significantly weaker than that of the culturable bacteria, suggesting that the VBNC bacteria have a reduced ability to synthesize proteins, nucleotides, phospholipids, and carbohydrates. The result of this study can help to better understand the metabolic mechanisms and energy management strategy of VBNC bacteria, to achieve precise identification and effective control of VBNC bacteria.
Collapse
Affiliation(s)
- Zheng Qi
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong Province, PR China.
| |
Collapse
|
7
|
Dual-Species Biofilms Formed by Escherichia coli and Salmonella Enhance Chlorine Tolerance. Appl Environ Microbiol 2022; 88:e0148222. [PMID: 36300924 PMCID: PMC9680634 DOI: 10.1128/aem.01482-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of
Escherichia coli
and
Salmonella
in food might be associated with the cross-contamination of biofilms on food-contact surfaces. The knowledge of the sanitization of mono-species biofilm on the food-contact surface is well established, while mixed-species biofilm occurs more naturally, which could profoundly affect the efficacy of sanitizer.
Collapse
|
8
|
Wang Y, Gao X, Yang H. Integrated metabolomics of "big six" Escherichia coli on pea sprouts to organic acid treatments. Food Res Int 2022; 157:111354. [PMID: 35761617 DOI: 10.1016/j.foodres.2022.111354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Naturally occurring organic acids (OAs) have demonstrated satisfactory effects in inhibiting common pathogens on fresh produce; however, their effectiveness on "big six" Escherichia coli serotypes, comprised of E. coli O26:H11, O45:H2, O103:H11, O111, O121:H19 and O145, remained unaddressed. Regarding this, using nuclear magnetic resonance (NMR) spectroscopy and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), the sanitising efficacy and the underlying antimicrobial mechanisms of 10-min treatments with 0.2 mol/L ascorbic acid (AA), citric acid (CA) and malic acid (MA) against the "big six" strains on pea sprouts were thoroughly investigated in this study. Despite the varying antimicrobial efficacy (AA: 0.12-0.99, CA: 0.36-1.72, MA: 0.75-3.28 log CFU/g reductions), the three OAs induced consistent metabolic changes in the E. coli strains, particularly in the metabolism of membrane lipids, nucleotide derivatives and amino acids. Comparing all strains, the most OA-resistant strain, O26 (0.36-1.12 log CFU/g reductions), had the largest total amino acids accumulated to resist osmotic stress; its ulteriorly suppressed cell activity further strengthened its endurance. In contrast, the lowest OA-resistance of O121 (0.99-3.28 log CFU/g reductions) might be explained by the depletion of putrescine, an oxidative stress regulator. Overall, the study sheds light on the effectiveness of a dual-platform metabolomics investigation in elucidating the metabolic responses of "big six" E. coli to OAs. The manifested antimicrobial effects of OAs, especially MA, together with the underlying metabolic perturbations detected in the "big six" strains, provided scientific basis for applying OA treatments to future fresh produce sanitisation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd, Jiading District, Shanghai 201805, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
9
|
NMR-based metabolomic investigation on antimicrobial mechanism of Salmonella on cucumber slices treated with organic acids. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Chen L, Zhao X, Li R, Yang H. Integrated metabolomics and transcriptomics reveal the adaptive responses of Salmonella enterica serovar Typhimurium to thyme and cinnamon oils. Food Res Int 2022; 157:111241. [DOI: 10.1016/j.foodres.2022.111241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
|
11
|
Lin Z, Chen T, Zhou L, Yang H. Effect of chlorine sanitizer on metabolic responses of Escherichia coli biofilms "big six" during cross-contamination from abiotic surface to sponge cake. Food Res Int 2022; 157:111361. [PMID: 35761623 DOI: 10.1016/j.foodres.2022.111361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
The effect of chlorine on Escherichia coli biofilm O157:H7 are well established; however, the effect on biofilm adhesion to food as well as the six emerging E. coli serotypes ("big six") have not been fully understood. Chlorine sanitization with 1-min 100 mg/L was applied against seven pathogenic E. coli (O111, O121:H19, O45:H2, O26:H11, O103:H11, O145, and O157:H7) biofilms on high-density polyethylene (HDPE) and stainless steel (SS) coupons, respectively. Using sponge cake as a food model, the adhesion behavior was evaluated by comparison of bacteria transfer rate before and after treatment. Besides, the metabolic profiles of biofilms were analyzed by nuclear magnetic resonance (NMR) spectrometer. A significant decrease in transfer rate (79% decline on SS and 33% decline on HDPE) was recorded as well as the distinctive pattern between SS and HDPE coupons was also noticed, with a low population (6-7 log CFU/coupon) attached and low survivals (0-3 log CFU/coupon) upon chlorine on SS, while high population (7-8 log CFU/coupon) attached and high survivals (5-7 log CFU/coupon) on HDPE. Moreover, O121:H19 and O26:H11 demonstrated the highest resistance to chlorine with the least metabolic status and pathways affected. O103:H11, O145, and O111 followed similar metabolic patterns on both surfaces. Distinct metabolic patterns were found in O45:H2 and O157:H7, where the former had more affected metabolic status and pathways on SS but less on HDPE, whereas the latter showed an opposite trend. Overall, a potential contamination source of STEC infection in flour products was demonstrated and metabolic changes induced by chlorine were revealed by NMR-based metabolomics, which provides insights to avoid "big six" biofilms contamination in food.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Tong Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lehao Zhou
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
12
|
Zhao X, Lan W, Yang X, Xie J. Inactivation effect and protective barriers damage caused to
Shewanella putrefaciens
by stable chlorine dioxide combined with slightly acidic electrolyzed water. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Xin Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
13
|
Ye X, Pi X, Zheng W, Cen Y, Ni J, Xu L, Wu K, Liu W, Li L. The Methanol Extract of Polygonatum odoratum Ameliorates Colitis by Improving Intestinal Short-Chain Fatty Acids and Gas Production to Regulate Microbiota Dysbiosis in Mice. Front Nutr 2022; 9:899421. [PMID: 35634366 PMCID: PMC9133717 DOI: 10.3389/fnut.2022.899421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
The potential impacts of methanol extract from Polygonatum odoratum on (YZM) colonic histopathology, gut gas production, short-chain fatty acids (SCFAs), and intestinal microbiota composition were evaluated with dextran sulfate sodium (DSS)-induced colitis mice in this study. These results indicated that YZM increased colon length and ameliorated colonic histopathology in DSS-induced colitis mice. Moreover, YZM administration reversed intestinal microbiota compositions leading to the inhibition of H2S-related bacteria (e.g., Desulfovibrionaceae) and the lower level of H2S and higher contents of SCFA-related bacteria (e.g., Muribaculaceae). Taken together, the effects of methanol extract from Polygonatum odoratum are studied to provide new enlightenment and clues for its application as a functional food and clinical drug. Our study first revealed the relationship between intestinal gas production and key bacteria in ulcerative colitis.
Collapse
Affiliation(s)
- Xuewei Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenxin Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yingxin Cen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiahui Ni
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Langyu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kefei Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Wei Liu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Lanjuan Li,
| |
Collapse
|
14
|
Fong FLY, Poon PMY, Chung KCW, Leung ML, Sze PK, Leung KY, Sze ETP. Suppression of
salmonella
enteritidis in preparation of Japanese onsen tamago. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fiona Long Yan Fong
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| | - Peggy Miu Yee Poon
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| | - Kenny Cheong Wah Chung
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| | - Mei Ling Leung
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| | - Pui Kwan Sze
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| | - Kwan Yiu Leung
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| | - Eric Tung Po Sze
- School of Science and Technology The Hong Kong Metropolitan University Hong Kong Special Administrative Region People's Republic of China
| |
Collapse
|
15
|
Yu X, Jin X, Wang N, Yu Y, Zhu X, Chen M, Zhong Y, Sun J, Zhu L. Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: Mechanism and risk assessment using environmental metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128244. [PMID: 35032952 DOI: 10.1016/j.jhazmat.2022.128244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The threat caused by the misuse of antibiotics to ecology and human health has been aroused an extensive attention. Developing cost-effective techniques for removing antibiotics needs to put on the agenda. In current research, the degradation mechanism of sulfamethoxazole (SMX) by sulfidated nanoscale zerovalent iron (S-nZVI) driven persulfate, together with the potential risk of intermediates were studied. The degradation of SMX followed a pseudo-first order kinetics reaction with kobs at 0.1176 min-1. Both SO4•- and •OH were responsible for the degradation of SMX, and SO4•- was the predominant free radical. XPS analysis demonstrated that reduced sulfide species promoted the conversion of Fe (III) to Fe (II), resulting in the higher transformation rate of SMX. Six intermediates products were generated through hydroxylation, dehydration condensation, nucleophilic reaction, and hydrolysis. The risk of intermediates products is subsequently assessed using E. coli as a model microorganism. After E.coli exposure to intermediates for 24 h, the upmetabolism of carbohydrate, nucleotide, citrate acid cycle and downmetabolism of glutathione, sphingolipid, galactose by metabolomics analysis identified that SMX was effectively detoxified by oxidation treatment. These findings not only clarified the superiority of S-nZVI/persulfate, but also generated a novel insight into the security of advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
16
|
Metabolic Responses of "Big Six" Escherichia coli in Wheat Flour to Thermal Treatment Revealed by Nuclear Magnetic Resonance Spectroscopy. Appl Environ Microbiol 2022; 88:e0009822. [PMID: 35285244 DOI: 10.1128/aem.00098-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli outbreaks linked to wheat flour consumption have kept emerging in recent years, which necessitated an antimicrobial step being incorporated into the flour production process. The objectives of this in vivo study were to holistically evaluate the sanitizing efficacy of thermal treatment at 60 and 70°C against the "big six" E. coli strains (O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) in wheat flour and to assess the strain-specific metabolic responses using nuclear magnetic resonance (NMR) spectroscopy. The 70°C treatment temperature indiscriminatingly inactivated all strains by over 4.3-log CFU/g within 20 min, suggesting the high sanitization effectiveness of this treatment temperature, whereas the treatment at 60°C inactivated the strains to various degrees during the 1-h process. The most resistant strains at 60°C, O26 and O45, were characterized by amino acid and sugar depletion, and their high resistance was attributed to the dual effects of activated heat shock protein (HSP) synthesis and promoted glycolysis. O121 also demonstrated these metabolic changes, yet its thermal resistance was largely impaired by the weakened membrane structure and diminished osmotic protection due to phosphorylcholine exhaustion. In contrast, O111, O145, and O103 presented a substantial elevation of metabolites after stress at 60°C; their moderate thermal resistance was mainly explained by the accumulation of amino acids as osmolytes. Overall, the study enhanced our understanding of the metabolic responses of big six E. coli to heat stress and provided a model for conducting NMR-based metabolomic studies in powdered food matrices. IMPORTANCE "Big six" Escherichia coli strains have caused several outbreaks linked to wheat flour consumption in the last decade, revealing the vital importance of adopting an antimicrobial treatment during the flour production process. Therefore, the present study was carried out to evaluate the efficacy of a typical sanitizing approach, thermal treatment, against the big six strains in wheat flour along with the underlying antimicrobial mechanisms. Findings showed that thermal treatment at 60 and 70°C could markedly mitigate the loads of all strains in wheat flour. Moreover, activated heat shock protein synthesis combined with expedited glycolysis and enhanced osmotic protection were identified as two major metabolic alteration patterns in the E. coli strains to cope with the heat stress. With the responses of big six in wheat flour to thermal treatment elucidated, scientific basis for incorporating a thermal inactivation step in wheat flour production was provided.
Collapse
|
17
|
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Liu H, Yin H, Zhu M, Dang Z. Degradation of organophosphorus flame retardants in heterogeneous photo-Fenton system driven by Fe(III)-based metal organic framework: Intermediates and their potential interference on bacterial metabolism. CHEMOSPHERE 2022; 291:133072. [PMID: 34838833 DOI: 10.1016/j.chemosphere.2021.133072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been regarded as one of the most rebarbative classes of emerging contaminants due to their persistence and toxicity. In the current study, Fe-based metal organic framework (MIL-88A) was synthesized and employed as photo-Fenton catalyst for the degradation of tris-(2-chloroisopropyl) phosphate (TCPP), a typical representative of OPFRs. The observations indicated that visible light could boost the reduction of ≡FeIII to ≡FeII in Fe-O clusters of MIL-88A during the photo-Fenton system and consequently induce the transformation of H2O2 to OH, which realized efficient degradation of TCPP. Due to the excellent function of MIL-88A, the effective pH application range of photo-Fenton system was extended in comparison with traditional Fenton system. The degradation efficiency of TCPP was visibly influenced in presence of humic acid (HA). MIL-88A exhibited a commendable reusability and stability after 3 times cycle. As the photo-Fenton reaction proceeded, TCPP was disintegrated to several kinds of carboxylated, dechlorinated and hydroxylated products. The observations of metabolomics endorsed that the interference of intermediate products mixture on E. coli weakened to a certain extent. In conclusion, carboxylation, dechlorination, hydroxylation and oxidation of TCPP were likewise effective for its detoxification, revealing that heterogeneous photo-Fenton system driven by Fe-based metal organic framework will be an attractive and safe treatment technique for OPFRs control.
Collapse
Affiliation(s)
- Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
19
|
Chen L, Liu Q, Zhao X, Zhang H, Pang X, Yang H. Inactivation efficacies of lactic acid and mild heat treatments against Escherichia coli strains in organic broccoli sprouts. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Chen BK, Wang CK. Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules 2022; 27:1222. [PMID: 35209015 PMCID: PMC8877615 DOI: 10.3390/molecules27041222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Electrolyzed water (EW) is a new type of cleaning and disinfecting agent obtained by means of electrolysis with a dilute sodium chloride solution. It has low cost and harm to the human body and is also friendly to the environment. The anode produces acidic electrolyzed water (AEW), which is mainly used to inhibit bacterial growth and disinfect. The cathode provides basic electrolyzed water (BEW), which is implemented to promote human health. EW is a powerful multifunctional antibacterial agent with a wide range of applications in the medicine, agriculture, and food industry. Studies in vitro and in vivo show that it has an inhibitory effect on pathogenic bacteria and viruses. Therefore, EW is used to prevent chronic diseases, while it has been found to be effective against various kinds of infectious viruses. Animal experiments and clinical trials clearly showed that it accelerates wound healing, and has positive effects in oral health care, anti-obesity, lowering blood sugar, anti-cancer and anti-infectious viral diseases. This review article summarizes the application of EW in treating bacteria and viruses, the prevention of chronic diseases, and health promotion.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
21
|
Rivett MO, Tremblay-Levesque LC, Carter R, Thetard RCH, Tengatenga M, Phoya A, Mbalame E, Mchilikizo E, Kumwenda S, Mleta P, Addison MJ, Kalin RM. Acute health risks to community hand-pumped groundwater supplies following Cyclone Idai flooding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150598. [PMID: 34597537 DOI: 10.1016/j.scitotenv.2021.150598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This longitudinal flood-relief study assessed the impact of the March 2019 Cyclone Idai flood event on E. coli contamination of hand-pumped boreholes in Mulanje District, Malawi. It established the microbiological water-quality safety of 279 community supplies over three phases, each comprising water-quality survey, rehabilitation and treatment verification monitoring. Phase 1 contamination three months after Idai was moderate, but likely underestimated. Increased contamination in Phase 2 at 9 months and even greater in Phase 3, a year after Idai was surprising and concerning, with 40% of supplies then registering E. coli contamination and 20% of supplies deemed 'unsafe'. Without donor support for follow-up interventions, this would have been missed by a typical single-phase flood-relief activity. Contamination rebound at boreholes successfully treated months earlier signifies a systemic problem from persistent sources intensified by groundwater levels likely at a decade high. Problem extent in normal, or drier years is unknown due to absence of routine monitoring of water point E. coli in Malawi. Statistical analysis was not conclusive, but was indicative of damaged borehole infrastructure and increased near-borehole pit-latrine numbers being influential. Spatial analysis including groundwater flow-field definition (an overlooked sector opportunity) revealed 'hit-and-miss' contamination of safe and unsafe boreholes in proximity. Hydrogeological control was shown by increased contamination near flood-affected area and in more recent recharge groundwater otherwise of good quality. Pit latrines are presented as credible e-coli sources in a conceptual model accounting for heterogeneous borehole contamination, wet season influence and rebound behavior. Critical to establish are groundwater level - flow direction, hand-pump plume draw, multiple footprint latrine sources - 'skinny' plumes, borehole short-circuiting and fast natural pathway (e.g. fracture flow) and other source influences. Concerted WASH (Water, Sanitation and Hygiene) sector investment in research and policy driving national water point based E. coli monitoring programs are advocated.
Collapse
Affiliation(s)
- Michael O Rivett
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK.
| | | | - Ruth Carter
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Rudi C H Thetard
- USAID ONSE Health Activity, Health Programs Group Management Sciences for Health MSH, Lilongwe, Malawi
| | - Morris Tengatenga
- USAID ONSE Health Activity, Health Programs Group Management Sciences for Health MSH, Lilongwe, Malawi
| | - Ann Phoya
- USAID ONSE Health Activity, Health Programs Group Management Sciences for Health MSH, Lilongwe, Malawi
| | - Emma Mbalame
- The Ministry of Forestry and Natural Resources, Lilongwe Headquarters, Private Bag 390, Lilongwe, Malawi
| | | | - Steven Kumwenda
- BASEFlow, Galaxy House, Chichiri, Blantyre, PO Box 30467, Malawi
| | - Prince Mleta
- The Ministry of Forestry and Natural Resources, Lilongwe Headquarters, Private Bag 390, Lilongwe, Malawi
| | - Marc J Addison
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Robert M Kalin
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| |
Collapse
|
22
|
Distribution of chlorine sanitizer in a flume tank: Numerical predictions and experimental validation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zhang Y, Ding Z, Xie J. Metabolic Effects of Violet Light on Spoilage Bacteria from Fresh-Cut Pakchoi during Postharvest Stage. PLANTS (BASEL, SWITZERLAND) 2022; 11:267. [PMID: 35161246 PMCID: PMC8840685 DOI: 10.3390/plants11030267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Pakchoi (Brassica rapa L. Chinensis) is an important vegetable in Asia. Pseudomonas palleroniana is one of the specific spoilage organisms (SSOs) of fresh-cut pakchoi. The purpose of this study was to investigate changes to the endogenous metabolic spectrum of violet light (405 nm) with regard to food spoilage bacteria from fresh-cut pakchoi using ultrahigh-performance liquid chromatography-tandem mass spectrometry. In this study, P. palleroniana samples were treated with violet light at 4 °C, and the maximum dose was 133.63 J/cm2. The results revealed that 153 metabolites and 83 pathways significantly changed compared to the control group, which indicated that light treatment may lead to ROS accumulation in cells, inducing oxidative stress and the excessive consumption of ATP. However, the increased content of aromatic amino acids and the decreased anabolism of some amino acids and nucleotides might be a form of self-protection by reducing energy consumption, thus contributing to the improvement of the tolerance of cells to illumination. These results provide new insights into the antibacterial mechanism of P. palleroniana with regard to metabolism.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
24
|
Kobayashi F, Aoki H, Kamagata J, Odake S. Effect of electrolyzed water and carbon dioxide microbubbles on removal of diazinon and diazoxon. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fumiyuki Kobayashi
- Faculty of Applied Life Science Nippon Veterinary and Life Science University Tokyo Japan
| | - Hitoshi Aoki
- Research & Development Department Nichirei Foods Inc. Chiba Japan
| | - Junichi Kamagata
- Research & Development Department Nichirei Foods Inc. Chiba Japan
| | - Sachiko Odake
- Faculty of Applied Life Science Nippon Veterinary and Life Science University Tokyo Japan
| |
Collapse
|
25
|
Zhao N, Jiao L, Xu J, Zhang J, Qi Y, Qiu M, Wei X, Fan M. Integrated transcriptomic and proteomic analysis reveals the response mechanisms of Alicyclobacillus acidoterrestris to heat stress. Food Res Int 2022; 151:110859. [PMID: 34980395 DOI: 10.1016/j.foodres.2021.110859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Alicyclobacillus acidoterrestris can survive pasteurization and is implicated in pasteurized fruit juice spoilage. However, the mechanisms underlying heat responses remain largely unknown. Herein, gene transcription changes of A. acidoterrestris under heat stress were detected by transcriptome, and an integrated analysis with proteomic and physiological data was conducted. A total of 911 differentially expressed genes (DEGs) was observed. The majority of DEGs and differentially expressed proteins (DEPs) were exclusively regulated at the mRNA and protein level, respectively, whereas only 59 genes were regulated at both levels and had the same change trends. Comparative analysis of the functions of the specifically or commonly regulated DEGs and DEPs revealed that the heat resistance of A. acidoterrestris was primarily based on modulating peptidoglycan and fatty acid composition to maintain cell envelope integrity. Low energy consumption strategies were established with attenuated glycolysis, decreased ribosome de novo synthesis, and activated ribosome hibernation. Terminal oxidases, cytochrome bd and aa3, in aerobic respiratory chain were upregulated. Meanwhile, the MarR family transcriptional regulator was upregulated, reactive oxygen species (ROS) was discovered, and the concentration of superoxide dismutase (SOD) increased, indicating that the accompanied oxidative stress was induced by high temperature. Additionally, DNA and protein damage repair systems were activated. This study provided a global perspective on the response mechanisms of A. acidoterrestris to heat stress, with implications for better detection and control of its contamination in fruit juice.
Collapse
Affiliation(s)
- Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Zhang R, Zhang Y, Sun Y, Yu H, Yang F, Guo Y, Xie Y, Yao W. High-intensity ultrasound promoted the aldol-type condensation as an alternative mean of synthesizing pyrazines in a Maillard reaction model system of D-glucose- 13C 6 and L-glycine. ULTRASONICS SONOCHEMISTRY 2022; 82:105913. [PMID: 35033978 PMCID: PMC8760555 DOI: 10.1016/j.ultsonch.2022.105913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated how the generation of pyrazines was promoted by high-intensity ultrasound (HIU) in a Maillard reaction (MR) model system of glucose-glycine. Carbohydrate module labeling (CAMOLA) technique was adopted using D-glucose-13C6 to elucidate the carbon skeleton of both intermediate and final MR products (MRPs). In the D-glucose-13C6-glycine HIU-MR model system, the concentration of 11 types of pyrazines was significantly higher than their counterparts in the thermal MR. Results of CAMOLA analysis showed that a significantly lower proportion of [M]+ in pyrazines with long-length side chains was observed when compared with the pyrazines generated in thermal MR. This phenomenon may suggest the aldol-type condensation was promoted by the HIU, which is a conversion from pyrazines with short-length side chains to those with long-length side chains involving carbonyl compounds. Furthermore, the analysis of isotopomers distribution in 2,3-dimethyl-quinoxaline as the o-phenylenediamine-derivatized 2,3-butanedione indicated that the increased proportion of [M + 4]+ in 2,3-dimethyl-quinoxaline (15.74% ± 0.11%) was attributed to a cleavage of D-glucose-13C6 promoted by the HIU. The above-mentioned findings elucidate that the aldol-type condensation and cleavage of D-glucose contribute to the promoted synthesis of pyrazines. The HIU would generate an extremely high temperature and pressure environment that is favored by the aldol-type condensation as a high-pressure favored reaction. The HIU, therefore, can be further developed as a promising technique to promote flavor generation through the MR.
Collapse
Affiliation(s)
- Ruyue Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yilong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yating Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
27
|
Comparison of the metabolic responses of eight Escherichia coli strains including the “big six” in pea sprouts to low concentration electrolysed water by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
29
|
Rivera J, Phebus RK, Doddabematti Prakash S, Siliveru K. Effects of acidic water tempering and heat treatment on the Shiga toxin‐producing
Escherichia coli
(O121 and O26) load of wheat during tempering and its impact on wheat flour quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jared Rivera
- Department of Grain Science and Industry Kansas State University Manhattan Kansas USA
| | | | | | - Kaliramesh Siliveru
- Department of Grain Science and Industry Kansas State University Manhattan Kansas USA
| |
Collapse
|
30
|
Zhou J, Sheng L, Lv R, Liu D, Ding T, Liao X. Application of a 360-Degree Radiation Thermosonication Technology for the Inactivation of Staphylococcus aureus in Milk. Front Microbiol 2021; 12:771770. [PMID: 34803991 PMCID: PMC8602915 DOI: 10.3389/fmicb.2021.771770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Milk is easy to be contaminated by microorganisms due to its abundant nutrients. In this study, a 360-degree radiation thermosonication (TS) system was developed and utilized for the inactivation of Staphylococcus aureus in milk. The 360-degree radiation TS system-induced inactivation kinetics of S. aureus was fitted best by the Weibull model compared with biphasic and linear models. The treatment time, the exposure temperature, and the applied ultrasound power was found to affect the bactericidal efficacy of the 360-degree radiation TS system. Additionally, the TS condition of 200 W and 63°C for 7.5 min was successfully applied to achieve complete microbial inactivation (under the limit of detection value) in raw milk. The treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retainment of the proteins in milk compared with the ultrahigh temperature and conventional pasteurization processing. Therefore, the 360-degree radiation TS system developed in this study can be used as an alternative technology to assure the microbiological safety and retain the quality of milk, and the Weibull model could be applied for the prediction of the inactivation levels after exposure to this technology.
Collapse
Affiliation(s)
- Jianwei Zhou
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
| | - Lele Sheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ruiling Lv
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xinyu Liao
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Pan Y, Cheng JH, Sun DW. Metabolomic analyses on microbial primary and secondary oxidative stress responses. Compr Rev Food Sci Food Saf 2021; 20:5675-5697. [PMID: 34601780 DOI: 10.1111/1541-4337.12835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Food safety is veryimportant in our daily life. In food processing or disinfection, microorganisms are commonly exposed to oxidative stress perturbations. However, microorganisms can adapt and respond to physicochemical interventions, leading to difficulty and complexity for food safety assurance. Therefore, understanding the response mechanisms of microbes and providing an overview of the responses under oxidative stress conditions are beneficial for ensuring food safety for the industry. The current review takes the metabolomics approach to reveal small metabolite signatures and key pathway alterations during oxidative stress at the molecular and technical levels. These alterations are involved in primary oxidative stress responses due to inactivation treatments such as using hypochlorite (HOCl), hydrogen peroxide (H2 O2 ), electrolyzed water (EW), irradiation, pulsed light (PL), electron beam (EB), and secondary oxidative stress responses due to exposures to excessive conditions such as heat, pressure, acid, and alkaline. Details on the putative origin of exogenous or endogenous reactive oxygen species (ROS) are discussed, with particular attention paid to their effects on lipid, amino acid, nucleotide, and carbohydrate metabolism. In addition, mechanisms on counteracting oxidative stresses, stabilization of cell osmolality as well as energy provision for microbes to survive are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, Ireland
| |
Collapse
|
32
|
He Y, Zhao X, Chen L, Zhao L, Yang H. Effect of electrolysed water generated by sodium chloride combined with sodium bicarbonate solution against Listeria innocua in broth and on shrimp. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Wu J, Zhao L, Lai S, Yang H. NMR-based metabolomic investigation of antimicrobial mechanism of electrolysed water combined with moderate heat treatment against Listeria monocytogenes on salmon. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Xu Y, Wang H, Zhang M, Zhang J, Yan W. Plasmon-Enhanced Antibacterial Activity of Chiral Gold Nanoparticles and In Vivo Therapeutic Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1621. [PMID: 34205616 PMCID: PMC8233931 DOI: 10.3390/nano11061621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
d-cysteine (d-cys) has been demonstrated to possess an extraordinary antibacterial activity because of its unique steric configuration. However, inefficient antibacterial properties seriously hinder its wide applications. Here, cysteine-functionalized gold nanoparticles (d-/l-Au NPs) were prepared by loading d-/l-cysteine on the surface of gold nanoparticles for the effective inhibition of Escherichia coli (E. coli) in vitro and in vivo, and the effects on the intestinal microflora in mice were explored during the treatment of E. coli infection in the gut. We found that the antibacterial activity of d-/l-Au NPs was more than 2-3 times higher than pure d-cysteine, l-cysteine and Au NPs. Compared with l-Au NPs, d-Au NPs showed the stronger antibacterial activity, which was related to its unique steric configuration. Chiral Au NPs showed stronger destructive effects on cell membrane compared to other groups, which further leads to the leakage of the cytoplasm and bacterial cell death. The in vivo antibacterial experiment illustrated that d-Au NPs displayed impressive antibacterial activity in the treatment of E. coli-infected mice comparable to kanamycin, whereas they could not affect the balance of intestinal microflora. This work is of great significance in the development of an effective chiral antibacterial agent.
Collapse
Affiliation(s)
| | | | | | | | - Wenjing Yan
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (H.W.); (M.Z.); (J.Z.)
| |
Collapse
|
35
|
Gao F, Zeng G, Wang B, Xiao J, Zhang L, Cheng W, Wang H, Li H, Shi X. Discrimination of the geographic origins and varieties of wine grapes using high-throughput sequencing assisted by a random forest model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Zhou L, Wang Y. Physical and antimicrobial properties of zein and methyl cellulose composite films with plasticizers of oleic acid and polyethylene glycol. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Efficacy and Mechanism of Ultrasound Combined with Slightly Acidic Electrolyzed Water for Inactivating Escherichia coli. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6689751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study, the synergetic effect and mechanism of ultrasound (US) and slightly acidic electrolyzed water (SAEW) on the inactivation of Escherichia coli (E. coli) were evaluated. The results showed that US combined with SAEW treatment showed higher sanitizing efficacy for reducing E. coli than US and SAEW alone treatment. US and US combined with SAEW treatments resulted in smaller particle size of E. coli compared to the control and SAEW treatment. In addition, US combined with SAEW treatment induced the highest potassium leakage. However, the highest protein leakage was recorded in US treatment. Moreover, scanning and transmission electron microscopy analysis revealed that the greatest damage of the appearance and ultrastructure of E. coli was achieved after US combined with SAEW treatment. The synergetic effect was also confirmed by CLSM analysis. Fluorescence spectroscopy suggested that treatments of US, SAEW, and US combined with SAEW changed protein conformation of E. coli. Overall, the present study demonstrated that the sterilization mechanism of US combined with SAEW treatment was decreasing the particle size and disrupting the permeability of cell membrane and the cytoplasmic ultrastructure as well as changing protein conformation of E. coli.
Collapse
|
38
|
Mao Q, Liu J, Wiertzema JR, Chen D, Chen P, Baumler DJ, Ruan R, Chen C. Identification of Quinone Degradation as a Triggering Event for Intense Pulsed Light-Elicited Metabolic Changes in Escherichia coli by Metabolomic Fingerprinting. Metabolites 2021; 11:metabo11020102. [PMID: 33578995 PMCID: PMC7916761 DOI: 10.3390/metabo11020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Intense pulsed light (IPL) is becoming a new technical platform for disinfecting food against pathogenic bacteria. Metabolic changes are deemed to occur in bacteria as either the causes or the consequences of IPL-elicited bactericidal and bacteriostatic effects. However, little is known about the influences of IPL on bacterial metabolome. In this study, the IPL treatment was applied to E. coli K-12 for 0–20 s, leading to time- and dose-dependent reductions in colony-forming units (CFU) and morphological changes. Both membrane lipids and cytoplasmic metabolites of the control and IPL-treated E. coli were examined by the liquid chromatography-mass spectrometry (LC-MS)-based metabolomic fingerprinting. The results from multivariate modeling and marker identification indicate that the metabolites in electron transport chain (ETC), redox response, glycolysis, amino acid, and nucleotide metabolism were selectively affected by the IPL treatments. The time courses and scales of these metabolic changes, together with the biochemical connections among them, revealed a cascade of events that might be initiated by the degradation of quinone electron carriers and then followed by oxidative stress, disruption of intermediary metabolism, nucleotide degradation, and morphological changes. Therefore, the degradations of membrane quinones, especially the rapid depletion of menaquinone-8 (MK-8), can be considered as a triggering event in the IPL-elicited metabolic changes in E. coli.
Collapse
Affiliation(s)
- Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Juer Liu
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Justin R. Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Dongjie Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Paul Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., Saint Paul, MN 55108, USA; (P.C.); (R.R.)
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., Saint Paul, MN 55108, USA; (P.C.); (R.R.)
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
- Correspondence: ; Tel.: +1-612-624-7704; Fax: +1-612-625-5272
| |
Collapse
|
39
|
Guo F, Liang Q, Zhang M, Chen W, Chen H, Yun Y, Zhong Q, Chen W. Antibacterial Activity and Mechanism of Linalool against Shewanella putrefaciens. Molecules 2021; 26:molecules26010245. [PMID: 33466475 PMCID: PMC7796449 DOI: 10.3390/molecules26010245] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022] Open
Abstract
The demand for reduced chemical preservative usage is currently growing, and natural preservatives are being developed to protect seafood. With its excellent antibacterial properties, linalool has been utilized widely in industries. However, its antibacterial mechanisms remain poorly studied. Here, untargeted metabolomics was applied to explore the mechanism of Shewanella putrefaciens cells treated with linalool. Results showed that linalool exhibited remarkable antibacterial activity against S. putrefaciens, with 1.5 µL/mL minimum inhibitory concentration (MIC). The growth of S. putrefaciens was suppressed completely at 1/2 MIC and 1 MIC levels. Linalool treatment reduced the membrane potential (MP); caused the leakage of alkaline phosphatase (AKP); and released the DNA, RNA, and proteins of S. putrefaciens, thus destroying the cell structure and expelling the cytoplasmic content. A total of 170 differential metabolites (DMs) were screened using metabolomics analysis, among which 81 species were upregulated and 89 species were downregulated after linalool treatment. These DMs are closely related to the tricarboxylic acid (TCA) cycle, glycolysis, amino acid metabolism, pantothenate and CoA biosynthesis, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. In addition, linalool substantially affected the activity of key enzymes, such as succinate dehydrogenase (SDH), pyruvate kinase (PK), ATPase, and respiratory chain dehydrogenase. The results provided some insights into the antibacterial mechanism of linalool against S. putrefaciens and are important for the development and application of linalool in seafood preservation.
Collapse
Affiliation(s)
- Fengyu Guo
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Qiong Liang
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
| | - Ming Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
| | - Wenxue Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Haiming Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Yonghuan Yun
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Qiuping Zhong
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
- Correspondence: (Q.Z.); (W.C.)
| | - Weijun Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
- Correspondence: (Q.Z.); (W.C.)
| |
Collapse
|
40
|
Wohlgemuth F, Gomes RL, Singleton I, Rawson FJ, Avery SV. Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Front Microbiol 2020; 11:575157. [PMID: 33101251 PMCID: PMC7546784 DOI: 10.3389/fmicb.2020.575157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023] Open
Abstract
We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with benefits for water resilience. The strategy involved finding quenchers of antimicrobial activity then antimicrobial mode of action, by identifying key chemical reaction partners starting from complex matrices, narrowing down reactivity to specific organic molecules within cells. The sanitizer electrolyzed-water (EW) retained partial fungicidal activity against the food-spoilage fungus Aspergillus niger at high levels of added soils (30–750 mg mL–1), commonly associated with harvested produce. Soil with high organic load (98 mg g–1) gave stronger EW inactivation. Marked inactivation by a complex organics mix (YEPD medium) was linked to its protein-rich components. Addition of pure proteins or amino acids (≤1 mg mL–1) fully suppressed EW activity. Mechanism was interrogated further with the yeast model, corroborating marked suppression of EW action by the amino acid methionine. Pre-culture with methionine increased resistance to EW, sodium hypochlorite, or chlorine-free ozonated water. Overexpression of methionine sulfoxide reductases (which reduce oxidized methionine) protected against EW. Fluoroprobe-based analyses indicated that methionine and cysteine inactivate free chlorine species in EW. Intracellular methionine oxidation can disturb cellular FeS-clusters and we showed that EW treatment impairs FeS-enzyme activity. The study establishes the value of a top-down approach for multi-level characterization of sanitizer efficacy and action. The results reveal proteins and amino acids as key quenchers of EW activity and, among the amino acids, the importance of methionine oxidation and FeS-cluster damage for antimicrobial mode-of-action.
Collapse
Affiliation(s)
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
41
|
Affiliation(s)
| | - Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
42
|
Wang XY, Xie J. Assessment of metabolic changes in Acinetobacter johnsonii and Pseudomonas fluorescens co-culture from bigeye tuna (Thunnus obesus) spoilage by ultra-high-performance liquid chromatography-tandem mass spectrometry. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Preservative Effect of Novel Combined Treatment with Electrolyzed Active Water and Lysozyme Enzyme to Increase the Storage Life of Vacuum-Packaged Carp. J FOOD QUALITY 2020. [DOI: 10.1155/2020/4861471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, common carp (Cyprinus carpio), a highly valuable worldwide commercial fish species, was used as a model. One sample group of fresh, skin-on carp fillets was placed in a bath of acidic electrolyzed oxidizing (AEO) water containing a solution of 100 mg/kg chloride ion concentration for 5 minutes. Another sample group was treated with acidic electrolyzed water and 0.5% lysozyme enzyme solution. Another set of samples were washed after the AEO water treatment. Within the study, a storage test was performed to examine the effect of the new combined treatment on the samples’ shelf-life and quality while kept at 2°C. During the storage period, chemical (chlorate) and microbiological (TVC, mesophilic anaerobic plate count, and Enterobacteriaceae count) tests and sensory evaluation were conducted. The combination of AEO water and lysozyme enzyme showed additional bactericidal efficacy on the surface of the carp fillets, which has never been reported before. Both the AEO water and the combined treatment effectively increased the shelf life of the samples, causing 2.4–3.1 log CFU/g difference compared to the control by the end of the 7-day storage. The measured residual chlorate content exceeded the legal threshold, but washing the samples resulted in values below the theoretical threshold limit. The applied preservation methods did not have an adverse effect on the organoleptic properties of the samples.
Collapse
|